82 research outputs found

    Formal design specification of a Processor Interface Unit

    Get PDF
    This report describes work to formally specify the requirements and design of a processor interface unit (PIU), a single-chip subsystem providing memory-interface bus-interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. The need for high-quality design assurance in such applications is an undisputed fact, given the disastrous consequences that even a single design flaw can produce. Thus, the further development and application of formal methods to fault-tolerant systems is of critical importance as these systems see increasing use in modern society

    Interpreter composition issues in the formal verification of a processor-memory module

    Get PDF
    This report describes interpreter composition techniques suitable for the formal specification and verification of a processor-memory module using the HOL theorem proving system. The processor-memory module is a multichip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. Modeling and verification methods were developed that permit provably secure composition at the transaction-level of specification, significantly reducing the complexity of the hierarchical verification of the system

    Towards the formal specification of the requirements and design of a processor interface unit

    Get PDF
    Work to formally specify the requirements and design of a Processor Interface Unit (PIU), a single-chip subsystem providing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system, is described. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance free operation, or both. The approaches that were developed for modeling the PIU requirements and for composition of the PIU subcomponents at high levels of abstraction are described. These approaches were used to specify and verify a nontrivial subset of the PIU behavior. The PIU specification in Higher Order Logic (HOL) is documented in a companion NASA contractor report entitled 'Towards the Formal Specification of the Requirements and Design of a Processor Interfacs Unit - HOL Listings.' The subsequent verification approach and HOL listings are documented in NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit' and NASA contractor report entitled 'Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit - HOL Listings.

    Customs Law

    Get PDF
    This article summarizes important developments in 2014 in customs law, including U.S. judicial decisions, trade, legislative, administrative, and executive developments, as well as Canadian and European legal developments

    Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorous predation

    Get PDF
    Modification of essential bacterial peptidoglycan (PG) containing cell walls can lead to antibiotic resistance, for example β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall; L,D-transpeptidaseBd mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion and a zonal mode of predator-elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division
    corecore