6,197 research outputs found

    Nonlinear dynamics and surface diffusion of diatomic molecules

    Get PDF
    The motion of molecules on solid surfaces is of interest for technological applications, but it is also a theoretical challenge. We study the deterministic and thermal diffusive dynamics of a dimer moving on a periodic substrate. The deterministic motion of the dimer displays strongly nonlinear features and chaotic behavior. The dimer thermal diffusive dynamics deviates from simple Arrhenius behavior, due to the coupling between vibrational and translational degrees of freedom. In the low-temperature limit the dimer diffusion can become orders of magnitude larger than that of a single atom, as also found experimentally. The relation between chaotic deterministic dynamics and stochastic thermal diffusion is discussed.Comment: 4 pages, 4 figure

    Power law load dependence of atomic friction

    Get PDF
    We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power law dependence on applied load with exponent ∼1.6\sim 1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macroscopic and elastic microscopic contacts.Comment: 4 pages, 4 figure

    Rheological properties vs Local Dynamics in model disordered materials at Low Temperature

    Full text link
    We study the rheological response at low temperature of a sheared model disordered material as a function of the bond rigidity. We find that the flow curves follow a Herschel-Bulkley law, whatever is the bond rigidity, with an exponent close to 0.5. Interestingly, the apparent viscosity can be related to a single relevant time scale trelt_{rel}, suggesting a strong connection between the local dynamics and the global mechanical behaviour. We propose a model based on the competition between the nucleation and the avalanche-like propagation of spatial strain heterogeneities. This model can explain the Herschel-Bulkley exponent on the basis of the size dependence of the heterogeneities on the shear rate.Comment: 9 pages, 7 figure

    Random sequential adsorption and diffusion of dimers and k-mers on a square lattice

    Full text link
    We have performed extensive simulations of random sequential adsorption and diffusion of kk-mers, up to k=5k=5 in two dimensions with particular attention to the case k=2k=2. We focus on the behavior of the coverage and of vacancy dynamics as a function of time. We observe that for k=2,3k=2,3 a complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice to join. From this result we argue that complete coverage is never attained for any value of kk. The long time behavior of the coverage is not mean field and nonanalytic, with t−1/2t^{-1/2} as leading term. Long time coverage regimes are independent of the initial conditions while strongly depend on the diffusion probability and deposition rate and, in particular, different values of these parameters lead to different final values of the coverage. The geometrical complexity of these systems is also highlighted through an investigation of the vacancy population dynamics.Comment: 9 pages, 9 figures, to be published in the Journal of Chemical Physic

    Analysis of ground-based differential imager performance

    Full text link
    In the context of extrasolar planet direct detection, we evaluated the performance of differential imaging with ground-based telescopes. This study was carried out in the framework of the VLT-Planet Finder project and is further extended to the case of Extremely Large Telescopes. Our analysis is providing critical specifications for future instruments mostly in terms of phase aberrations but also regarding alignments of the instrument optics or offset pointing on the coronagraph. It is found that Planet Finder projects on 8m class telescopes can be successful at detecting Extrasolar Giant Planets providing phase aberrations, alignments and pointing are accurately controlled. The situation is more pessimistic for the detection of terrestrial planets with Extremely Large Telescopes for which phase aberrations must be lowered at a very challenging level

    Nonthermal hard X-ray excess in the Coma cluster: resolving the discrepancy between the results of different PDS data analyses

    Get PDF
    The detection of a nonthermal excess in the Coma cluster spectrum by two BeppoSAX observations analyzed with the XAS package (Fusco-Femiano et al.) has been disavowed by an analysis (Rossetti & Molendi) performed with a different software package (SAXDAS) for the extraction of the spectrum. To resolve this discrepancy we reanalyze the PDS data considering the same software used by Rossetti & Molendi. A correct selection of the data and the exclusion of contaminating sources in the background determination show that also the SAXDAS analysis reports a nonthermal excess with respect to the thermal emission at about the same confidence level of that obtained with the XAS package (~4.8sigma). Besides, we report the lack of the systematic errors investigated by Rossetti & Molendi and Nevalainen et al. taking into account the whole sample of the PDS observations off the Galactic plane, as already shown in our data analysis of Abell 2256 (Fusco-Femiano, Landi & Orlandini). All this eliminates any ambiguity and confirms the presence of a hard tail in the spectrum of the Coma cluster.Comment: 12 pages, 2 figures. Accepted for publication in ApJ Letter

    Nonlinear dynamics of dimers on periodic substrates

    Get PDF
    We study the dynamics of a dimer moving on a periodic one-dimensional substrate as a function of the initial kinetic energy at zero temperature. The aim is to describe, in a simplified picture, the microscopic dynamics of diatomic molecules on periodic surfaces, which is of importance for thin film formation and crystal growth. We find a complex behaviour, characterized by a variety of dynamical regimes, namely oscillatory, ``quasi-diffusive'' (chaotic) and drift motion. Parametrically resonant excitations of internal vibrations can be induced both by oscillatory and drift motion of the centre of mass. For weakly bound dimers a chaotic regime is found for a whole range of velocities between two non-chaotic phases at low and high kinetic energy. The chaotic features have been monitored by studying the Lyapunov exponents and the power spectra. Moreover, for a short-range interaction, the dimer can dissociate due to the parametric excitation of the internal motion.Comment: 9 pages, 13 figures, to be published in Eur. Phys. J.

    Deep GeMS/GSAOI near-infrared observations of N159W in the Large Magellanic Cloud

    Full text link
    Aims. The formation and properties of star clusters at the edge of H II regions are poorly known, partly due to limitations in angular resolution and sensitivity, which become particularly critical when dealing with extragalactic clusters. In this paper we study the stellar content and star-formation processes in the young N159W region in the Large Magellanic Cloud. Methods. We investigate the star-forming sites in N159W at unprecedented spatial resolution using JHKs-band images obtained with the GeMS/GSAOI instrument on the Gemini South telescope. The typical angular resolution of the images is of 100 mas, with a limiting magnitude in H of 22 mag (90 percent completeness). Photometry from our images is used to identify candidate young stellar objects (YSOs) in N159W. We also determine the H-band luminosity function of the star cluster at the centre of the H II region and use this to estimate its initial mass function (IMF). Results. We estimate an age of 2 + or - 1 Myr for the central cluster, with its IMF described by a power-law with an index of gamma = - 1.05 + or - 0.2 , and with a total estimated mass of 1300 solar mass. We also identify 104 candidate YSOs, which are concentrated in clumps and subclusters of stars, principally at the edges of the H II region. These clusters display signs of recent and active star-formation such as ultra-compact H II regions, and molecular outflows. This suggests that the YSOs are typically younger than the central cluster, pointing to sequential star-formation in N159W, which has probably been influenced by interactions with the expanding H II bubble
    • …
    corecore