16 research outputs found

    Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology—Current Status and Future Perspectives

    Get PDF
    The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various ‘omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.Peer Reviewe

    Expanding the Known Repertoire of C-Type Lectin Receptors Binding to Toxoplasma gondii Oocysts Using a Modified High-Resolution Immunofluorescence Assay

    Get PDF
    The environmental stage of the apicomplexan Toxoplasma gondii oocyst is vital to its life cycle but largely understudied. Because oocysts are excreted only by infected felids, their availability for research is limited. We report the adaptation of an agarose-based method to immobilize minute amounts of oocysts to perform immunofluorescence assays. Agarose embedding allows high-resolution confocal microscopy imaging of antibodies binding to the oocyst surface as well as unprecedented imaging of intracellular sporocyst structures with Maclura pomifera agglutinin after on-slide permeabilization of the immobilized oocysts. To identify new possible molecules binding to the oocyst surface, we used this method to screen a library of C-type lectin receptor (CLR)-human IgG constant region fusion proteins from the group of related CLRs called the Dectin-1 cluster against oocysts. In addition to CLEC7A that was previously reported to decorate T. gondii oocysts, we present experimental evidence for specific binding of three additional CLRs to the surface of this stage. We discuss how these CLRs, known to be expressed on neutrophils, dendritic cells, or macrophages, could be involved in the early immune response by the host, such as oocyst antigen uptake in the intestine. In conclusion, we present a modified immunofluorescence assay technique that allows material-saving immunofluorescence microscopy with T. gondii oocysts in a higher resolution than previously published, which allowed us to describe three additional CLRs binding specifically to the oocyst surface. IMPORTANCE Knowledge of oocyst biology of Toxoplasma gondii is limited, not the least due to its limited availability. We describe a method that permits us to process minute amounts of oocysts for immunofluorescence microscopy without compromising their structural properties. This method allowed us to visualize internal structures of sporocysts by confocal microscopy in unprecedented quality. Moreover, the method can be used as a low- to medium-throughput method to screen for molecules interacting with oocysts, such as antibodies, or compounds causing structural damage to oocysts (i.e., disinfectants). Using this method, we screened a small library of C-type lectin receptors (CLRs) present on certain immune cells and found three CLRs able to decorate the oocyst wall of T. gondii and which were not known before to bind to oocysts. These tools will allow further study into oocyst wall composition and could also provoke experiments regarding immunological recognition of oocysts.Peer Reviewe

    From TgO/GABA-AT, GABA, and T-263 mutant to conception of Toxoplasma

    Get PDF
    Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat’s oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with “Rosetta stone”-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite’s capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease

    Antibody Response of Healthy Adults to Recombinant Thrombospondin-Related Adhesive Protein of Cryptosporidium 1 after Experimental Exposure to Cryptosporidium Oocysts

    No full text
    Thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1) belongs to a group of proteins that are also found in Toxoplasma gondii, Eimeria tenella, and Plasmodium species. TRAP-related proteins are needed for gliding motility, host-cell attachment, and invasion. The objective of this study was to characterize the antibody response to recombinant TRAP-C1 (rTRAP-C1) in healthy volunteers exposed to C. parvum and their association with clinical illness. A total of 31 healthy adult volunteers participated. Seven volunteers received the C. parvum TAMU isolate (inocula, 10 to 300 oocysts), and 24 volunteers received the C. parvum UCP isolate (500 to 10(5) oocysts). The total antibody (immunoglobulin M [IgM], IgG, and IgA) response to rTRAP C-1 was measured by enzyme-linked immunosorbent assays prior to and after exposure to Cryptosporidium parvum (days 0 to 45). Results of this study showed that individuals who were uninfected demonstrated higher reactivity at baseline compared to those who became infected. After challenge, increases in antibody reactivity were seen on days 30 and 45 compared to the results seen on days 0 to 5. The increases in antibody reactivity were statistically significant in subjects with diarrhea and with or without detectable oocysts compared to the results seen with those who were uninfected and asymptomatic. These findings suggest that increases in antibody reactivity to rTRAP-C1 occur after recent exposure to C. parvum

    Multilocus Genotypic Analysis of Cryptosporidium parvum Isolates from Different Hosts and Geographical Origins

    Get PDF
    The genetic analysis of oocysts recovered from the stools of humans and animals infected with Cryptosporidium parvum has consistently shown the existence of two distinct genotypes. One of the genotypes is found exclusively in some human infections, whereas the other genotype is found in human as well as in animal infections. On the basis of these observations and the results of published epidemiological studies with single polymorphic markers, the existence of two separate transmission cycles has been postulated, one exclusively anthroponotic and the other involving both animals and humans. To test this hypothesis, C. parvum isolates of different geographic and host origins were analyzed by using unlinked genetic polymorphisms. A total of 28 isolates originating from Europe, North and South America, and Australia were examined. Isolates clustered into two groups, one comprising both human and animal isolates and the other comprising isolates only of human origin. The absence of recombinant genotypes is consistent with two reproductively isolated populations within the species C. parvum

    Dissecting the interface between apicomplexan parasite and host cell: Insights from a divergent AMA–RON2 pair

    No full text
    Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T. gondii harbors a novel AMA designated as TgAMA4 that shows extreme sequence divergence from all characterized AMA family members. Here we show that sporozoite-expressed TgAMA4 clusters in a distinct phylogenetic clade with Plasmodium merozoite apical erythrocyte-binding ligand (MAEBL) proteins and forms a high-affinity, functional complex with its coevolved partner, TgRON2(L1). High-resolution crystal structures of TgAMA4 in the apo and TgRON2(L1)-bound forms complemented with alanine scanning mutagenesis data reveal an unexpected architecture and assembly mechanism relative to previously characterized AMA–RON2 complexes. Principally, TgAMA4 lacks both a deep surface groove and a key surface loop that have been established to govern RON2 ligand binding selectivity in other AMAs. Our study reveals a previously underappreciated level of molecular diversity at the parasite–host-cell interface and offers intriguing insight into the adaptation strategies underlying sporozoite invasion. Moreover, our data offer the potential for improved design of neutralizing therapeutics targeting a broad range of AMA–RON2 pairs and apicomplexan invasive stages

    Image_1_Limited value of current and new in silico predicted oocyst-specific proteins of Toxoplasma gondii for source-attributing serology.pdf

    No full text
    Toxoplasma gondii is a zoonotic parasite infecting all warm-blooded animals, including humans. The contribution of environmental contamination by T. gondii oocysts to infections is understudied. The aim of the current work was to explore T. gondii serology as a means of attributing the source of infection using a robust stepwise approach. We identified in silico thirty-two promising oocyst-specific antigens from T. gondii ÂŽomics data, recombinantly expressed and purified them and validated whether serology based on these proteins could discriminate oocyst- from tissue cyst-driven experimental infections. For this, three well-characterized serum panels, sampled from 0 to 6 weeks post-infection, from pigs and sheep experimentally infected with T. gondii oocysts or tissue cysts, were used. Candidate proteins were initially screened by Western blot with sera from pigs or sheep, infected for different times, either with oocysts or tissue cysts, as well as non-infected animals. Only the recombinant proteins TgCCp5A and TgSR1 provoked seroconversion upon infection and appeared to discriminate between oocyst- and tissue cyst-driven infections with pig sera. They were subsequently used to develop an enzyme-linked immunosorbent assay test for pigs. Based on this assay and Western blot analyses, a lack of stage specificity and low antigenicity was observed with all pig sera. The same was true for proteins TgERP, TgSporoSAG, TgOWP1 and TgOWP8, previously described as source-attributing antigens, when analyzed using the whole panels of sera. We conclude that there is currently no antigen that allows the discrimination of T. gondii infections acquired from either oocysts or tissue cysts by serological tests. This work provides robust new knowledge that can inform further research and development toward source-attributing T. gondii serology.</p

    Table_3_Limited value of current and new in silico predicted oocyst-specific proteins of Toxoplasma gondii for source-attributing serology.docx

    No full text
    Toxoplasma gondii is a zoonotic parasite infecting all warm-blooded animals, including humans. The contribution of environmental contamination by T. gondii oocysts to infections is understudied. The aim of the current work was to explore T. gondii serology as a means of attributing the source of infection using a robust stepwise approach. We identified in silico thirty-two promising oocyst-specific antigens from T. gondii ÂŽomics data, recombinantly expressed and purified them and validated whether serology based on these proteins could discriminate oocyst- from tissue cyst-driven experimental infections. For this, three well-characterized serum panels, sampled from 0 to 6 weeks post-infection, from pigs and sheep experimentally infected with T. gondii oocysts or tissue cysts, were used. Candidate proteins were initially screened by Western blot with sera from pigs or sheep, infected for different times, either with oocysts or tissue cysts, as well as non-infected animals. Only the recombinant proteins TgCCp5A and TgSR1 provoked seroconversion upon infection and appeared to discriminate between oocyst- and tissue cyst-driven infections with pig sera. They were subsequently used to develop an enzyme-linked immunosorbent assay test for pigs. Based on this assay and Western blot analyses, a lack of stage specificity and low antigenicity was observed with all pig sera. The same was true for proteins TgERP, TgSporoSAG, TgOWP1 and TgOWP8, previously described as source-attributing antigens, when analyzed using the whole panels of sera. We conclude that there is currently no antigen that allows the discrimination of T. gondii infections acquired from either oocysts or tissue cysts by serological tests. This work provides robust new knowledge that can inform further research and development toward source-attributing T. gondii serology.</p

    Image_2_Limited value of current and new in silico predicted oocyst-specific proteins of Toxoplasma gondii for source-attributing serology.jpeg

    No full text
    Toxoplasma gondii is a zoonotic parasite infecting all warm-blooded animals, including humans. The contribution of environmental contamination by T. gondii oocysts to infections is understudied. The aim of the current work was to explore T. gondii serology as a means of attributing the source of infection using a robust stepwise approach. We identified in silico thirty-two promising oocyst-specific antigens from T. gondii ÂŽomics data, recombinantly expressed and purified them and validated whether serology based on these proteins could discriminate oocyst- from tissue cyst-driven experimental infections. For this, three well-characterized serum panels, sampled from 0 to 6 weeks post-infection, from pigs and sheep experimentally infected with T. gondii oocysts or tissue cysts, were used. Candidate proteins were initially screened by Western blot with sera from pigs or sheep, infected for different times, either with oocysts or tissue cysts, as well as non-infected animals. Only the recombinant proteins TgCCp5A and TgSR1 provoked seroconversion upon infection and appeared to discriminate between oocyst- and tissue cyst-driven infections with pig sera. They were subsequently used to develop an enzyme-linked immunosorbent assay test for pigs. Based on this assay and Western blot analyses, a lack of stage specificity and low antigenicity was observed with all pig sera. The same was true for proteins TgERP, TgSporoSAG, TgOWP1 and TgOWP8, previously described as source-attributing antigens, when analyzed using the whole panels of sera. We conclude that there is currently no antigen that allows the discrimination of T. gondii infections acquired from either oocysts or tissue cysts by serological tests. This work provides robust new knowledge that can inform further research and development toward source-attributing T. gondii serology.</p
    corecore