13 research outputs found

    Effects of Backwashing on Granular Activated Carbon with Ammonium Removal Potential in a Full-Scale Drinking Water Purification Plant

    No full text
    Granular activated carbon (GAC) has been widely introduced to advanced drinking water purification plants to remove organic matter and ammonium. Backwashing, which is the routine practice for GAC maintenance, is an important operational factor influencing the performance of GAC and its microbial biomass. In this study, the effects of backwashing on the ammonium removal potential of GAC were evaluated. In addition, abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) on GAC were analyzed. GAC samples before and after backwashing were collected from a full-scale drinking water purification plant. Samplings were conducted before and after implementation of prechlorination of raw water. The results showed that the ammonium removal potential of the GAC increased by 12% after backwashing before prechlorination (p < 0.01). After implementing the prechlorination, the ammonium removal potential of the GAC decreased by 12% even after backwashing (p < 0.01). The AOA was predominant on the GAC in the two samplings. Regardless of prechlorination, the amounts of the AOA and the AOB remained at the same level before and after backwashing. Analysis of the backwashing water indicated that the amounts of the AOA and AOB washed out from the GAC were negligible (0.08%⁻0.26%) compared with their original amounts on the GAC. These results revealed the marginal role of backwashing on the biomass of ammonia oxidizers on GAC. However, the results also revealed that backwashing could have a negative impact on the ammonium removal potential of GAC during prechlorination

    Changes in Dissolved Organic Matter Composition and Disinfection Byproduct Precursors in Advanced Drinking Water Treatment Processes

    No full text
    Molecular changes in dissolved organic matter (DOM) from treatment processes at two drinking water treatment plants in Japan were investigated using unknown screening analysis by Orbitrap mass spectrometry. DOM formulas with carbon, hydrogen and oxygen (CHO–DOM) were the most abundant class in water samples, and over half of them were commonly found at both plants. Among the treatment processes, ozonation induced the most drastic changes to DOM. Mass peak intensities of less saturated CHO–DOM (positive (oxygen subtracted double bond equivalent per carbon (DBE–O)/C)) decreased by ozonation, while more saturated oxidation byproducts (negative (DBE–O)/C) increased and new oxidation byproducts (OBPs) were detected. By Kendrick mass analysis, ozone reactions preferred less saturated CHO–DOM in the same alkylation families and produced more saturated alkylation families of OBPs. Following ozonation, biological activated carbon filtration effectively removed <300 Da CHO–DOM, including OBPs. Following chlorination, over 50 chlorinated formulas of disinfection byproducts (DBPs) were found in chlorinated water samples where at least half were unknown. Putative precursors of these DBPs were determined based on electrophilic substitutions and addition reactions. Ozonation demonstrated better decomposition of addition reaction-type precursors than electrophilic substitution-type precursors; over half of both precursor types decreased during biological activated carbon filtration
    corecore