21 research outputs found

    The pervasive presence of oxygen in ZrC

    Get PDF
    Based on the recent interest in oxy-carbide materials in catalysis, we employ a thin film model concept to highlight that variation of key reaction parameters in the reactive magnetron sputtering of zirconium carbide films (sputtering power, template temperature or reactive plasma environment) under realistic preparation and application conditions often results in zirconium oxy-carbide films of varying stoichiometry. The composition of the films grown on silicon wafers and in vacuo - cleaved NaCl (001) single crystal facets was confirmed by depth profiling X-ray photoelectron spectroscopy and electron microscopy analysis. A correlation between methane-to-argon ratio, excess carbon and template temperature with elemental composition emphasizes the exclusive presence of oxygen-containing zirconium carbides. To generalize the approach, we also show that embedding of highly ordered Cu particles with uniform sizes in zirconium oxy-carbide matrices yields well-defined metal / oxy-carbide interfaces. As the presence of an oxy-carbide and its reactivity has been inextricably linked to enhanced activity and selectivity in a variety of processes, including hydrogenation, oxidation or reduction reactions, our model thin film approach provides the necessary well-defined catalysts to derive mechanistic details and to study the decomposition/re-carburization cycles of oxy-carbides. We have exemplified the concept for zirconium oxy-carbide, but deliberate extension to similar systems is easily possible

    X-ray Absorption Near-Edge Structure (XANES) at the O K-Edge of Bulk Co<sub>3</sub>O<sub>4</sub>: Experimental and Theoretical Studies

    Get PDF
    We combine theoretical and experimental X-ray absorption near-edge spectroscopy (XANES) to probe the local environment around cationic sites of bulk spinel cobalt tetraoxide (Co3O4). Specifically, we analyse the oxygen K-edge spectrum. We find an excellent agreement between our calculated spectra based on the density functional theory and the projector augmented wave method, previous calculations as well as with the experiment. The oxygen K-edge spectrum shows a strong pre-edge peak which can be ascribed to dipole transitions from O 1s to O 2p states hybridized with the unoccu- pied 3d states of cobalt atoms. Also, since Co3O4 contains two types of Co atoms, i.e., Co3+ and Co2+, we find that contribution of Co2+ ions to the pre-edge peak is solely due to single spin-polarized t2g orbitals (dxz, dyz, and dxy) while that of Co3+ ions is due to spin-up and spin-down polarized eg orbitals (dx2−y2 and dz2 ). Furthermore, we deduce the magnetic moments on the Co3+ and Co2+ to be zero and 3.00 μB respectively. This is consistent with an earlier experimental study which found that the magnetic structure of Co3O4 consists of antiferromagnetically ordered Co2+ spins, each of which is surrounded by four nearest neighbours of oppositely directed spins

    The Crystallographic and Electronic Phase Diagrams of Yttria-Stabilized Zirconia Model Electrolytes

    Get PDF
    Yttria-stabilized zirconia model electrolyte systems with four different compositions are analyzed regarding their crystallographic and electronic structure. By investigating the unit cell height, obtained from electron diffraction patterns, it is shown that a phase transformation between the tetragonal and cubic polymorphs takes place between 8 and 9.3 mol%. Furthermore, the direct band gaps are shown to exhibit the same behavior as the lattice parameter, featuring a discontinuity at the phase transition. By measuring the emitted Čerenkov radiation, an electronic transition that is smaller than the band gaps is found, suggesting that localized defect states are present within the band gap, which is in agreement with UV photoelectron spectra.(VLID)2852382Accepted versio

    Recuperação de área degradada com sistema agroflorestal no Vale do Rio Doce, Minas Gerais.

    Get PDF
    O Vale do Rio Doce, MG, apresenta um histórico de ocupação e uso do solo que favorece a degradação ambiental, em que predominam pastagens sob o uso constante de queimadas. Os sistemas agroflorestais têm se mostrado eficientes na recuperação de áreas degradadas. Neste estudo foram avaliados os efeitos de um sistema agroflorestal na recuperação do solo em área degradada por pastagem na comunidade de Ilha Funda,Município de Periquito, Minas Gerais. A implantação do sistema se deu em 1994 e está sendo conduzido segundo os princípios agroecológicos, potencializando a regeneração natural e a sucessão de espécies. Em 1998, foram coletadas amostras de solo na área em recuperação e em duas áreas adjacentes: uma área degradada, que se encontrava em condições semelhantes às da área em recuperação no início do processo, e outra ocupada por pastagem. Foram determinados atributos químicos do solo e realizada a caracterização da matéria orgânica. O solo da área em recuperação com sistema agroflorestal mostrou-se em melhores condições do que o solo sob pastagem e o da área degradada, apresentando maior dinâmica do carbono orgânico e maior disponibilidade de nutrientes. Embora o teor de carbono orgânico total apresentado pelo solo sob pastagem tenha sido maior que nas demais condições avaliadas, o solo do sistema agroflorestal já está se igualando ao da pastagem no acúmulo das formas mais estáveis de carbono e apresentando maior dinâmica das frações orgânicas menos estáveis. Este estudo comprovou a eficiência dos sistemas agroflorestais, conduzidos segundo os princípios agroecológicos, na recuperação de áreas degradadas

    The Chemical Evolution of the La0.6Sr0.4CoO3−δ Surface Under SOFC Operating Conditions and Its Implications for Electrochemical Oxygen Exchange Activity

    Get PDF
    © The Author(s) 2018Owing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO3 (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects. The present study sheds further light onto LSC surface changes also occurring under SOFC operating conditions. In-situ near ambient pressure X-ray photoelectron spectroscopy measurements were conducted at temperatures between 400 and 790 °C. Simultaneously, electrochemical impedance measurements were performed to characterise the catalytic activity of the LSC electrode surface for O2 reduction. This combination allowed a correlation of the loss in electro-catalytic activity with the appearance of an additional La-containing Sr-oxide species at the LSC surface. This additional Sr-oxide species preferentially covers electrochemically active Co sites at the surface, and thus very effectively decreases the oxygen exchange performance of LSC. Formation of precipitates, in contrast, was found to play a less important role for the electrochemical degradation of LSC.Fonds zur Förderung der wissenschaftlichen Forschung (FWF)212921411

    Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases

    No full text
    Structural and chemical degradation mechanisms of metal-free yttria stabilized zirconia (YSZ-8, 8 mol% Y2O3 in ZrO2) in comparison to its pure oxidic components ZrO2 and Y2O3 have been studied in carbon-rich fuel gases with respect to coking/graphitization and (oxy)carbide formation. By combining operando electrochemical impedance spectroscopy (EIS), operando Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), the removal and suppression of CH4- and CO-induced carbon deposits and of those generated in more realistic fuel gas mixtures (syngas, mixtures of CH4 or CO with CO2 and H2O) was examined under SOFC-relevant conditions up to 1273 K and ambient pressures. Surface-near carbidization is a major problem already on the “isolated” (i.e. Nickel-free) cermet components, leading to irreversible changes of the conduction properties. Graphitic carbon deposition takes place already on the “isolated” oxides under sufficiently fuel-rich conditions, most pronounced in the pure gases CH4 and CO, but also significantly in fuel gas mixtures containing H2O and CO2. For YSZ, a comparative quantification of the total amount of deposited carbon in all gases and mixtures is provided and thus yields favorable and detrimental experimental approaches to suppress the carbon formation. In addition, the effectivity and reversibility of removal of the coke/graphite layers was comparably studied in the pure oxidants O2, CO2 and H2O and their effective contribution upon addition to the pure fuel gases CO and CH4 verified.(VLID)1371558Accepted versio

    Ergotherapie

    No full text

    Structural and kinetic aspects of CO oxidation on ZnO<sub>x</sub>-modified Cu surfaces

    No full text
    CO oxidation is studied on inverse clean metallic Cu0 and ZnOx-modified Cu0 model catalysts. ZnOx films with a coverage of 1.8 monolayers exhibit a pronounced low-temperature CO oxidation rate maximum at ˜500 K, followed by an intermediate rate minimum. Initially, a fully Cu°-shielding ZnOx layer, consisting of layer-by layer grown Zn° and Wurtzite-like ZnO domains at the Zn° island perimeter, shields the metallic Cu substrate from the reaction mixture and protects it from oxidative deactivation by oxygen up to ≈450 K. Above this temperature, thermal Zn desorption from Zn0 patches sets in, which leads to the in-situ formation of an active ZnOx-Cu0 phase boundary. Once formed, this boundary strongly speeds up the delivery of oxygen to the bare Cu0 surface and, thus, the reaction rate to CO2. In due course, also the oxidation of Cu0 to Cu2O is enhanced, leading to the observed deactivation. Structurally, the overall process resembles the breakdown of a passivating layer, leading to localized corrosion and fast oxidation to Cu2O, together with corresponding dewetting of Zn0 by desorption, ZnO formation and Zn0 alloying into the copper bulk at higher temperatures

    Enhanced Kinetic Stability of Pure and Y-Doped Tetragonal ZrO2

    Get PDF
    The kinetic stability of pure and yttrium-doped tetragonal zirconia (ZrO2) polymorphs prepared via a pathway involving decomposition of pure zirconium and zirconium + yttrium isopropoxide is reported. Following this preparation routine, high surface area, pure, and structurally stable polymorphic modifications of pure and Y-doped tetragonal zirconia are obtained in a fast and reproducible way. Combined analytical high-resolution in situ transmission electron microscopy, high-temperature X-ray diffraction, and chemical and thermogravimetric analyses reveals that the thermal stability of the pure tetragonal ZrO2 structure is very much dominated by kinetic effects. Tetragonal ZrO2 crystallizes at 400 C from an amorphous ZrO2 precursor state and persists in the further substantial transformation into the thermodynamically more stable monoclinic modification at higher temperatures at fast heating rates. Lower heating rates favor the formation of an increasing amount of monoclinic phase in the product mixture, especially in the temperature region near 600 C and during/after recooling. If the heat treatment is restricted to 400 C even under moist conditions, the tetragonal phase is permanently stable, regardless of the heating or cooling rate and, as such, can be used as pure catalyst support. In contrast, the corresponding Y-doped tetragonal ZrO2 phase retains its structure independent of the heating or cooling rate or reaction environment. Pure tetragonal ZrO2 can now be obtained in a structurally stable form, allowing its structural, chemical, or catalytic characterization without in-parallel triggering of unwanted phase transformations, at least if the annealing or reaction temperature is restricted to T 400 C.(VLID)2852398Accepted versio
    corecore