502 research outputs found
Anomalous exothermic and endothermic data observed by Nano-Ni-composite samples
This is an experimental paper summarizing the observations of anomalous data on excess heat, D(H)-loading and abrupt desorption with endothermic heat sink in Ni-nano-composite samples under D(H)-gas charging at both room and elevated temperatures, done by Kobe-Technova group in 2012-2013. Referring to our JCF12 paper (Y. Miyoshi et al., JCF-12-1) on Pd1Ni7/ZrO2 samples, experimental procedure and results reported for Ni/ZrO2, Cu0.21Ni0.21/ZrO2 and Cu0.08Ni0.36/ZrO2 samples (partially reported in our JCF13-15 paper by Sakoh et al.) will be summarized. We have reanalyzed time-dependent data for speculating heat releasing mechanisms during the long (several weeks) lasted phase of D(H)-loading-into-nano-metal. It seems that competing process of D(H)-gas sorption and desorption at the surface of nano-powders would be attributed to the mechanism. Burst-like heat peaks of η-values (in unit of eV per D(H)-take-in/out) were observed with anomalously high values reaching 600 eV/H-sorption, and with smaller [eta]-values for isotopic Dsorption than H-sorption, at 573K. Integrated heat values for several-week runs were reached at the levels of ca. 800eV/atom-Ni for Cu0.08Ni0.36/ZrO2 samples, which were about 10 times larger than those of Ni/ZrO2 samples and about 4 times larger than those of Cu0.21Ni0.21/ZrO2 samples, at temperatures of 523 to 573K
Synthesis and Photophysical Investigation of Tetraazaporphyrin Substituted with Aggregation‐Induced Emission (AIE) Active Moieties
The synthesis and characterization of free-base and ZnII tetraazaporphyrins with tetraphenylethylene (TPE) or diphenylphenanthrene (DPP) moieties that are known to be aggregation-induced emission (AIE) active is reported. The optical spectra contain the characteristic Q and B absorption bands of Gouterman's four-orbital model and a broad envelope of weaker charge-transfer bands in the 450–600 nm region. The observed fluorescence emission lies beyond 670 nm and originates exclusively from the decay of the S1 state of the macrocycle, regardless of the excitation wavelength used. Theoretical calculations provide further evidence of strong electronic communication between the peripheral TPE or DPP moieties and the central ring. The ZnII complexes were found to have relatively high singlet-oxygen quantum yields
Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes
Background \ud
Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin– like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud
Caenorhabditis species. \ud
\ud
Methodology/Principal Findings \ud
We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud
significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions \ud
The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
Phenotypic covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes
Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. \ud
\ud
Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud
\ud
Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants
Immunohistochemical detection of laminin-1 and Ki-67 in radicular cysts and keratocystic odontogenic tumors
<p>Abstract</p> <p>Background</p> <p>Odontogenic cysts are those which arise from the epithelium associated with the development of teeth. Some odontogenic cysts were found to have special biological features that make them distinct from other lesions. This study was conducted to detect the immunoepxression of laminin-1 and Ki-67 in both radicular cysts (RCs) and keratocystic odontogenic tumors (KCOTs) and to examine the possible predictive value of these markers.</p> <p>Methods</p> <p>Thirteen cases of RCs and twelve cases of KCOTs were included in this study. Antibodies against laminin-1 and Ki-67 were used as primary antibodies.</p> <p>Results</p> <p>ten cases out of thirteen cases of RCs were immunopositive to laminin-1. The immunonegative cases of RCs showed high degree of inflammation inside the connective tissue wall. One case out of twelve cases of KCOTs was immunopositive to laminin-1 and the rest were immunonegative. Seven cases out of thirteen cases of RCs showed immunopositivity for Ki-67 with increased numbers of immunopositive cells when the inflammation was severe in the connective tissue wall. All KCOTS were immunopositive to Ki-67.</p> <p>Conclusions</p> <p>The benign nature of radicular cysts and the aggressive behavior of keratocystic odontogenic tumors could be explained by the expression of laminin and Ki-67. Laminin-1 and Ki-67 could be valuable markers for the prediction of the biologic behavior of cystic lesions.</p
Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling
Tissue progenitor cells are an attractive target for regenerative therapy. In various organs, bone marrow cell (BMC) therapy has shown promising preliminary results, but to date no definite mechanism has been demonstrated to account for the observed benefit in organ regeneration. Tissue injury and regeneration is invariably accompanied by macrophage infiltration, but their influence upon the progenitor cells is incompletely understood, and direct signaling pathways may be obscured by the multiple roles of macrophages during organ injury. We therefore examined a model without injury; a single i.v. injection of unfractionated BMCs in healthy mice. This induced ductular reactions (DRs) in healthy mice. We demonstrate that macrophages within the unfractionated BMCs are responsible for the production of DRs, engrafting in the recipient liver and localizing to the DRs. Engrafted macrophages produce the cytokine TWEAK (TNF-like weak inducer of apoptosis) in situ. We go on to show that recombinant TWEAK activates DRs and that BMC mediated DRs are TWEAK dependent. DRs are accompanied by liver growth, occur in the absence of liver tissue injury and hepatic progenitor cells can be isolated from the livers of mice with DRs. Overall these results reveal a hitherto undescribed mechanism linking macrophage infiltration to DRs in the liver and highlight a rationale for macrophage derived cell therapy in regenerative medicine
sox9b Is a Key Regulator of Pancreaticobiliary Ductal System Development
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies
Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “rDNA–Sensitive” Genes and Natural Variation
The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation
The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling
Removal of the germ cells of C. elegans extends lifespan in part because signals from the somatic reproductive tissues activate the nuclear hormone receptor DAF-12
- …