31 research outputs found

    Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: Fish scales are a suitable model for the analysis of bone metabolism by ultrasound

    Get PDF
    Using fish scales in which osteoclasts and osteoblasts coexist on the calcified bone matrix, we examined the effects of low-intensity pulsed ultrasound (LIPUS) on both osteoclasts and osteoblasts. At 3 h of incubation after LIPUS treatment, osteoclastic markers such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K mRNA expressions decreased significantly while mRNA expressions of osteoblastic markers, osteocalcin, distal-less homeobox 5, runt-related transcription factor 2a, and runt-related transcription factor 2b, increased significantly. At 6 and 18 h of incubation, however, both osteoclastic and osteoblastic marker mRNA expression did not change at least present conditions. Using GeneChip analysis of zebrafish scales treated with LIPUS, we found that cell death-related genes were upregulated with LIPUS treatment. Real-time PCR analysis indicated that the expression of apoptosis-related genes also increased significantly. To confirm the involvement of apoptosis in osteoclasts with LIPUS, osteoclasts were induced by autotransplanting scales in goldfish. Thereafter, the DNA fragmentation associated with apoptosis was detected in osteoclasts using the TUNEL (TdT-mediated dUTP nick end labeling) method. The multi-nuclei of TRAP-stained osteoclasts in the scales were labeled with TUNEL. TUNEL staining showed that the number of apoptotic osteoclasts in goldfish scales was significantly elevated by treatment with LIPUS at 3 h of incubation. Thus, we are the first to demonstrate that LIPUS directly functions to osteoclasts and to conclude that LIPUS directly causes apoptosis in osteoclasts shortly after exposure. © 2016 Elsevier Inc.Embargo Period 12 month

    Differences among epitopes recognized by neutralizing antibodies induced by SARS-CoV-2 infection or COVID-19 vaccination

    Get PDF
    SARS-CoV-2 has gradually acquired amino acid substitutions in its S protein that reduce the potency of neutralizing antibodies, leading to decreased vaccine efficacy. Here, we attempted to obtain mutant viruses by passaging SARS-CoV-2 in the presence of plasma samples from convalescent patients or vaccinees to determine which amino acid substitutions affect the antigenicity of SARS-CoV-2. Several amino acid substitutions in the S2 region, as well as the N-terminal domain (NTD) and receptor-binding domain (RBD), affected the neutralization potency of plasma samples collected from vaccinees, indicating that amino acid substitutions in the S2 region as well as those in the NTD and RBD affect neutralization by vaccine-induced antibodies. Furthermore, the neutralizing potency of vaccinee plasma samples against mutant viruses we obtained or circulating viruses differed among individuals. These findings suggest that genetic backgrounds of vaccinees influence the recognition of neutralizing epitopes

    Idee bei Platon und Benjamin

    No full text

    オデュッセウス ト ウミ ノ カミ

    No full text
    論文タイプ||論

    Quantitative characteristics of clustered DNA damage in irradiated cells by heavy ion beams

    No full text
    Heavy ion beam as typical high linear energy transfer (LET) radiation produces more expanding ionization domain around their tracks than low LET radiation such as X-rays and gamma rays. Thus, heavy ion beam can cause more densely accumulated damage cluster in the target DNA, termed clustered DNA damage. This damage exhibits difficulty for repair and inhibition of DNA replication with its complex structure [ 1]. So, clustered DNA damage is thought to be strongly involved in the biological effectiveness of heavy ion beam. However, a lot of studies have presented no certain correlation between yields of clustered DNA damage and severity of radiation effect. We previously indicated that the yields of clustered DNA damage decreased with increasing LET in the DNA molecules irradiated in test tubes with gamma rays, and carbon and iron ion beams whose showed different LET, respectively [ 2]. In this study, we aimed to reveal correlation between clustered DNA damage and the LET of heavy ion beam in the irradiated cells
    corecore