116 research outputs found

    Post-exercise cold water immersion effects on physiological adaptations to resistance training and the underlying mechanisms in skeletal muscle: a narrative review

    Get PDF
    Post-exercise cold-water immersion (CWI) is a popular recovery modality aimed at minimizing fatigue and hastening recovery following exercise. In this regard, CWI has been shown to be beneficial for accelerating post-exercise recovery of various parameters including muscle strength, muscle soreness, inflammation, muscle damage, and perceptions of fatigue. Improved recovery following an exercise session facilitated by CWI is thought to enhance the quality and training load of subsequent training sessions, thereby providing a greater training stimulus for long-term physiological adaptations. However, studies investigating the long-term effects of repeated post-exercise CWI instead suggest CWI may attenuate physiological adaptations to exercise training in a mode-specific manner. Specifically, there is evidence post-exercise CWI can attenuate improvements in physiological adaptations to resistance training, including aspects of maximal strength, power, and skeletal muscle hypertrophy, without negatively influencing endurance training adaptations. Several studies have investigated the effects of CWI on the molecular responses to resistance exercise in an attempt to identify the mechanisms by which CWI attenuates physiological adaptations to resistance training. Although evidence is limited, it appears that CWI attenuates the activation of anabolic signaling pathways and the increase in muscle protein synthesis following acute and chronic resistance exercise, which may mediate the negative effects of CWI on long-term resistance training adaptations. There are, however, a number of methodological factors that must be considered when interpreting evidence for the effects of post-exercise CWI on physiological adaptations to resistance training and the potential underlying mechanisms. This review outlines and critiques the available evidence on the effects of CWI on long-term resistance training adaptations and the underlying molecular mechanisms in skeletal muscle, and suggests potential directions for future research to further elucidate the effects of CWI on resistance training adaptations

    Feasibility and acceptability of a remotely delivered, home-based, pragmatic resistance ‘exercise snacking’ intervention in community-dwelling older adults: A pilot randomised controlled trial

    Get PDF
    Background: Very few older adults meet current muscle strengthening exercise guidelines, and several barriers exist to supervised, community-based resistance exercise programs. Older adults therefore require access to feasible resistance exercise modalities that may be performed remotely. This pilot study assessed the feasibility and acceptability of undertaking a four-week home-based resistance ‘exercise snacking’ intervention (performed either once, twice, or thrice daily) when delivered and monitored remotely in older adults. Methods: Thirty-eight community-dwelling older adults [mean ± SD age 69.8 ± 3.8 y, 63% female] were randomised to complete resistance ‘exercise snacks’ (9-minute sessions) either once (n = 9), twice (n = 10), or thrice (n = 9) daily, or allocated to usual-activity control (n = 10). Exercise adherence and adverse events were assessed using an exercise diary, and acceptability of the intervention was explored using an online questionnaire. Physical function [balance, 5-times sit-to-stand (STS), and 30-second STS tests] was assessed remotely at baseline and follow-up using videoconferencing. Results: The intervention was feasible and safe, with 100% participant retention, high adherence (97, 82, and 81% for once, twice, and thrice daily, respectively), and only two adverse events from a total of 1317 ‘exercise snacking’ sessions. The exercise intervention was rated as enjoyable (75% reported their enjoyment as ≥ 4 on a 5-point Likert scale), easy to perform, and most (82%) planned to continue similar exercise at home. We also found it was feasible to assess measures of physical function via videoconferencing, although effect sizes for 4-week changes in both 5-STS (d range, 0.4–1.4) and 30-STS (d range, 0.7–0.9) following the exercise intervention were similar to controls (d = 1.1 and 1.0 for 5-STS and 30-STS, respectively). Conclusions: Resistance ‘exercise snacking’ may be a feasible strategy for engaging older adults in home-based resistance exercise when delivered and monitored remotely. The findings of this pilot feasibility trial support the need for longer-term studies in larger cohorts to determine the effectiveness of resistance ‘exercise snacking’ approaches for improving physical function in older adults. Trial registration: The trial was retrospectively registered on 10/11/2021 with the Australian New Zealand Clinical Trials Registry (ANZCTR) (ACTRN12621001538831)

    Barriers and enablers associated with participation in a home-based pragmatic exercise snacking program in older adults delivered and monitored by Amazon Alexa: A qualitative study

    Get PDF
    Background: ‘Exercise snacking’, which is characterised by shorter and more frequent exercise bouts compared with traditional exercise guidelines, may be an acceptable strategy for increasing physical activity and reducing sedentary behaviour in older adults. Aim: The aim of this study was to evaluate the enablers and barriers for older adults associated with participation in a home-based exercise snacking program delivered and monitored using an Amazon Echo Show 5 device (Alexa). Methods: This study used an interpretive description qualitative design to conduct semi-structured interviews following a 12-week pilot study in 15 adults aged 60–89 years with at least one chronic condition. All participants were prescribed a home based, individualised, lower limb focussed ‘exercise snacking’ program (involving ≤ 10 min of bodyweight exercises 2–4 times per day) delivered and monitored by an Alexa. Qualitative interview data were analysed using thematic analysis. Results: All 15 participants (mean age 70.3 years) attended the semi-structured interview. Themes including time efficiency, flexibility, perceived health benefits, and motivation were enablers for participation in the ‘exercise snacking’ program. A lack of upper body exercises and omission of exercise equipment in the program, as well as a lack of time and motivation for performing exercise snacks three or more times per day, were barriers to participation. Conclusion: While ‘exercise snacking’ is acceptable for older adults, future trials should provide equipment (e.g. adjustable dumbbells, exercise bands), prescribe whole-body exercise programs, and establish strategies to support participation in more than three exercise snacks per day

    Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training

    Get PDF
    Combining endurance training with resistance training (RT) may attenuate skeletal muscle hypertrophic adaptation versus RT alone; however, the underlying mechanisms are unclear. We investigated changes in markers of ribosome biogenesis, a process linked with skeletal muscle hypertrophy, following concurrent training versus RT alone. Twenty-three males underwent eight weeks of RT, either performed alone (RT group, n = 8), or combined with either high-intensity interval training (HIT+RT group, n = 8), or moderate-intensity continuous training (MICT+RT group, n = 7). Muscle samples (vastus lateralis) were obtained before training, and immediately before, 1 h and 3 h after the final training session. Training-induced changes in basal expression of the 45S ribosomal RNA (rRNA) precursor (45S pre-rRNA), and 5.8S and 28S mature rRNAs, were greater with concurrent training versus RT. However, during the final training session, RT further increased both mTORC1 (p70S6K1 and rps6 phosphorylation) and 45S pre-rRNA transcription-related signalling (TIF-1A and UBF phosphorylation) versus concurrent training. These data suggest that when performed in a training-accustomed state, RT induces further increases mTORC1 and ribosome biogenesis-related signalling in human skeletal muscle versus concurrent training; however, changes in ribosome biogenesis markers were more favourable following a period of short-term concurrent training versus RT performed alon

    Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint

    Get PDF
    OThe world’s ever-growing population presents a major challenge in providing sustainable food options and in reducing pressures on the Earth’s agricultural land and freshwater resources. Current estimates suggest that agriculture contributes ~30% of global greenhouse gas (GHG) emissions. Additionally, there is an increased demand for animal protein, the production of which is particularly polluting. Therefore, the climate-disrupting potential of feeding the planet is likely to substantially worsen in the future. Due to the nutritional value of animal-based protein, it is not a simple solution to recommend a wholesale reduction in production/consumption of animal proteins. Rather, employing strategies which result in the production of low carbon animal protein may be part of the solution to reduce the GHGs associated with our diets without compromising diet quality. We suggest that farmed mussels may present a partial solution to this dilemma. Mussel production has a relatively low GHG production and does not put undue pressure on land or fresh water supplies. By drawing comparisons to other protein sources using the Australian Food and Nutrient Database and other published data, we demonstrate that they are a sustainable source of high-quality protein, long-chain omega-3 fatty acids, phytosterols, and other key micronutrients such as B-12 and iron. The aim of this review is to summarise the current knowledge on the health benefits and potential risks of increasing the consumption of farmed mussels

    Type 2 Diabetes Mellitus and Sarcopenia as Comorbid Chronic Diseases in Older Adults: Established and Emerging Treatments and Therapies

    Get PDF
    Type 2 diabetes mellitus (T2DM) and sarcopenia (low skeletal muscle mass and function) share a bidirectional relationship. The prevalence of these diseases increases with age and they share common risk factors. Skeletal muscle fat infiltration, commonly referred to as myosteatosis, may be a major contributor to both T2DM and sarcopenia in older adults via independent effects on insulin resistance and muscle health. Many strategies to manage T2DM result in energy restriction and subsequent weight loss, and this can lead to significant declines in muscle mass in the absence of resistance exercise, which is also a first-line treatment for sarcopenia. In this review, we highlight recent evidence on established treatments and emerging therapies targeting weight loss and muscle mass and function improvements in older adults with, or at risk of, T2DM and/or sarcopenia. This includes dietary, physical activity and exercise interventions, new generation incretin-based agonists and myostatin-based antagonists, and endoscopic bariatric therapies. We also highlight how digital health technologies and health literacy interventions can increase uptake of, and adherence to, established and emerging treatments and therapies in older adults with T2DM and/or sarcopenia

    Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data

    Get PDF
    © 2017 Springer-Verlag GmbH Germany, part of Springer Nature Quantification of vegetation cover from pollen analysis has been a goal of palynologists since the advent of the method in 1916 by the great Lennart von Post. Pollen-based research projects are becoming increasingly ambitious in scale, and the emergence of spatially extensive open-access datasets, advanced methods and computer power has facilitated sub-continental analysis of Holocene pollen data. This paper presents results of one such study, focussing on the Mediterranean basin. Pollen data from 105 fossil sequences have been extracted from the European Pollen database, harmonised by both taxonomy and chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise the dataset into 16 main groupings. A particular focus of analysis was to describe the common transitions from one group to another to understand pathways of Holocene vegetation change in the Mediterranean. Two pollen-based indices of human impact (OJC: Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer the degree of human modification of vegetation within each pollen grouping. Pollen-inferred cluster groups that are interpreted as representing more natural vegetation states show a restricted number of pathways of change. A set of cluster groups were identified that closely resemble anthropogenically-disturbed vegetation, and might be considered anthromes (anthopogenic biomes). These clusters show a very wide set of potential pathways, implying that all potential vegetation communities identified through this analysis have been altered in response to land exploitation and transformation by human societies in combination with other factors, such as climatic change. Future work to explain these ecosystem pathways will require developing complementary datasets from the social sciences and humanities (archaeology and historical sources), along with synthesis of the climatic records from the region
    • …
    corecore