838 research outputs found

    Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering

    Full text link
    Inelastic neutron scattering has been applied to the study of the spin dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2) with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity measurements for several intra-multiplet and inter-multiplet magnetic excitations allow us to determine the spin wavefunctions of the investigated clusters. Effects due to the mixing of different spin multiplets have been considered. Such effects proved to be important to correctly reproduce the energy and intensity of magnetic excitations in the neutron spectra. On the contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry of the first excited spin states is such that anticrossing conditions with the ground state can be realized in the presence of an external magnetic field. Heterometallic Cr7M wheels are therefore good candidates for macroscopic observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and added references, one sentence change

    Patient and public involvement in patient safety research: a workshop to review patient information, minimise psychological risk and inform research

    Get PDF
    Background Patient safety has attracted increasing attention in recent years. This paper explores patients’ contributions to informing patient safety research at an early stage, within a project on intravenous infusion errors. Currently, there is little or no guidance on how best to involve patients and the wider public in shaping patient safety research, and indeed, whether such efforts are worthwhile. Method We ran a 3-hour workshop involving nine patients with experience of intravenous therapy in the hospital setting. The first part explored patients’ experiences of intravenous therapy. We derived research questions from the resulting discussion through qualitative analysis. In the second part, patients were asked for feedback on patient information sheets considering both content and clarity, and on two potential approaches to framing our patient information: one that focused on research on safety and error, the other on quality improvement. Results The workshop led to a thorough review of how we should engage with patients. Importantly, there was a clear steer away from terms such as ‘error’ and ‘safety’ that could worry patients. The experiences that patients revealed were also richer than we had anticipated, revealing different conceptions of how patients related to their treatment and care, their role in safety and use of medical devices, the different levels of information they preferred, and broader factors impacting perceptions of their care. Conclusion Involving patients at an early stage in patient safety research can be of great value. Our workshop highlighted sensitivities around potentially worrying patients about risks that they might not have considered previously, and how to address these. Patient representatives also emphasised a need to expand the focus of patient safety research beyond clinicians and error, to include factors affecting perceptions of quality and safety for patients more broadly

    Numerical modelling of Tb3+ doped selenide-chalcogenide multimode fibre based spontaneous emission sources

    Get PDF
    A model is developed of a terbium (III) ion doped selenide chalcogenide glass fibre source that provides spontaneous emission within the mid-infrared (MIR) wavelength range. Three numerical algorithms are used to calculate the solution and compare their properties

    Modelling of multimode selenide-chalcogenide glass fibre based MIR spontaneous emission sources

    Get PDF
    Chalcogenide glass fibres have been demonstrated as a suitable medium for the realisation of spontaneous emission sources for mid-infrared photonics applications with a particular emphasis on sensor technology. Such sources give a viable alternative to other solutions due to their potentially low cost, high reliability and robustness when pumped using commercially available semiconductor lasers. We present a comprehensive analysis of the properties of selenide-chalcogenide glass fibres applied as spontaneous emission sources. We extract the modelling parameters from measurements using in house fabricated bulk glass and fibre samples. We apply the well-established rate equations approach to determine the level populations, the distribution of the photon intensity within the fibre and the output power levels. We compare the modelling results with experiment
    corecore