1,490 research outputs found

    Decoherence induced by a phase-damping reservoir

    Full text link
    A phase damping reservoir composed by NN-bosons coupled to a system of interest through a cross-Kerr interaction is proposed and its effects on quantum superpo sitions are investigated. By means of analytical calculations we show that: i-) the reservoir induces a Gaussian decay of quantum coherences, and ii-) the inher ent incommensurate character of the spectral distribution yields irreversibility . A state-independent decoherence time and a master equation are both derived an alytically. These results, which have been extended for the thermodynamic limit, show that nondissipative decoherence can be suitably contemplated within the EI D approach. Finally, it is shown that the same mechanism yielding decoherence ar e also responsible for inducing dynamical disentanglement.Comment: 8 pages, 3 figure

    Recoherence in the entanglement dynamics and classical orbits in the N-atom Jaynes-Cummings model

    Get PDF
    The rise in linear entropy of a subsystem in the N-atom Jaynes-Cummings model is shown to be strongly influenced by the shape of the classical orbits of the underlying classical phase space: we find a one-to-one correspondence between maxima (minima) of the linear entropy and maxima (minima) of the expectation value of atomic excitation J_z. Since the expectation value of this operator can be viewed as related to the orbit radius in the classical phase space projection associated to the atomic degree of freedom, the proximity of the quantum wave packet to this atomic phase space borderline produces a maximum rate of entanglement. The consequence of this fact for initial conditions centered at periodic orbits in regular regions is a clear periodic recoherence. For chaotic situations the same phenomenon (proximity of the atomic phase space borderline) is in general responsible for oscillations in the entanglement properties.Comment: 15 pages (text), 6 figures; to be published in Physical Review

    Vibration-enhanced quantum transport

    Full text link
    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final published versio

    Entanglement production in a chaotic quantum dot

    Get PDF
    It has recently been shown theoretically that elastic scattering in the Fermi sea produces quantum mechanically entangled states. The mechanism is similar to entanglement by a beam splitter in optics, but a key distinction is that the electronic mechanism works even if the source is in local thermal equilibrium. An experimental realization was proposed using tunneling between two edge channels in a strong magnetic field. Here we investigate a low-magnetic field alternative, using multiple scattering in a quantum dot. Two pairs of single-channel point contacts define a pair of qubits. If the scattering is chaotic, a universal statistical description of the entanglement production (quantified by the concurrence) is possible. The mean concurrence turns out to be almost independent on whether time-reversal symmetry is broken or not. We show how the concurrence can be extracted from a Bell inequality using low-frequency noise measurements, without requiring the tunneling assumption of earlier work.Comment: 12 pages, 2 figures, Kluwer style file include

    Methanol formation through reaction of low energy CH3+CH_{3}^{+} ions with an amorphous solid water surface at low temperature

    Full text link
    We have performed experimental investigations of methanol formation via the reactions of low energy CH3+CH_{3}^{+} ions with an amorphous solid water (ASW) surface around 10 K. A newly developed experimental apparatus enabled irradiation of the ASW surface by several eV ions and detection of trace amounts of reaction products on the surface. It was found that methanol molecules were produced by low-energy CH3+CH_{3}^{+} irradiation of the ASW surface and that hydroxy groups in produced methanol originated from water molecules in ASW, as predicted in a previous theoretical study. Little temperature dependence of observed methanol intensity is apparent in the temperature range 12 - 60 K. Ab-initio molecular dynamics simulations under constant temperature conditions of 10 K suggested that this reaction spontaneously produced a methanol molecule and an H3O+H_{3}O^{+} ion, regardless of the contact point of CH3+CH_{3}^{+} on the ASW surface. We have performed simulation with an astrochemical model under molecular-cloud conditions, where the reaction between CH3+CH_{3}^{+} and H2OH_{2}O ice, leading to methanol formation, was included. We found that the impact of the reaction on methanol abundance was limited only at the edge of the molecular cloud (< 1 mag) because of the low abundance of CH3+CH_{3}^{+} in the gas phase, whereas the reaction between the abundant molecular ion HCO+HCO^{+} and H2OH_{2}O ice, which has not yet been confirmed experimentally, can considerably affect the abundance of a complex organic molecule. This work sheds light on a new type of reaction between molecular ions and ice surfaces that should be included in astrochemical models.Comment: 5 figures and Appendix, accepted to Ap

    Optical properties of correlated materials -- Generalized Peierls approach and its application to VO2

    Full text link
    The aim of the present paper is to present a versatile scheme for the computation of optical properties of solids, with particular emphasis on realistic many-body calculations for correlated materials. Geared at the use with localized basis sets, we extend the commonly known lattice "Peierls substitution" approach to the case of multi-atomic unit cells. We show in how far this generalization can be deployed as an approximation to the full Fermi velocity matrix elements that enter the continuum description of the response of a solid to incident light. We further devise an upfolding scheme to incorporate optical transitions, that involve high energy orbitals that had been downfolded in the underlying many-body calculation of the electronic structure. As an application of the scheme, we present results on a material of longstanding interest, vanadium dioxide, VO2. Using dynamical mean-field data of both, the metallic and the insulating phase, we calculate the corresponding optical conductivities, elucidate optical transitions and find good agreement with experimental results.Comment: 15 pages, 6 figure

    The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers

    Full text link
    Shock-induced H2O masers are important magnetic field tracers at very high density gas. Water masers are found in both high- and low-mass star-forming regions, acting as a powerful tool to compare magnetic field morphologies in both mass regimes. In this paper, we show one of the first magnetic field determinations in the low-mass protostellar core IRAS 16293-2422 at volume densities as high as 10^(8-10) cm^-3. Our goal is to discern if the collapsing regime of this source is controlled by magnetic fields or other factors like turbulence. We used the Very Large Array (VLA) to carry out spectro-polarimetric observations in the 22 GHz Zeeman emission of H2O masers. From the Stokes V line profile, we can estimate the magnetic field strength in the dense regions around the protostar. A blend of at least three maser features can be inferred from our relatively high spatial resolution data set (~ 0.1"), which is reproduced in a clear non-Gaussian line profile. The emission is very stable in polarization fraction and position angle across the channels. The maser spots are aligned with some components of the complex outflow configuration of IRAS 16293-2422, and they are excited in zones of compressed gas produced by shocks. The post-shock particle density is in the range of 1-3 x 10^9 cm^-3, consistent with typical water masers pumping densities. Zeeman emission is produced by a very strong line-of-sight magnetic field (B ~ 113 mG). The magnetic field pressure derived from our data is comparable to the ram pressure of the outflow dynamics. This indicates that the magnetic field is energetically important in the dynamical evolution of IRAS 16293-2422.Comment: 7 pages, 6 figures, accepted for publication in A&

    Investigating the basis of substrate recognition in the pC221 relaxosome

    Get PDF
    The nicking of the origin of transfer (oriT) is an essential initial step in the conjugative mobilization of plasmid DNA. In the case of staphylococcal plasmid pC221, nicking by the plasmid-specific MobA relaxase is facilitated by the DNA-binding accessory protein MobC; however, the role of MobC in this process is currently unknown. In this study, the site of MobC binding was determined by DNase I footprinting. MobC interacts with oriT DNA at two directly repeated 9 bp sequences, mcb1 and mcb2, upstream of the oriT nic site, and additionally at a third, degenerate repeat within the mobC gene, mcb3. The binding activity of the conserved sequences was confirmed indirectly by competitive electrophoretic mobility shift assays and directly by Surface Plasmon Resonance studies. Mutation at mcb2 abolished detectable nicking activity, suggesting that binding of this site by MobC is a prerequisite for nicking by MobA. Sequential site-directed mutagenesis of each binding site in pC221 has demonstrated that all three are required for mobilization. The MobA relaxase, while unable to bind to oriT DNA alone, was found to associate with a MobC–oriT complex and alter the MobC binding profile in a region between mcb2 and the nic site. Mutagenesis of oriT in this region defines a 7 bp sequence, sra, which was essential for nicking by MobA. Exchange of four divergent bases between the sra of pC221 and the related plasmid pC223 was sufficient to swap their substrate identity in a MobA-specific nicking assay. Based on these observations we propose a model of layered specificity in the assembly of pC221-family relaxosomes, whereby a common MobC:mcb complex presents the oriT substrate, which is then nicked only by the cognate MobA

    Entangling power of quantized chaotic systems

    Full text link
    We study the quantum entanglement caused by unitary operators that have classical limits that can range from the near integrable to the completely chaotic. Entanglement in the eigenstates and time-evolving arbitrary states is studied through the von Neumann entropy of the reduced density matrices. We demonstrate that classical chaos can lead to substantially enhanced entanglement. Conversely, entanglement provides a novel and useful characterization of quantum states in higher dimensional chaotic or complex systems. Information about eigenfunction localization is stored in a graded manner in the Schmidt vectors, and the principal Schmidt vectors can be scarred by the projections of classical periodic orbits onto subspaces. The eigenvalues of the reduced density matrices are sensitive to the degree of wavefunction localization, and are roughly exponentially arranged. We also point out the analogy with decoherence, as reduced density matrices corresponding to subsystems of fully chaotic systems are diagonally dominant.Comment: 21 pages including 9 figs. (revtex
    corecore