537 research outputs found

    An extracellular transglutaminase is required for apple pollen tube growth

    Get PDF
    An extracellular form of the calcium-dependent protein-crosslinking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein:His6– Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activitywas observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization

    Structure of the mirror nuclei 9^9Be and 9^9B in a microscopic cluster model

    Get PDF
    The structure of the mirror nuclei 9^9Be and 9^9B is studied in a microscopic α+α+n\alpha+ \alpha+ n and α+α+p\alpha+ \alpha+ p three-cluster model using a fully antisymmetrized 9-nucleon wave function. The two-nucleon interaction includes central and spin-orbit components and the Coulomb potential. The ground state of 9^9Be is obtained accurately with the stochastic variational method, while several particle-unbound states of both 9^9Be and 9^9B are investigated with the complex scaling method.The calculation for 9^9Be supports the recent identification for the existence of two broad states around 6.5 MeV, and predicts the 322\frac{3}{2}^{-}_2 and 522\frac{5}{2}^{-}_2 states at about 4.5 MeV and 8 MeV, respectively. The similarity of the calculated spectra of 9^9Be and 9^9B enables one to identify unknown spins and parities of the 9^9B states. Available data on electromagnetic moments and elastic electron scatterings are reproduced very well. The enhancement of the EE1 transition of the first excited state in 9^9Be is well accounted for. The calculated density of 9^9Be is found to reproduce the reaction cross section on a Carbon target. The analysis of the beta decay of 9^9Li to 9^9Be clearly shows that the wave function of 9^9Be must contain a small component that cannot be described by the simple α+α+n\alpha+ \alpha+ n model. This small component can be well accounted for by extending a configuration space to include the distortion of the α\alpha-particle to t+pt+p and h+nh+n partitions.Comment: 24 page

    The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin α2-deficient congential muscular dystrophy

    Get PDF
    Mutations in the human laminin α2 (LAMA2) gene result in the most common form of congenital muscular dystrophy (MDC1A). There are currently three models for the molecular basis of cellular pathology in MDC1A: (i) lack of LAMA2 leads to sarcolemmal weakness and failure, followed by cellular necrosis, as is the case in Duchenne muscular dystrophy (DMD); (ii) loss of LAMA2-mediated signaling during the development and maintenance of muscle tissue results in myoblast proliferation and fusion defects; (iii) loss of LAMA2 from the basement membrane of the Schwann cells surrounding the peripheral nerves results in a lack of motor stimulation, leading to effective denervation atrophy. Here we show that the degenerative muscle phenotype in the zebrafish dystrophic mutant, candyfloss (caf) results from mutations in the laminin α2 (lama2) gene. In vivo time-lapse analysis of mechanically loaded fibers and membrane permeability assays suggest that, unlike DMD, fiber detachment is not initially associated with sarcolemmal rupture. Early muscle formation and myoblast fusion are normal, indicating that any deficiency in early Lama2 signaling does not lead to muscle pathology. In addition, innervation by the primary motor neurons is unaffected, and fiber detachment stems from muscle contraction, demonstrating that muscle atrophy through lack of motor neuron activity does not contribute to pathology in this system. Using these and other analyses, we present a model of lama2 function where fiber detachment external to the sarcolemma is mechanically induced, and retracted fibers with uncompromised membranes undergo subsequent apoptosis

    Attractant and Repellent Signaling Conformers of Sensory Rhodopsin−Transducer Complexes†

    Get PDF
    ABSTRACT: Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pKa of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by ∼1.5 units from that of the inwardly connected conformer. The pK a difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the onephoton excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connecte

    Differences in vertebrate microRNA expression

    Full text link
    MicroRNAs (miRNAs) attenuate gene expression by means of translational inhibition and mRNA degradation. They are abundant, highly conserved, and predicted to regulate a large number of transcripts. Several hundred miRNA classes are known, and many are associated with cell proliferation and differentiation. Many exhibit tissue-specific expression, which aids in evaluating their functions, and it has been assumed that their high level of sequence conservation implies a high level of expression conservation. A limited amount of data supports this, although discrepancies do exist. By comparing the expression of ≈100 miRNAs in medaka and chicken with existing data for zebrafish and mouse, we conclude that the timing and location of miRNA expression is not strictly conserved. In some instances, differences in expression are associated with changes in miRNA copy number, genomic context, or both between species. Variation in miRNA expression is more pronounced the greater the differences in physiology, and it is enticing to speculate that changes in miRNA expression may play a role in shaping the physiological differences produced during animal development

    Four-body cluster structure of A=710A=7-10 double-Λ\Lambda hypernuclei

    Full text link
    Energy levels of the double-Λ\Lambda hypernuclei Λ_\Lambda^{}Λ7_\Lambda^7He, Λ_\Lambda^{}Λ7_\Lambda^7Li, Λ_\Lambda^{}Λ8_\Lambda^8Li, Λ_\Lambda^{}Λ9_\Lambda^9Li, Λ_\Lambda^{}Λ9_\Lambda^9Be and Λ_\Lambda^{}Λ10_\Lambda^{10}Be are predicted on the basis of the α+x+Λ+Λ\alpha+x+\Lambda +\Lambda four-body model with x=n,p,d,t,3x=n, p, d, t, ^3He and α\alpha, respectively.Comment: 27 pages (preprint style), 12figures submitted to Phys. Rev.

    Targeting the Neurokinin Receptor 1 with Aprepitant: A Novel Antipruritic Strategy

    Get PDF
    Chronic pruritus is a global clinical problem with a high impact on the quality of life and lack of specific therapies. It is an excruciating and frequent symptom of e.g. uncurable renal, liver and skin diseases which often does not respond to conventional treatment with e.g. antihistamines. Therefore antipruritic therapies which target physiological mechanisms of pruritus need to be developed. Substance P (SP) is a major mediator of pruritus. As it binds to the neurokinin receptor 1 (NKR1), we evaluated if the application of a NKR1 antagonist would significantly decrease chronic pruritus.Twenty hitherto untreatable patients with chronic pruritus (12 female, 8 male; mean age, 66.7 years) were treated with the NKR1 antagonist aprepitant 80 mg for one week. 16 of 20 patients (80%) experienced a considerable reduction of itch intensity, as assessed by the visual analog scale (VAS, range 0 to 10). Considering all patients, the mean value of pruritus intensity was significantly reduced from 8.4 VAS points (SD +/-1.7) before treatment to 4.9 VAS points (SD +/-3.2) (p<0.001, CI 1.913-5.187). Patients with dermatological diseases (e.g. atopic diathesis, prurigo nodularis) had the best profit from the treatment. Side-effects were mild (nausea, vertigo, and drowsiness) and only occurred in three patients.The high response rate in patients with therapy refractory pruritus suggests that the NKR1 antagonist aprepitant may indeed exhibit antipruritic effects and may present a novel, effective treatment strategy based on pathophysiology of chronic pruritus. The results are promising enough to warrant confirming the efficacy of NKR1 antagonists in a randomized, controlled clinical trial

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
    corecore