50 research outputs found

    Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution

    Get PDF
    Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities

    Global nature of airborne particle toxicity and health effects: a focus on megacities, wildfires, dust storms and residential biomass burning

    Get PDF
    Since air pollutants are difficult and expensive to control, a strong scientific underpinning to policies is needed to guide mitigation aimed at reducing the current burden on public health. Much of the evidence concerning hazard identification and risk quantification related to air pollution comes from epidemiological studies. This must be reinforced with mechanistic confirmation to infer causality. In this review we focus on data generated from four contrasting sources of particulate air pollution that result in high population exposures and thus where there remains an unmet need to protect health: urban air pollution in developing megacities, household biomass combustion, wildfires and desert dust storms. Taking each in turn, appropriate measures to protect populations will involve advocating smart cities and addressing economic and behavioural barriers to sustained adoption of clean stoves and fuels. Like all natural hazards, wildfires and dust storms are a feature of the landscape that cannot be removed. However, many efforts from emission containment (land/fire management practices), exposure avoidance and identifying susceptible populations can be taken to prepare for air pollution episodes and ensure people are out of harm’s way when conditions are life-threatening. Communities residing in areas affected by unhealthy concentrations of any airborne particles will benefit from optimum communication via public awareness campaigns, designed to empower people to modify behaviour in a way that improves their health as well as the quality of the air they breathe

    Mechanisms underlying the health effects of desert sand dust

    Get PDF
    Desertification and climate change indicate a future expansion of the global area of dry land and an increase in the risk of drought. Humans may therefore be at an ever-increasing risk of frequent exposure to, and resultant adverse health effects of desert sand dust. This review appraises a total of 52 experimental studies that have sought to identify mechanisms and intermediate endpoints underlying epidemiological evidence of an impact of desert dust on cardiovascular and respiratory health. Toxicological studies, in main using doses that reflect or at least approach real world exposures during a dust event, have demonstrated that virgin sand dust particles and dust storm particles sampled at remote locations away from the source induce inflammatory lung injury and aggravate allergen-induced nasal and pulmonary eosinophilia. Effects are orchestrated by cytokines, chemokines and antigen-specific immunoglobulin potentially via toll-like receptor/myeloid differentiation factor signaling pathways. Findings suggest that in addition to involvement of adhered chemical and biological pollutants, mineralogical components may also be implicated in the pathogenesis of human respiratory disorders during a dust event. Whilst comparisons with urban particulate matter less than 2.5 μm in diameter (PM2.5) suggest that allergic inflammatory responses are greater for microbial element-rich dust- PM2.5, aerosols generated during dust events appear to have a lower oxidative potential compared to combustion-generated PM2.5 sampled during non-dust periods. In vitro findings suggest that the significant amounts of suspended desert dust during storm periods may provide a platform to intermix with chemicals on its surfaces, thereby increasing the bioreactivity of PM2.5 during dust storm episodes, and that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere, enhancing toxicity of aerosols in urban environments. In summary, the experimental research on desert dust on respiratory endpoints go some way in clarifying the mechanistic effects of atmospheric desert dust on the upper and lower human respiratory system. In doing so, they provide support for biological plausibility of epidemiological associations between this particulate air pollutant and events including exacerbation of asthma, hospitalization for respiratory infections and seasonal allergic rhinitis

    Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields

    Get PDF
    Flower visiting insects provide a vitally important pollination service for many crops and wild plants. Recent decline of pollinating insects due to anthropogenic modification of habitats and climate, in particular from 1950's onwards, is a major and widespread concern. However, few studies document the extent of declines in species diversity, and no studies have previously quantified local abundance declines. We here make a quantitative assessment of recent historical changes in bumblebee assemblages by comparing contemporary and historical survey data. species observed in the 1930's, five species were not observed at present. The latter were all long-tongued, late-emerging species.Because bumblebees are important pollinators, historical changes in local bumblebee assemblages are expected to severely affect plant reproduction, in particular long-tubed species, which are pollinated by long-tongued bumblebees

    Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis.

    Get PDF
    The health effects of traffic-related air pollution (TRAP) continue to be of important public health interest. Following its well-cited 2010 critical review, the Health Effects Institute (HEI) appointed a new expert Panel to systematically evaluate the epidemiological evidence regarding the associations between long-term exposure to TRAP and selected adverse health outcomes. Health outcomes were selected based on evidence of causality for general air pollution (broader than TRAP) cited in authoritative reviews, relevance for public health and policy, and resources available. The Panel used a systematic approach to search the literature, select studies for inclusion in the review, assess study quality, summarize results, and reach conclusions about the confidence in the evidence. An extensive search was conducted of literature published between January 1980 and July 2019 on selected health outcomes. A new exposure framework was developed to determine whether a study was sufficiently specific to TRAP. In total, 353 studies were included in the review. Respiratory effects in children (118 studies) and birth outcomes (86 studies) were the most commonly studied outcomes. Fewer studies investigated cardiometabolic effects (57 studies), respiratory effects in adults (50 studies), and mortality (48 studies). The findings from the systematic review, meta-analyses, and evaluation of the quality of the studies and potential biases provided an overall high or moderate-to-high level of confidence in an association between long-term exposure to TRAP and the adverse health outcomes all-cause, circulatory, ischemic heart disease and lung cancer mortality, asthma onsetin chilldren and adults, and acute lower respiratory infections in children. The evidence was considered moderate, low or very low for the other selected outcomes. In light of the large number of people exposed to TRAP - both in and beyond the near-road environment - the Panel concluded that the overall high or moderate-to-high confidence in the evidence for an association between long-term exposure to TRAP and several adverse health outcomes indicates that exposures to TRAP remain an important public health concern and deserve greater attention from the public and from policymakers

    Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization

    Get PDF
    BACKGROUND: Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. METHODOLOGY/PRINCIPAL FINDINGS: We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban) areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface) from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals) decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem service pollination in areas strongly influenced by human activity

    Meat and Nicotinamide:A Causal Role in Human Evolution, History, and Demographics

    Get PDF
    Hunting for meat was a critical step in all animal and human evolution. A key brain-trophic element in meat is vitamin B 3 /nicotinamide. The supply of meat and nicotinamide steadily increased from the Cambrian origin of animal predators ratcheting ever larger brains. This culminated in the 3-million-year evolution of Homo sapiens and our overall demographic success. We view human evolution, recent history, and agricultural and demographic transitions in the light of meat and nicotinamide intake. A biochemical and immunological switch is highlighted that affects fertility in the ‘de novo’ tryptophan-to-kynurenine-nicotinamide ‘immune tolerance’ pathway. Longevity relates to nicotinamide adenine dinucleotide consumer pathways. High meat intake correlates with moderate fertility, high intelligence, good health, and longevity with consequent population stability, whereas low meat/high cereal intake (short of starvation) correlates with high fertility, disease, and population booms and busts. Too high a meat intake and fertility falls below replacement levels. Reducing variances in meat consumption might help stabilise population growth and improve human capital
    corecore