1,059 research outputs found
A Far-Ultraviolet Spectroscopic Survey of Low-Redshift AGN
Using the Far Ultraviolet Spectroscopic Explorer (FUSE) we have obtained 87
spectra of 57 low-redshift (z<0.15) active galactic nuclei (AGN). This sample
comprises 53 Type 1 AGN and 4 Type 2. All the Type 1 objects show broad O VI
1034 emission; two of the Type 2s show narrow O VI emission. In addition to O
VI, we also identify emission lines due to C III 977, N III 991, S IV
1062,1072, and He II 1085 in many of the Type-1 AGN. Of the Type 1 objects, 30
show intrinsic absorption by the O VI 1032,1038 doublet. Most of these
intrinsic absorption systems show multiple components with intrinsic widths of
100 km/s spread over a blue-shifted velocity range of less than 1000 km/s.
Galaxies in our sample with existing X-ray or longer wavelength UV observations
also show C IV absorption and evidence of a soft X-ray warm absorber. In some
cases, a UV absorption component has physical properties similar to the X-ray
absorbing gas, but in others there is no clear physical correspondence between
the UV and X-ray absorbing components. Models in which a thermally driven wind
evaporates material from the obscuring torus naturally produce such
inhomogeneous flows.Comment: Contributed paper to appear in the proceedings of the Guillermo Haro
2003 Conference on Multiwavelength AGN Surveys; 3 pages, 1 figur
Superconductor-insulator transition in nanowires and nanowire arrays
Superconducting nanowires are the dual elements to Josephson junctions, with
quantum phase-slip processes replacing the tunneling of Cooper pairs. When the
quantum phase-slip amplitude ES is much smaller than the inductive energy EL,
the nanowire responds as a superconducting inductor. When the inductive energy
is small, the response is capacitive. The crossover at low temperatures as a
function of ES/EL is discussed and compared with earlier experimental results.
For one-dimensional and two-dimensional arrays of nanowires quantum phase
transitions are expected as a function of ES/EL. They can be tuned by a
homogeneous magnetic frustration.Comment: 15 pages, 10 figure
Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection.
To restrict infection by Legionella pneumophila, mouse macrophages require Naip5, a member of the nucleotide-binding oligomerization domain leucine-rich repeat family of pattern recognition receptors, which detect cytoplasmic microbial products. We report that mouse macrophages restricted L. pneumophila replication and initiated a proinflammatory program of cell death when flagellin contaminated their cytosol. Nuclear condensation, membrane permeability, and interleukin-1beta secretion were triggered by type IV secretion-competent bacteria that encode flagellin. The macrophage response to L. pneumophila was independent of Toll-like receptor signaling but correlated with Naip5 function and required caspase 1 activity. The L. pneumophila type IV secretion system provided only pore-forming activity because listeriolysin O of Listeria monocytogenes could substitute for its contribution. Flagellin monomers appeared to trigger the macrophage response from perforated phagosomes: once heated to disassemble filaments, flagellin triggered cell death but native flagellar preparations did not. Flagellin made L. pneumophila vulnerable to innate immune mechanisms because Naip5+ macrophages restricted the growth of virulent microbes, but flagellin mutants replicated freely. Likewise, after intratracheal inoculation of Naip5+ mice, the yield of L. pneumophila in the lungs declined, whereas the burden of flagellin mutants increased. Accordingly, macrophages respond to cytosolic flagellin by a mechanism that requires Naip5 and caspase 1 to restrict bacterial replication and release proinflammatory cytokines that control L. pneumophila infection
Pressure-tuning of the c-f hybridization in Yb metal detected by infrared spectroscopy up to 18 GPa
It has been known that the elemental Yb, a divalent metal at mbient pressure,
becomes a mixed-valent metal under external pressure, with its valence reaching
~2.6 at 30 GPa. In this work, infrared spectroscopy has been used to probe the
evolution of microscopic electronic states associated with the valence
crossover in Yb at external pressures up to 18 GPa. The measured infrared
reflectivity spectrum R(w) of Yb has shown large variations with pressure. In
particular, R(w) develops a deep minimum in the mid-infrared, which shifts to
lower energy with increasing pressure. The dip is attributed to optical
absorption due to a conduction c-f electron hybridization state, similarly to
those previously observed for heavy fermion compounds. The red shift of the dip
indicates that the - hybridization decreases with pressure, which is
consistent with the increase of valence.Comment: 2 pages, to appear in J. Phys. Soc. Jpn. Supp
Heavy-Electron Formation and Bipolaronic Transition in the Anharmonic Holstein Model
The emergence of the bipolaronic phase and the formation of the
heavy-electron state in the anharmonic Holstein model are investigated using
the dynamical mean-field theory in combination with the exact diagonalization
method. For a weak anharmonicity, it is confirmed that the first-order
polaron-bipolaron transition occurs from the observation of a discontinuity in
the behavior of several physical quantities. When the anharmonicity is
gradually increased, the polaron-bipolaron transition temperature is reduced as
well as the critical values of the electron-phonon coupling constant for
polaron-bipolaron transition. For a strong anharmonicity, the polaron-bipolaron
transition eventually changes to a crossover behavior. The effect of
anharmonicity on the formation of the heavy-electron state near the
polaron-bipolaron transition and the crossover region is discussed in detail.Comment: 11 pages, 13 figure
Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei
Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and
Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear
clusters, using Lambda-Lambda central potentials considered in past non-Faddeev
calculations of Lambda-Lambda-6He. The convergence with respect to the
partial-wave expansion is studied, and comparison is made with some of these
Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing
effect is briefly discussed.Comment: submitted for publicatio
Strong-Coupling Theory of Rattling-Induced Superconductivity
In order to clarify the mechanism of the enhancement of superconducting
transition temperature due to anharmonic local oscillation of a
guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze
the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From
the evaluation of the normal-state electron-phonon coupling constant, it is
found that the strong coupling state is developed, when the bottom of a
potential for the guest ion becomes wide and flat. Then, is
enhanced with the increase of the anharmonicity in the potential, although
is rather decreased when the potential becomes a double-well type
due to very strong anharmonicity. From these results, we propose a scenario of
anharmonicity-controlled strong-coupling tendency for superconductivity induced
by rattling. We briefly discuss possible relevance of the present scenario with
superconductivity in -pyrochlore oxides.Comment: 8 pages, 6 figure
Light Lambda-Lambda Hypernuclei and the Onset of Stability for Lambda-Xi Hypernuclei
New Faddeev-Yakubovsky calculations for light Lambda-Lambda hypernuclei are
presented in order to assess the self consistency of the Lambda-Lambda
hypernuclear binding-energy world data and the implied strength of the
Lambda-Lambda interaction, in the wake of recent experimental reports on
Lambda-Lambda-4H and Lambda-Lambda-6He. Using Gaussian soft-core simulations of
Nijmegen one-boson-exchange model interactions, the Nijmegen soft-core model
NSC97 simulations are found close to reproducing the recently reported binding
energy of Lambda-Lambda-6He, but not those of other species. For stranger
systems, Faddeev calculations of light Lambda-Xi hypernuclei, using a
simulation of the strongly attractive Lambda-Xi interactions due to the same
model, suggest that Lambda-Xi-6He marks the onset of nuclear stability for Xi
hyperons.Comment: 5 pages, 3 postscript figures; fig.2 replaced, minor changes,
accepted as Rapid Communication in PR
Measurement of the decay width of He
We have precisely measured decay width of \5LHe and
demonstrated significantly larger - overlap than expected
from the central repulsion - potential, which is derived from
YNG \Lambda$-nucleon interaction.Comment: 4 pages, 3 figure
Consistency of Lambda-Lambda hypernuclear events
Highlights of Lambda-Lambda emulsion events are briefly reviewed. Given three
accepted events, shell-model predictions based on p-shell Lambda hypernuclear
spectroscopic studies are shown to reproduce the Lambda-Lambda (LL) binding
energies of LL10Be and LL13B in terms of the LL binding energy of LL6He.
Predictions for other species offer judgement on several alternative
assignments of the LL13B KEK-E176 event, and on the assignments LL11Be and
LL12Be suggested recently for the KEK-E373 HIDA event. The predictions of the
shell model, spanning a wide range of A values, are compared with those of
cluster models, where the latter are available.Comment: Based on talk given by Avraham Gal at EXA 2011, Vienna, September
2011; Proceedings version prepared for the journal Hyperfine Interactions;
v2--slight changes, matches published versio
- …
