93 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    JUST: A neutrino fit software for JUNO's solar analysis and sensitivity

    No full text
    This paper briefly describes a software, currently being developed in the nuclear physics institute IKP-2 of the Forschungszentrum Jülich, used in the context of sensitivity studies for solar neutrino measurements with JUNO. As the main strategy of the analysis consists of performing spectral fits on many pseudo-experiments a fast, reliable, and flexible software is needed in order to be able to quickly adjust to progresses with the experiment design and analysis strategy. JUST is being developed using continuous integration tools to ensure stability throughout different analysis steps, and is made so flexible as to be easily usable also for other experiments

    JUNO potential in non-oscillation physics

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation liquid scintillator experiment being built in the Guangdong province in China. JUNO's target mass of 20 kton will be contained in a 35.4 m acrylic vessel, itself submerged in a water pool, under about 700 m of granite overburden. Surrounding the acrylic vessel are 17612 20'' PMTs and 25600 3'' PMTs. The main goal of JUNO, whose construction is scheduled for completion in 2022, is a 3-4σ determination of the neutrino mass ordering (MO) using reactor neutrinos within six years, as well as a precise measurement of θ12θ_{12}, Δm212Δm^2_{21}, and Δm312Δm^2_{31}. JUNO's large target mass, low background, and dual calorimetry, leading to an excellent energy resolution and low threshold, allows for a rich physics program with many applications in neutrino physics. The large target mass will allow for high-statistics solar-, geo-, and atmospheric neutrino measurements. JUNO will also be able to measure neutrinos from galactic core-collapse supernovae, detecting about 10,000 events for a supernova at 10 kpc, and achieve a 3σ discovery of the diffuse supernova neutrino background in ten years. It can also study non-standard interactions e.g. proton decay, indirect dark matter searches, and probe for Lorentz invariance violations. This paper covers this extensive range of non-oscillation topics on which JUNO will be able to shed light

    OSIRIS - A 20 ton liquid scintillator detector as a radioactivity monitor for JUNO

    No full text
    OSIRIS is a 20 ton liquid scintillator (LS) detector. Its purpose is to serve as a pre-detector for the 20 kiloton JUNO detector under construction in Jiangmen, China. It will monitor JUNO's LS for about six months during filling. The measurement exploits the fast BiPo time-coincidences of the 238U and 232Th decay chains. OSIRIS will also measure the rates of 14C and 210Po in the LS. The detector consists of two optically separated vessels. The inner vessel is an acrylic cylinder which will hold the LS. This inner tank and an array of 64 20'' Hamamatsu PMTs will be submerged in water contained inside of the stainless steel outer vessel. The PMT readout design will use a novel approach with much of the electronics placed directly inside the base of each PMT, allowing for a high signal quality and a triggerless readout scheme

    Data analysis of a low-polonium-field for the discovery of CNO neutrinos in Borexino

    No full text
    Parallel Flash Talk at the "XIX International Workshop on Neutrino Telescopes" on line - 18-26 February, 2021</p
    corecore