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The motion of molecules on solid surfaces is of interest for technological applications, but it is 
also a theoretical challenge. We study the deterministic and thermal diffusive dynamics of a dimer 
moving on a periodic substrate. The deterministic motion of the dimer displays strongly nonlinear 
features and chaotic behavior. The dimer thermal diffusive dynamics deviates from simple Arrhenius 
behavior, due to the coupling between vibrational and translational degrees of freedom. In the 
low-temperature limit the dimer diffusion can become orders of magnitude larger than that of a 
single atom, as also found experimentally. The relation between chaotic deterministic dynamics and 
stochastic thermal diffusion is discussed.

keywords: Surface, Molecules, Molecular Dynamics

I. IN TR O D U C TIO N

The surface diffusion of single adatoms has been in­
tensively studied over the last decades, [1-3] due to its 
importance in thin film and crystal growth. [4] Once 
individual atoms are adsorbed on a surface they can 
meet, thus forming larger clusters. However, the diffu­
sion of even the simplest cluster, a dimer, on a surface 
is by far not yet understood. [5-13] The diffusion dy­
namics can be strongly affected by the coupling of the 
intramolecular motion to the translational motion of the 
centre of mass (CM) of the cluster. [12-15] Herein, we 
present a simple, one-dimensional model for studying the 
Hamiltonian and diffusive dynamics of a dimer, which 
is relevant to systems where quasi-one-dimensional mo­
tion takes place. [16] The deterministic dynamics of this 
model is characterized by a complex behavior, dominated 
by non-linear effects, param etric resonances and chaotic 
features. At variance with the case of a single atom, at 
T  =  0 the role of the internal degrees of freedom of the 
dimer is responsible for deviations from activated behav­
ior of the diffusion coefficient. In Section II we briefly 
outline our model. In Sections III and IV we discuss 
the nonlinear deterministic and thermal dynamics, re­
spectively, and compare the two situations in Section V. 
Concluding remarks are given in Section VI.

II. M ODEL

We consider the deterministic and thermal dynamics of 
a dimer moving on a periodic one-dimensional substrate. 
The particle-substrate interaction is a sinusoidal function 
of amplitude 2U0 and period a, and the interparticle in­
teraction is given by a harmonic potential with spring 
constant K  and equilibrium length l. We use Langevin

dynamics to deal with finite tem perature T . The equa­
tions of motion for the two atoms of mass m and of co­
ordinates x i and x 2 composing the dimer are given by 
Equation (1):

n ix i +  n iijx i =  K(xo — x\  — I) — 27tII° sin ( 27T*1) +  f i  
m x 2 + mi]x2 = K ( x i - x 2 + I) -  sin + fo

(1)

where the effect of finite tem perature T  is taken into 
account by the stochastically fluctuating forces fi, satis­
fying the conditions < f i (t) > =  0 and < f i ( t ) f j (0) > =  
2m^kBTS ijS(t),  and by the damping term  m'q'Xj,. In the 
following, we will use representative values of the parame­
ters, a =  0.25 nm, U0 =  0.2 eV, m =  5x 10-26 kg, n =  0.7 
ps-1 . The values of K  and l will be given in the caption 
of each figure. We performed molecular dynamics (MD) 
simulations, integrating the equations of motion using a 
velocity-Verlet algorithm, with a time step A =  10-16 s 
and averaging the trajectories over several thousands of 
realizations in the case of thermal diffusion, in order to 
reduce the statistical noise.

III. HAM ILTONIA N  DYNAM ICS

First we consider the Hamiltonian dynamics ( f  =  0 
and n =  0 in Equation (1)). It is convenient to rewrite 
Equation (1) in terms of the CM coordinate =
(xi +  x 2)/2  and of the deviations from equilibrium of 
the internal coordinate x r =  x 2 — x 1 — l, obtaining Equa­
tion (2):

(2)

1

http://arXiv.org/abs/cond-mat/0404046v3


We have considered the case of a commensurate dimer 
(l =  a) starting at equilibrium with a given initial kinetic 
energy E0in , a case which allows some analytical results 
for the initial phase of the motion, showing the role of in­
ternal vibrations on the dynamics, to be obtained. [12] In 
fact, for a rigid dimer with X1 (0) =  X2 (0) =  v0, the mini­
mum kinetic energy for the CM to overcome the potential 
barrier is E%in = m v q = AUo- Hence, for vo < y/AU o/m , 
the motion of the CM is oscillatory, while a drift regime is 
attained for vq > y/AU o/m . Conversely, when the dimer 
is allowed to  vibrate, the coupling between the CM and 
the internal motion makes it possible for the CM of the 
dimer to overcome the potential barrier 4Uq for values 
of vo below the threshold y/AU o/m . In fact, if the in­
ternal motion is excited, it can happen tha t one particle 
remains in the minimum and the other reaches the near­
est maximum. From the energy balance, Equation (3) 
follows:

K in  = 2Uo + - K ( a / 2) (3)

If K  is sufficiently small, the right-hand side of Equa­
tion (3) can be smaller than 4U0. This is the situation 
shown in Figure 1, where the CM motion is rather irreg­
ular, behaving in a chaotic fashion.

IV. TH ER M A L D IFFU SIO N

The thermal diffusive behavior of the dimer is char­
acterized by computing the diffusion coefficient D from 
the mean square displacement < x 2CM (t) >, as in Equa­
tion (4):

D lim
2t

(t) > (4)

For tem peratures th a t are small compared to the energy 
barrier, K ram er’s theory [17] predicts an activated Ar­
rhenius behavior of diffusion, given by Equation (5):

D =  Do e x p ( -E 0/k B T  ), (5)

where the activation energy E a and the prefactor D 0 do 
not depend on T. In the limit of vanishing energy bar­
rier, the adatom  diffusion coefficient obeys the Einstein 
relation and is given by D =  T /(m n), twice the value 
of the dimer D =  T /(2m n). The diffusion coefficient 
of a single adatom  shown in Figure 2 has an activation 
energy corresponding to the energy barrier 2U0 =  0.4 eV, 
except at very high tem peratures owing to finite barrier 
effects. [18]
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FIG. 1. Dynamics given by Equation (2) for K =  0.2 Nm-1 
and v0 =  380 ms-1 , f i =  0 and n =  0. (a) The CM motion 
is plotted; (b) the deviations from equilibrium of the internal 
coordinate are plotted.
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FIG. 2. Diffusion coefficient D as a function of 1/(fcBT) 

for the adatom and the dimers with different values of l and 
K  =  2 Nm-1 . The points are the result of the simulations 
and the lines represent fits to the data in the low-temperature 
regime.

This chaotic regime occurs for weakly bound dimers in a 
velocity window around the threshold a/ 4?7o , and can be 
characterized by Lyapunov exponents and power spec­
tra. [12] We have also shown that, for larger values of 
K , the drift motion of the CM may excite the internal 
vibrations by a parametric resonance in a velocity win­
dow around twice the natural stretching frequency of the 
dimer lvq = y /2 K /m .

For a rigid dimer, E a =  4U0 for l =  a down to E a =  0 for 
l =  a/2 . If the dimer is not rigid, the activation energy 
is a non trivial function of the equilibrium length and 
elastic constant. In Figure 2, we show the diffusion coef­
ficient for non rigid dimers with different values of l. We 
find E a =  0.6 eV for l =  a, E a =  0.3 eV for l =  a /2  and 
E a =  0.34 eV for the incommensurate case l =  Tga, where 
Tg =  (1 +  a/5)/2 is the golden mean. The finite-barrier
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corrections to the Arrhenius behavior at high temper­
atures (kBT > 2U0) are rather pronounced for l =  a. 
Deviations from the Arrhenius law due to incommensu­
rability are also found for larger clusters. [19]

It has been suggested tha t non-Arrhenius behavior can 
result also from dynamical effects related to the internal 
motion of the dimer. [13,15] The role of the internal vi­
brations on the diffusive behavior is illustrated in Fig­
ure 3(a), where we compare the diffusion coefficient of 
the rigid and non rigid incommensurate dimer (l =  Tga).
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FIG. 3. (a) Diffusion coefficient as a function of 1/(kBT) 
for the incommensurate dimer with I =  Tg a and K =  2 Nm-1 . 
The intramolecular length was kept fixed or not fixed, as in­
dicated by the labels. Fitted activation energies [eV] are also 
reported. (b) Dynamical equilibrium length < l > t as a func­
tion of 1/(kB T ).

It is clear tha t we can define a unique value of E a for 
the rigid dimer, whereas the activation energy is, in gen­
eral, tem perature dependent when the dimer is allowed 
to vibrate. The tem perature dependence of E a is linked 
to a tem perature dependent misfit < l > t , induced by 
the dynamics, as shown in Figure 3(b).

Moreover, the dimer can even diffuse faster than the 
adatom, at least for l =  a and low temperatures. En­
hanced diffusivity of dimers and small clusters is also 
found by theoretical studies of 1 D diffusion in molecular 
sieves [20] and in zeolite crystals. [21] Mitsui et al. [22] 
measured water diffusion on Pd(111) at low tem perature 
(T ^  40 K), finding the mobility of dimers and larger 
clusters to be 3 — 4 orders of magnitude larger than that 
of adatoms. This experimental result is compatible with 
our findings. In fact, extrapolation to low tem perature 
of our results of Figure 2 shows tha t the dimer diffusion 
for l =  a can be orders of magnitude higher than for the

adatom. pin

V. RELATIO N B ETW EEN  D E T ER M IN IST IC  
AND TH ER M A L D IFFU SIO N

We find tha t the chaotic dynamics discussed in Sec­
tion III can give rise to a diffusive behavior, even in the 
absence of thermal fluctuations. The role of the heat 
bath is played by the exchange between translational and 
internal motion which, owing to the nonlinearity of the 
system, can occur in a random manner. Figure 4 shows 
a comparison between the deterministic and the thermal 
mean square displacements.

T
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o
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FIG. 4. Mean-square displacement for (a) the deterministic 

and (b) the thermal motion for l =  a (thick solid lines). (a) 
K  =  0.1 Nm-1 , v0 =  475 ms-1 , n =  0. (b) K =  0.2 Nm-1 . 
The thin solid lines are linear fits for large t; the dotted lines 
are power-law fits with exponent ~  1.5 for small t. The data 
plotted in (b) were obtained by averaging the trajectory over 
3000 realizations.

In the deterministic case < x 2CM > represents a time av­
eraging taken by displacing the time origin, [23] whereas 
at T  =  0 it is an average over realizations. The long-time 
behavior is linear (diffusive) even for the Hamiltonian dy­
namics in the chaotic regime. In both cases we also find 
a transient superdiffusive regime (< xCM ><x t a , with 
a  ^  1.5). Anomalous diffusion with a  ^  7/5 has also 
been observed in a model of adatom  surface diffusion in 
two dimensions. [24] Anomalous diffusion might be re­
lated to long jumps of the dimer, tha t is to trajectories 
tha t move over multiple surface minima, [24,25] which do 
occur during our simulations. Furthermore, it has been 
claimed th a t a deterministic diffusive behavior leads to a
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non-Arrhenius dependence of the thermal diffusion coef­
ficient, [26] which is compatible with our results.

VI. CONCLUSIONS

We have presented a one-dimensional model to de­
scribe the diffusive dynamics of dimers on periodic sur­
faces. We have shown tha t the coupling between trans­
lational and vibrational degrees of freedom can lead to 
Hamiltonian chaotic motion and to non-Arrhenius be­
havior of thermal diffusion. We have also pointed out 
the relation between deterministic and thermal diffusion. 
It would be interesting to enhance the complexity of the 
system by considering orientational degrees of freedom 
in two dimensions and anharmonic intramolecular po­
tentials.
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