@ https://ntrs.nasa.gov/search.jsp?R=19930003350 2020-03-17T10:24:15+00:00Z

o L. /

_H E AR
NASA Contractor Report 189698 A

Formal Design Specification of a Processor
Interface Unit

David A Fura
Boeing Defense & Space Group
Seattle, Washington

Phillip J. Windley
University of Idaho
Moscow, Idaho

G. C. Cohen
Boeing Defense & Space Group
Seattle, Washington

NASA Contract NAS1-18586
November 1992

NASA

National Aeronautics and
Space Administration (HMA3A=C=1%9693) FOxMAL DESION N93-12533
Langley Research Center SPrCIFICATION UF A PROCEZSSOR
Hampton, Virginia 23665-5525 [TerFACt UNIT (Roeing Military
Airolane Tovelopnient) 2930 nclas

4’< A /7 4 DY G3/50 0127114

Preface

This document was generated in support of NASA contract NAS1-1 8586, Design and Validation of Digital
Flight Control Systems Suitable for Fly-By-Wire Applications, Task Assignment 9. Task 9 is concerned
with the formal specification of a processor interface unit.

This report describes the formal specification of the design for a processor interface unit using the HOL
methodology. The processor interface unit is a single—chip subsystem within a fault-tolerant embedded sys-
tem under development at the Boeing High Technology Center. It provides the opportunity to investigate
the specification and verification of a real-world component within a commercially-developed fault-tolerant
computer.

The NASA technical monitor for this work is Sally Johnson of the NASA Langley Research Center, Hamp-
ton, Virginia.

The work was accomplished at the Boeing Company, Seattle, Washington and the University of Idaho,
Moscow, Idaho. Personnel responsible for the work include:

Boeing Military Airplanes:
D. Gangsaas, Responsible Manager
T. M. Richardson, Program Manager

Boeing High Technology Center:
Gerald C. Cohen, Principal Investigator
David A. Fura, Researcher

University of Idaho:
Dr. Phillip J. Windley, Chief Researcher

Contents

1 IDTOAUCHION «..eeeeeeeeeeeereeeereesecssrassasesss seeseasasssessssacssmessosiess stastesssassansssssasass s isnestasnernonsanssntsos s tbenaissnsnss 1
1.1 Informal PIU DESCHPHONccveirivimmiitimriinnseisnsssniesessscsscntsuniaisesmtsssssssnssststsssassssarassasasnssnase 1
1.1.1 PMM INHAlZAGON ...covieververeeeniernsrreeseemetsessisnesmsenesssansassessatssnsesamstsasssnassurassanssasncussusuns 3

1.1.2 CPU ACCESSES 10 MEMOTYoveevreierirtisisinmiaessmsmmsissssssssisessssssisnsinssassasssssses cmssusainsssess 4
1.1.2.1 TOLOCAI MEIMOTYccevnrerecrerirsensnererananssssssasssssassesesnsissinssesssnsassnsasessssssssssssssans 4

1.1.2.2 To Internal RegiSter Filecccoiimniaimnmnniinit ettt 5

1.1.2.3 TOthe C_BUS uuueiiiiieerererieeerineseniestssssesss e snsssssanssss sessesssnsssabesnssnsansasasscasssssasss 6

1.1.3 C_Bus ACCESSES 10 MEIMOTYccceimrrererssrsesmsmsisnsncsscsstssisessisssnsssasatssssssessssessssssnsanas 6

1.1.4 Timers and INEEITUPLScccoceeirerirerniriiesismsissscesensasseassescassstsnsasssssssssssacssatsssansinsasasnesins 6

1.2 SPECIfICAON OVEIVIEWcouirerrnerarrarrinsinsisiascisss st st s a s s e 6
2 GeneriC INEIPreter THEOTY ...c.ccocrrieinsiereisisssnsseesiseiss sttt st st e s st s s s shasb s s s 9
2.1 INUTOAUCHON .oeoveeeeecreeesseeseesasserssraceseesessansaasassusssssssstsrasssssesssssnssnsamesrsss st onbessasassasantssnsas datssssssiossns 9
2.2 Formal MicroproCessor MOGEHNEcoovuremiiiineccmiinitininies e sttt 9
2.2.1 Microprocessor SPECIICAtONccouvmveuereesetiuiisiiisni st 9

2.2.2 Microprocessor VErfICAONcivevceemenssmeniisiniitssmnnsiss s st senece 10

2.3 A Formal Model Of INTEIPIEIELScuvuviremrucrerrrniarsesssnsssasmstssusmsisssssessssnsssssassassenssssasssssssssnnseas 10
2.3.1 ADSHACE TREOTIESeoereeirenrrereaesereensseestiasessissisnsnssmassassssssnssnsssnssssasnssssasssassssssassnssstsonss 10

2.3.2 Temporal ADSIACHONovuerurriermcriniserseseeneesesssmsitessisssisssnsississasssscsssossssasinsnssnsssssnsseses 12

2.3.3 The AbStract REPrESENtAIONocviveriiireeremmieniensescsinsitsitnssrsssne s tses s i sas s snanes 12

2.3.4 The Theory OBLIZAtONSc.ocomverriieenmessrsmenmeercsstsesisetiisiesssmsrssetssssssnssssssaniassssssasssnsnass 14

2.3.5 ADSIACE THEOTEINSeoveeeerrviereeeressrrranssessesessssssonsassasasssasasassssanestsstsrss saessssaonsnsasasssitsssses 15
2.3.5.1 Defining the INEIPIELETccovuereeietsenesescnssessissmimsssninsssnsnssssesssssisnsisssessnas 15

2.3.5.2 Induction On INGEIPIELELSccovevrimiirrernimrensicemessnecissis st snsssnssesaeacasessaens 15

2.3.5.3 The Implementation iS LiVecocviinicinminiininn s 16

2.3.5.4 The Correctness SLACMENLc.cccoceintenrmrresionssnmssiesssssssssssncssmsmsassssansasssanssss 16

2.3.5.5 Composing Interpreters HierarchiCallyc..covceeimmrimiisneiriciscinsniciniinsnnes 17

2.4 Parallel COMPOSILONc.ocevurivieimiricerresiemsesssssssessssessse st ssas e tssassass s ssse st sssastosasissasastastensaansass e 17
2.5 CONCIUSION ..veeeeeeeereveeeeecsurenseessenssesssonssnssssonasseesmersass shesnrasssssastesssassasensshtsbtat it isnsasansesnsantast sotsses 17
3 DeSign SPECIICAONc.cueviviirriicrnrrestesisiss st es e sb b st s s s e 19
31 GAELEVE] SITUCIUTEovericerieremrerseseesenmesssoessisssississssnsssasassonsonsssssssssssessasassssasnsessssessesssas sassses 19
3.1.1 Component DESCHPHONScoovirimisrnrenreeeicrsinnisisiisstes s ssssasesssssstssns s easnanssss 19
3.1.1.1 Combinational LOZICcccvirererririmnieiernnrnentsaninssossstsessisinsinssseiessansinssssacseessoee 19

B.1.1.2 LALCHES ..eveeveeerererierreireiecsnessssestassnssessessesstans seseransessassisnssnsasostsssoresssessonsansasnssstss 20

3113 FlP-TIOPS coevecnericriernerinesensissnnsenarsnessssstassonssssssasasssssm snssssssas ssssussasssesssnsssssnes 22

B.1.1.4 COUNLELS eeovviereeicriereeruensensesnasesanseessnesiastesssavessnsssssarssreaasans st asonsanssassassansassnssonsoss 23

3.1.1.5 CTR Datapath BIOCKc.coruruirerenissssinsesssnseessisissssisisessasmssssisisssssssessssssesss 23

3.1.1.6 ICR Datapath BIOCKccouvuviriniemienisencssisenennisi st ssseniainnaseens 25

3.1.1.7 CR Datapath BIOCKcooieurmremeirenntiisssstnsssecscmsissassinssnsesssnsssssssssssscassessens 26

3.1.1.8 SR Datapath BIOCKccceceververmminerenrinsetsescesinisinitstsesnsssssssnesssssaecssasssnsans 26

3.1.1.9 Finite—State MAChiNeSccccceveeeeercniiscsiesesmsiesismessessassssssasssosssnsnssrssssssninassans 26

3.1.2 Block Diagram DeSCIPUONSccvuerrenicniirninnnesisesicnsnniesisnsns s sassesssesens 27
3.1.2.1 P _POTE SIIUCLUTEocevereeeniececeiestirersessesssresnensssessssnse sesstassasassssamssasssssassasasaassonss 28

3.1.2.2 M_POIt SITUCLUTEccovenereetceeercrrissessrsssosessassserasassnesresasessstessestossansisnsnsnsas senans 29

3.1.2.3 R_POI SHUCIULEecovereciiiecssismetssissesneserssssssssaressesssnesessennssesissssassansassassassacss 32

3.1.2.4 C_POTt SIUCIULEeovereeveeeereeeeresssessesnssassersssnissssessstssnsssssossssasissensessesanssaresssoss 34

.; } e
PRECEDING PAGE BLANK NOT FILMED wxmwmu hang

3.1.2.5 SU_CODE SIIUCKULEcovruemerreneieirnrisissessmianisssninmessssssssissssassassssssssssssssssssensens 38

3.2 Port Phase~Level BERAVIOLcccoviiniiennciisininiiiniiiesersanianssssssssssnssesssssssessssssnsssss ssene 39
3.3 Port Clock—Level BERAVIOTcccorerermmnmmermscnsemineneisisniscsseseosessessssarssnensarsssasssassassssnesssosess 40
3.4 PIUPOIM-LEVEl SUTUCKUTEcoeveeerrernerreenreneersssesssssseisessesnosessesssnsasmsssossessnsassassstasssssassssassssnssssnes 40
3.5 PIU Clock—Level BERaviorcoccveevccieeinenerniniininiiisiiseesmenninsasssessasssenessessresssrassassssenssase 41
Models for Transaction SPECIfICAHON ...t sttt 42
4.1 INEROAUCHONoveoveveteianeersenreacereansses e ssesetssssasssssesessens shtssesesssssonssassossntassssesnnsansonsennesnsssnsosessasseens 42
4.2 ADSITACE VEBWS «.oeeieceieriisrenseiersessaneentnssnsresensosesssssassssnesnsasstossnssssssssensonsantastastassessasssonsossesatsssons 43
43 Representing Transaction SYSIEMSccervevemnmreinensenccssestsmsnsisisisissssonsmsisims s ssssssssssesnes 45
44 Preliminary Transaction Model DESignccveieiiiinenininninenneciscsesssnins s ensieannes 47
4.4.1 The TransaCtion MOMELc.ccooeeeiiiniiiniimnnisisinniassnse et snesass s ssenssssssssosessesssssseseses 47
B.8.1.1 POILS ..ooverenecerereeeiersstetsseseseseessossassonenssasssnssmansssassasissa s essasesassssssanssnnssasassssasesaens 48

B8.1.2 SHALE «..eoveeeeneererreneererasssaessnesesossssssanasessbsserbsnsssssseres s st srasas s s se e s sseresaesaransssess 48

4.4.1.3 TEANSACHONScceeeruererececseniecssossamsassesssesiesssnsmsssnssssssasnsssasssssessssersasssassassessass 48

4.4.1.4 OPCIAOMNcovnvrerirreriesiressrise e se s e ss s s tsasaranssems s ne s s ssssssssssssssnsasnsnsass 48

4.4.2 Development Plan and COMMENLSccvririniininionenssmern st st ssisssssnsssasananes 48

4.5 CONCIUSIONS ..ooverreerirrinriresriiersereseerssrresssssaesesssssssisasstot sassassastsss e ssesarssssasesssssesarasenssessssassseneassessnes 49
Towards an Integrated Simulation/Verification Environmentccoccevcineiminesionnnisnsieneninnnes 50
5.1 New Datatypes it HOL ... st sessss s ssassssnsasesnsss s s s 50
S0 T ALTAYS ..cccreeceneencstsosinieistessessanssssssssssss s smasssasssnssos sassseses saos sessses seon sesasusbosssosssassessssasssses 50

5.1.2 N=Bit WOIAS ...cocereeriverrerernereesencstosssnsnassesessessssesestissiatsessessonsssssesssssstasssssesassansensass saasseseses 51

5.2 ANEXampPle iN M ... ettt st sa s e s 51
5.3 AnExample in HOL ... snssess st sesesssnisissssstssssssssssssssass snsssas e sonens 53
CODNCIUSIONS ...eeeveeviineererureniesessevessssassassasssssosssss seasssssesresneosssssanessinasass s stessssss srnsatenasonssssssassesssntsstsses 54
RELETEIICES . n..eecetrerrieeseesseresnerssnssessentasesessessasssssssssostastasssesasasasssssssars oetonssssssnsnnsasssnsbensosssusssaansanessssnes 56
ML Source for Component SPecifiCationsccociveeeriiimnirriniieiienserenen e e cassiaies 58
ML Source for the Gate-Level Specification of the PIU POILScooovvvieeniininninnncnccesesisnnns 80
B.1 P POrt SPECHICAHONcecverneirrirnnicsiasitnenretereess st sesse st st i ns st s s san et s asmas s sas s s asaes 80
B.2 M POMt SPECHICAHON ...ttt st ettt st s e e s 86
B.3 R POt SPECITICALONc.cenrnrnnreniretnicines st s sttt e st tssstocstse s bsas st sns e s 94
B.4 C POrt SPECIfICAtONcoonemriviricriiriirserei st assse s st s setsen et s asanssn s sesna b an s nses 103
B.5 SU_CONt SPECITICAUONccvvereiririrenrmeirinianinnessssstsistss s sse s seassssse s sssssnsssssesisnsessstsss s s s aassess 114
ML Source for the Phase~Level Specification of the PIU POLLScorrieiicinnniinsnnicnisinconnes 121
C.1 P POIt SPECIfICAHONoocrcerenritrinceiniiisitcrsarennssssstssss et srsassassses s sas e et essbsssssstsssssnsasssssansanss 121
C.2 M POMt SPECHICALONoovevrririniienenrensnsrensss s ersess s sess st sossens s bbb e s 128
C.3 R POIt SPECIICAUONovuirireniminrrreseneniantstnsstsrisis e sssssastsessosasstssssasssas s sssassssssnsasssssssssssssassnsass 136
C.4 CPOrt SPECHICAONcovvievverinirricasinsre s issinterss et sisssssssso st ems s sttt s et snstarss s s sns 151
C.5 SU_Cont SPECIfICALONccorveriiivimrrniniarseisssnrsistssesseserssstsosssssarsssssssssstsesasasssessrnsssssseassssssssssens 173
ML Source for the Clock-Level Specification of the PIU POISovoeorrieierenncccieniiinnnns 182
D.1 P POrt SPECIfICAIONcovmererirenretrinsiinnncnmcssssess s ssnacstssisessasas s sess st sbe e srssss st arsnasassussnsss 182
D.2 M POrt SPeCIfiCAHONc.cociriremnreieree ettt st st st 186
D.3 R POt SPECIICAONcovvinirinieeenecnetner s sttt st sttt s s e e s s s s snsnee 190

iv

D.4 C POt SPECITICAUONcvuericvnivrirrenreaersennissssissssessess sttt srss s st s st s sm st s st 198
D.5 SU_CONE SPECIICAHONocvviriirienriritnrseniisiscsisss et sissse st st sttt s snseness 209

E ML Source for the PIU Block-Level Specification

F ML Source for the PIU Clock-Level Specification

..

...

List of Figures

1.1 Block Diagram of the Processor—-Memory Module (PMM)ccouiimiimniisenseinnninsinensscssians 2
1.2 Major Blocks of the Processor Interface Unit (PIU)c.ouovmimmeiinmisniinmmscnsissmsiiinninisinsnne: 3
1.3 PIU Specification HIETarchycccceveerieeseuemscsiniisnieieinminninssss it cscssscsaenes 7
2.1 A Hierarchy of INEIPIELETScvviirirereriiniacrantnsessisieiniaisnsss s ss s st st ns bbbt s on 11
2.2 The Temporal Abstraction Functions F and Gcocouivimeiminieiscrirenscscninnmisninissnenae 12
3.1 Two Series Latches Clocked by the Same Phase ... 21
3.2 Interval REPrESEOtAtIONScc.cuiuereressersressssessasessesestensmiarsmsssas s sns s stasssans st shsans st 22
3.3 Example D Flip-Flop Constructed With LAICHEScovvimimmensinneccnsiiiininn s 23
3.4 Functional Block Diagram of @ COUDLETcoereueverrurisisiruinnmemssinssnsine e sssessssisasiessinnsnsnsnassencs 24
3.5 Functional Block Diagram of the CTR Datapath BIOCKcccociemiiiiimininiinninsicciinininnienees 24
3.6 Functional Block Diagram of the ICR Datapath BIOCKcocovviiiimimiiiiintiesinicciininiesisiniins 25
3.7 Functional Block Diagram of the CR Datapath BIOCKccovvirimmminiensnncscnnismiinniinininsein 26
3.8 Functional Block Diagram of the SR Datapath BIOCK ..o 27
3.9 Functional Block Diagram for Finite—State MaChinescccccoeuimmneminionsesnissssincssesisnniens 27
3.10 P_Port Top-Level BIoCk DIaGIamlcvemreeecrcecrniiminnmsinsimsniics s st sesss s snsn s 28
3.11 Block Diagram of P_Port Datapathcccoeeierensioniniinmiinssnsisccscstssnessssainiasiassins e 29
3.12 Block Diagram of P_Port CONMIOIIEEcocvemeermmcunsininsmininnissinsnscscst sttt seseees 30
3.13 M_Port Top-Level Block DIgramlcccoveeememeiiininmmninmnmissnssesssstsstsis s issssnsssessssesascns 30
3.14 Block Diagram of the M_Port Datapath ..ot 31
3.15 Block Diagram of the M_Port CODMIOLLETcoocvvunimiimrimmmmmiss st st seseacee 32
3.16 R_Port Top—-Level BIock DIaramccooureoneeruiruirninsiniamieisnniesses s ensasnssssans st s sness e sssocssces 33
3.17 Block Diagram of Register File CODIONIET ...t 33
3.18 Block Diagram of the Timer Interrupt BIOCKc.cconiimimiiimniiscssnnnsnnninseceen 34
3.19 Block Diagram of the Register Interrupt BIOCKccocveimieriiinninsicsnsicinisreennsssicnienes 34
3.20 C_Port Top—Level BIoCk DIagraflccoveenecmrectsiiisnnismnmsssessscsmsnisssiennsssinsissscssasssces 35
3.21 Block Diagram of the C_Port Datapathcoecciiiiiiinisc e 35
3.22 Block Diagram of the C_Port Controller (Part A)c.o.ocemruemmeimnininsesisssinnnismnienienes 36
3.23 Block Diagram of the C_Port Controller (Part B)ccoomomiminionimicninicscinsniniancnenee 37
3.24 Block Diagram of the Startup Controller PIU-Port Interfacecocoovmveisccmscmcrssunsinsissinnnnennns 38
3.25 Block Diagram of the Startup Controller CPU IDLEIfACEcomminimieienicscsssisiiminicniesnnes 39
4.1 The View fTOM the CPUc.cooveriivinirersrensssessessuessnimsstssssstssseesstasset otsatesssssasasnssasssasass st snasansssosas 43
42 View fTOm the MEMOTYccveiionmmirstmisiensomssssess s sessstsn st s asssssssassssas sostesssssssses sse snsees 44
4.3 View fTOmM the NEIWOTKcccccerereererrensememecscessennssesnisnmstisaseosess sinssessassassasannasnssassasssasssiosssse siossns 44
4.4 Abstraction Views fOr the PIUccvrmrnieiniiesniininesnneceetisn e ssssaassssan tenssacsstnss snissssanes 45
45 Modeling the Buses in a Computer System using TUPIe SPACEcoveereereisccmsrscasinsnasnssnnenens 47
vii

PRECEDING PAGE BLANK NOT FiLMEL

vil

List of Tables

1.1 R_Port RegiSter DEfiMitiONSc..ocoveereiemieetsesesescsssisirnisnssinss s sttt s st s 5
2.1 The abstract functions and their types for the generic interpreter MOdelo.cooveeereiercienenns. 13
A Ba ix uhl.m\i;ﬂ T
PRECEDING PAGE BLANK NOT FILMED SRSl ik BN

1 Introduction

This report describes work to formally specify the requirements and design of a processor interface unit
(PIU), a single-chip subsystem providing memory-interface, bus-interface, and additional support services
for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant
Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely
high levels of mission reliability, extended maintenance-free operation, or both. The need for high-quality
design assurance in such applications is an undisputed fact, given the disastrous consequences that even a
single design flaw can produce. Thus, the further development and application of formal methods to fault-
tolerant systems is of critical importance as these systems see increasing use in modern society.

The work described in this report is but a first step towards developing a provably correct fault-tolerant
computing platform for application to real commercial and military systems. Beyond the PIU verification
task that follows this work, future formal methods targets include at least two additional application-specific
integrated circuits (ASICs) and the operating system software for the FTEP system. It is expected that the
lessons learned in this PIU effort will influence the future design and modeling of these components to facil-
itate their subsequent verification.

This report contains five major sections following this introduction, as well as several appendices con-
taining the PIU design specification in its full detail. Section 2 describes the generic interpreter theory used
to formally specify portions of the PIU design. This theory builds on previous NASA-funded work
described in [Win90], with important extensions in the handling of interpreter outputs to support subsystem
composition.

Section 3 explains the PIU design specification at a high level to facilitate the understanding of the for-
mal models contained in the appendices. The specification itself was written using the HOL theorem-prov-
ing system developed at the University of Cambridge, England [Gor88].

Section 4 describes our progress in developing a transaction-based modeling approach for specifying
the PIU requirements. A number of modeling candidates were investigated and a preferred approach was
identified for formalization in HOL.

Section 5 describes our initial efforts at integrating our hardware design and verification environments
into a single framework. A prototype M-to-HOL translator was developed and was used to translate the PIU
behavioral specifications initially written in the simulation language M.

Section 6 contains a concluding discussion.

Before leaving this section, we first present an informal description of the PIU, including both its struc-
ture and an overview of its behavior. Following this we introduce the specification hierarchy developed for
the PIU.

1.1 Informal PIU Description

The PIU is a single-chip subsystem providing memory-interface, bus-interface, and additional support
services within the Processor-Memory Module (PMM) of the FTEP system. The PIU’s position within the
PMM structure is shown in Figure 1.1. A PMM, itself a single block within an FTEP Core, interconnects
three internal PMM subsystems: the local processors, the local memory, and the Core Bus (C_Bus) inter-
face.

The PMM processors (CPUO and CPU1) are arranged in a cold-sparing configuration to enhance long-
life operation. Only one processor is active during a given mission, with the choice of active processor deter-
mined during initialization. The spare processor is disabled by the PIU through assertion of the processor’s
cpu_reset input. For the first implementation of the PMM, described in this report, Intel 80960MC micro-

PRECETNTG FAGE PUANK 1I0T SULRAED 1 AR S D e e

processors are used for the local processors. They communicate with the PIU using the L_Bus bus protocol
of the 80960.

Processor programs and data are stored in local electrically-erasable programmable read-only memory
(EEPROM) and static random access memory (SRAM), respectively. Memory accesses are initiated by
either the local processor or an external block acting as C_Bus master. In either case the PIU provides the
memory interface. The features provided by the PIU include memory error correction, memory locking to
implement atomic read-modify-write operations, byte accesses, and block accesses of up to 64 words.
EEPROM and SRAM memory capacity in the first implementation is 1 MB (megabyte) of actual informa-
tion storage each, implemented within seven 256Kx8-bit memory chips each. A (7,4) Hamming code pro-
vides single-bit error correction on memory reads.

The PIU also provides processor support features such as timers and interrupt control. Two 64-bit timers
can be set by the processor to provide either timekeeping or watchdog functions. Processor interrupts are
generated within the PIU under two conditions. One condition is a timer time-out; the other is a write oper-
ation to a specially designated PIU register by either the local processor or C_Bus master.

The reset and clock signals shown at the top of Figure 1.1 are produced by the Fault-Tolerant Clock Unit
(FTCU) not shown here. The pmm_reset signal is sent only to the PIU to allow it greater control over the
local processors. For example, the PIU uses this signal to enter its initialization mode, during which it acti-
vates the processor reset signals. All of the PIU input signals produced by the FTCU are synchronized with
those in the PIUs in redundant PMMs of a fault-tolerant FTEP core.

The structure of the PIU itself is shown in Figure 1.2. The Processor Port (P_Port), C_Bus Port
(C_Port), and Memory Port (M_Port) implement the communication protocols for the L_Bus, C_Bus, and
M_Bus, respectively. The M_Port also implements (7,4) Hamming encoding and decoding on writes and
reads, respectively, to the local memory, and the C_Port implements single-bit parity encoding and decoding
for C_Bus transfers.

pmm_reset cpul_reset
RAM iu_clk [
S gbu;_clk failure0_ CPUO

M_Bus L _Bus

cpul_reset

EEPROM failurel _ CPU1

Core Bus Interface

Figure 1.1: Block Diagram of the Processor-Memory Module (PMM).

The Register Port (R_Port) is the fourth, and final, port residing on the PIU’s Internal Bus (I_Bus). It
contains a state machine, counters, and various command and status registers used by the local processor to
implement timers and interrupts.

The Start-up Controller (SU_Cont) implements the PMM initialization sequence. After it has concluded
initialization, control is turned over to the other ports with the SU_Cont continuing operation in a back-
ground mode. The SU_Cont is not physically located on the I_Bus, however, for convenience, we will
sometimes refer to it as one of the five PIU ports.

Behaviorally, the PIU functionality can be divided into four categories: (1) PMM initialization,)
local-processor memory accesses, (3) C_Bus memory accesses, and (4) timers and interrupts.

1.1.1 PMM Initialization

The PIU controls the PMM initialization sequence. After receiving a synchronous pmm_reset signal
from the FTCU, the PIU initiates the testing of the two local processors (or CPUs). Based on the test results,
the PIU selects one of the CPUs to be active for the upcoming mission, while at the same time isolating the

piu_clk pmm_reset
cbus_clk
int{3:0]

—

4 \ cpul_reset
~ 1} cpul_reset

! Jailure0_

T resets & JSailurel _
| disables

1 Bus L_Bus

= e K

v

SU_Cont

M_Bus

G e

Figure 1.2: Major Blocks of the Processor Interface Unit (PIU).

other CPU. During the initialization, the PIU also maintains the inter-PMM synchronization that is initially
established by the FTCUs.

The PIU initiates CPU self-test via the CPU reset signals that it controls. To begin the initialization
sequence, the PIU resets CPUO, which then goes through a two-phase (Intel 80960) testing process of its
own. In the first phase the CPU executes a 47,000-cycle self-test procedure; in the second phase the CPU
reads the first eight words of local memory (via the PIU) and performs a check-sum test. If either of these
tests fail, then the CPU’s failure0_ pin remains asserted, otherwise it is deasserted.

After the CPU self-test is completed, the CPU executes a software-based test using a program and the
prior-mission fault status stored in local memory. At preselected points in this program the CPU updates
PIU registers in a prespecified manner. At the end of this program, the PIU compares the modified PIU reg-
ister values against their expected values. This acceptance test is the final major test of CPU functionality
during initialization.

At the same time that CPUO is being tested, the PIU isolates CPU1 by asserting its cpul_reset input.
Once the testing of CPUO is completed, the roles are reversed. After both CPUs have been tested, the PIU
selects one to be active for the upcoming mission. The selection algorithm makes use of the CPU failure
signal outputs and the acceptance-test results: if CPUQ is ok then it is selected, otherwise if CPU1 is ok then
it is selected, otherwise neither one is selected. Once the selection is made, the selected CPU is reset again
and begins normal operation. The PIU isolates the other CPU by keeping its reset active.

An important PIU requirement is to maintain clock-level synchronization between redundant PMMs,
yet accommodate possible nondeterminism within the PMM initialization sequences. Before the PMM ini-
tialization begins, the redundant PMM clocks are synchronized by the FTCUs, and pmm_reset signals are
delivered to the PIUs synchronously across all PMMs. Synchronization is maintained by establishing max-
imum time durations for each phase of the initialization and having each PMM use the entire duration. The
PIUs enforce these phase boundaries and thus guarantee that each PMM leaves its initialization on precisely
the same clock cycle.

1.1.2 CPU Accesses to Memory

The PIU controls CPU reads and writes to the local memory, the internal PIU registers, and global mem-
ory.

1.1.2.1 To Local Memory

The PIU implements error-correction code (ECC) encoding and decoding and supports atomic memory
operations, byte accesses, and 2-, 3-, and 4-word block transfers.

On writes to the local memory, the PIU encodes the 32-bit data words using a single-error-correction
(7,4) Hamming code. The 56-bit encoded words are stored such that each 7-bit word (there are eight of
these) is spread among the seven 256Kx8-bit memory chips. On reads, the decoding process implemented
within the PIU masks all faults affecting one of the seven bits of each code word. Entire memory-chip fail-
ures are thus handled.

Atomic memory accesses, the atomic add and atomic modify instructions of the Intel 80960 instruction
set, are supported by the PIU. During these operations the PIU prevents the C_Bus from gaining access to
the local memory. The PIU uses the lock signal provided by the CPU during these operations.

Byte accesses to the local memory are supported by the PIU. Reads are implemented in a straightfor-
ward way. Writes are implemented using a read-modify-write operation that reencodes the entire 32-bit data
word.

Byte accesses of up to four words are also supported to implement cache refilling within the CPU.

1.12.2 To Internal Register File

The PIU supports atomic accesses and 2-, 3-, and 4-word block transfers to and from its internal regis-
ters within the R_Port. Byte accesses are not supported, nor is the data encoded before being stored. Table
1.1 shows the R_Port register definitions.

The Interrupt Control Register (ICR) supports memory-mapped interrupts to the local processor. The
register is divided into four fields. The first two contain the interrupt settings and mask bits for int0_, in bits
0 through 7 and 8 through 15, respectively. A logic-1 in both a set location and the associated mask location
signifies an active interrupt, which if enabled (external to the R_Port) will generate an active int0_ signal to
the processor. Bits 16 through 31 are usedin a corresponding way for int3_.

The ICR contents are updated in two different ways. A write to register address 0 implements a logical-
AND operation on the new value and the old register contents, while a write to address 1 implements a log-
jcal-OR operation. These two operations implement the resetting and setting of register bits, respectively. A
read to either of these addresses returns the current register value.

The General Control Register (GCR) and Communication Control Register (CCR) provide control bits
to the internal PIU and the C_Bus, respectively. The GCR bits include the start-up software counter enable
(used for the acceptance test discussed earlier), R_Port counter configuration control bits, and parity-error-
latch reset bits. The CCR contains the message header for the next C_Bus transaction. Either of these reg-
isters can be written to or read from by the local processor.

The Status Register (SR) holds status information produced internally to the PIU. This includes start-
up error-detection status, local-memory and C_Bus error-detection status, start-up controller state, and the
last C_Bus slave-status report. This register is read-only.

Register addresses 8 through 11 are used to load new counter values to the 32-bit counters O through 3,
respectively. These load values can be read by the local processor using the same addresses. Register
addresses 12 through 15 are read-only locations containing the current value of the four counters.

The four counters are combined to form two 64-bit counters which can be configured in a variety of
ways via control bits in the GCR. The choices include enabled vs. disabled counting, enabled vs. disabled
interrupting on overflow, and reloading vs. count-continuation on overflow. Counters 0 and 1 together sup-
port timer interrupts using the int! interrupt line; counters 2 and 3 use int2.

Table 1.1: R_Port Register Definitions.

Register Address Contents
0 Interrupt Control Register (ICR) reset
1 ICR set
2 General Control Register (GCR)
3 Communication Control Register (CCR)
4 Status Register (SR)
8 Counter 0 in
9 Counter 1 in
10 Counter 2 in

Table 1.1: R_Port Register Definitions.

Register Address Contents
11 Counter 3 in
12 Counter 0 out
13 Counter 1 out
14 Counter 2 out
15 Counter 3 out

1.1.2.3 To the C_Bus

The upper 2 GB (gigabytes) of the CPU address space is reserved for external memory and input/output
(/0). The PIU routes CPU memory accesses at these addresses to the C_Bus. It implements the C_Bus pro-
tocol, parity encoding and decoding of data, and support for atomic memory operations, byte transfers, and
2-, 3-, and 4-word block transfers.

The PIU implements the C_Bus communication protocol. This includes all arbitration actions and nec-
essary handshaking.

On writes to the C_Bus the PIU encodes each byte of data using a single-error-detection parity code.
Data arriving over the C_Bus is likewise decoded.

Atomic memory operations are supported by the PIU. Once the PIU acquires the C_Bus it doesn’t relin-
quish it until the atomic operation is completed. The PIU again makes use of the CPU lock signal to know
when to do this.

Byte transfers and 2-, 3-, and 4-word transfers are handled in a straightforward manner.

1.1.3 C_Bus Accesses to Memory

The PIU controls C_Bus reads and writes to local memory and the PIU register file. All of the support
features described earlier for the CPU-initiated transfers are supported here as well. The C_Bus (i.e., the
processing unit of an external block) has priority over the CPU for local memory accesses. The PIU holds
off the local CPU using the CPU hold_ input signal. The PIU supports block transfers as large as 64 words
over the C_Bus.

1.1.4 Timers and Interrupts

As explained above, the PIU contains two 64-bit counters and an interrupt control register The counters
can be used to implement timed interrupts as well as a real-time clock. The timed interrupts can be pro-
grammed to provide either a single-shot interrupt or repeated, periodic interrupts.

The interrupt register is a memory-mapped register used to implement 16 possible interrupts. These
interrupts can be initiated by either the active local processor or an external C_Bus master.

1.2 Specification Overview

Figure 1.3 shows the specification hierarchy developed for the PIU. In constructing this hierarchy much
emphasis was placed on maintaining compatibility with existing formal specification methods, particularly
the generic interpreter theory described in Section 2. The resulting hierarchy reflects this emphasis, partic-
ularly in the lower levels where many of the techniques described in [Win90] are used.

Consistent with established hierarchical specification methods, the levels in the hierarchy of Figure 1.3
are abstractions of the levels below them. Four types of abstraction are used here. Temporal abstraction
relates time at a particular level to the time at lower levels; each unit of time at the higher level corresponds
to multiple time units at the lower level. Data abstraction relates the states of two levels, with the higher
level state being a function (typically a subset) of the state at the lower level. In behavioral abstraction, a
structural description at the lower level, defined using the physical interconnection of components or sub-
systems, is replaced by a purely behavioral description at the higher level. Structural abstraction (or com-
position) combines subsystems defined at one level to form a higher level.

At the bottom of the PIU specification hierarchy is the gate-level description. This is a structural
description derived from the lowest-level detailed design developed by the PIU design team. The chip lay-
out is obtained directly from this level using silicon compilation techniques that are not within the scope of
the specification and subsequent verification tasks. Components at the gate level include individual logic
gates, latches, counters, and finite-state machines. This level is comparable to the electronic block model
(EBM) level of [Win90].

The phase-level behavioral description for each of the five PIU ports is a behavioral abstraction of each
corresponding gate level. This level is comparable to the phase level used in [Win90]. The specification at
this level consists of an instruction set containing two instructions, one for phase A and one for phase B,
defining the state transition and outputs generated during each phase.

The clock-level behavioral description for the PIU ports uses a time interval of an entire clock period
rather than a single phase (temporal abstraction), and the state is a subset of the phase-level state (data
abstraction). Only a single instruction is defined for each port, specifying the state change and outputs of the
port occurring during its execution. This level is comparable to the microinstruction level of [Win90] and
elsewhere except that only a subset of the chip design (i.e., a port) is described here rather than the entire
chip.

PIU transaction-level (behavior)
PIU clock-level (behavior)
PIU port-level (structure)

L I | I

P-Port M-Port R-Port C-Port SU-Cont| clock-level (behavior)
P-Port M-Port R-Port C-Port SU-Cont| phase-level (behavior)
P-Port M-Port R-Port C-Port SU-Cont| gate-level (structure)

Figure 1.3: PIU Specification Hierarchy.

The port-level structure is a structural composition of the five individual clock-level port specifications.
The port composition is based on the established method of forming a logical conjunction of the individual
port descriptions.

The clock-level behavioral description for the PIU is a behavioral abstraction of the structural descrip-
tion at the PIU port level, providing a clock-level description for the entire chip. This level is comparable to
the microinstruction level referred to above, an important difference being in the approach to instruction
decoding: here no decoding is used, resulting in a single instruction compared to the many microinstruc-
tions in [Win90], for example.

The transaction-style behavioral description is the topmost level in the PIU hierarchy providing a con-
cise and easy-to-understand definition of PIU behavior. Whereas the lower five levels of the hierarchy rep-
resent the PIU design and were developed bottom-up, the transaction level specifies the PIU requirements.
In this role as human interface the transaction level must address modeling problems not faced at the lower
levels.

Three important problems unique to the transaction level are: (1) independently-initiated concurrent
behavior, (2) multiple sequential outputs, and (3) shared state. Because of these, hardware modeling
approaches used within the HOL community to date are inadequate for transaction-level modeling. Section
4 describes these problems in more detail and explains our progress in developing a transaction-level model
suitable for the PIU.

2 Generic Interpreter Theory

This section describes the generic interpreter theory used to model portions of the PIU. The work
described in this section grew out of efforts to model microprocessors and thus the model discusses micro-
processor specification and verification heavily. We have discovered that the model is useful for describing
other hardware devices as well, and, in particular, we have found it to be well-suited for specifying the PIU
design. The generic interpreter theory is described more fully in [Win90].

2.1 Introduction.

The formal specification and verification of microprocessors has received much attention. Indeed, sev-
eral verified microprocessors have been presented in the literature. This section presents an abstract model
that describes a large class of hardware devices, including microprocessors and other devices with a single
major control point. The model is called a generic interpreter and the theory contains important theorems
about it.

We have formalized the interpreter model in the HOL theorem proving system [Gor88,Gog88]. The for-
mal model can be instantiated inside the system and serves as a framework for writing device specifications
and verifying them. This framework clearly states what definitions must be made to specify the device and
which lemmas must be established to complete the verification. After the user has defined the components
of the hardware device model and proven the necessary lemmas about them, individual theorems from the
abstract theory can be instantiated to provide concrete theorems about the actual device being verified.

The model that we have defined has proven useful in specifying and verifying several microprocessors
[Win90,Ar090]. The model is not, however, limited to microprocessors only. Recent work has shown that
the model can be used in specifying other hardware devices as well [Win91]. Because the model was orig-
inally developed for microprocessor modeling, however, much of the terminology in the model (e.g.,
instruction set) is influenced by microprocessor terminology. We have kept it even though more general ter-
minology might be better in some cases.

The model we have defined differs from other formal descriptions of state machines (such as Loewen-
stein’s model in [Low89]) by including the data and temporal abstractions that are important in specifying
and verifying microprocessors in the formalization.

2.2 Formal Microprocessor Modeling.

There have been numerous efforts to formally model microprocessors. At the time this project was
begun the best known of these included Jeff Joyce’s Tamarack microprocessor [Joy89], Warren Hunt’s
FM8501 and FM9001 microprocessors [Hun87, Hun92], and Avra Cohn’s verification of VIPER [Coh88].
Tamarack is a simple microprocessor with only 8 instructions. FM8501 is larger (roughly the size of a PDP-
11), but has not been implemented; FM9001 is a 32-bit version that is being verified and implemented.
VIPER is the first microprocessor intended for commercial use where formal verification was used. How-
ever, the verification has not been completed because of the large case explosion that occurred and the size
of the proofs in each of the cases. Recent work on hierarchical specification [Win88], coupled with the work
presented here, has overcome this problem; microprocessors significantly more complicated than VIPER
are now within the realm of formal treatment.

2.2.1 Microprocessor Specification.

The specifications for the microprocessors mentioned above appear very different on the surface; in fact,
the specifications of FM8501 and FM9001 are even in a different language. On closer inspection, however,

each uses the same implicit behavioral model. In general, the model uses a state transition system to describe
the microprocessor. A microprocessor specification has four important parts:

1. A representation of the state, S.

2. A set of state transition functions, J, denoting the behavior of the individual instructions of the micro-
processor. Each of these functions takes the state defined in step (1) as an argument and returns the state
updated in some meaningful way.

3. A selection function, N, that selects a function from the set J according to the current state.

4. A predicate, I, relating the state at time ¢+1 to the state at time ¢ by means of J and N.

In some cases, the individual state transition functions, J, and the selection function, N, are combined
to form one large state transition function. Also, a functional specification would use a function for part (4)
instead of a predicate. The general form, however, is the same.

2.2.2 Microprocessor Verification.

Just as most microprocessor specifications are similar, so too are their verifications. After the micropro-
cessor has been specified, we can verify that a machine description, M, implements the specification, J, for
some state, s, by showing:

Vse Se (M(s) =1(s))

That is, we show that / has the same effect on the state, s, as M does. This theorem is typically shown by
case analysis on the instructions in J by establishing the following lemma:

V(ieJ)oM(s) = (VteC(j,s,) = (s(t+n) =j(s(1))))
where C is a predicate expressing the conditions for instruction j's selection, s(z) is the state at time ¢, and n,

is the number of cycles that it takes to execute j. This lemma says that if an instruction j is selected, then
applying j to the current state yields the state that results by letting the implementing interpreter M run for
n, cycles. We call this lemma the instruction correctness lemma.

2.3 A Formal Model of Interpreters.

An interpreter is a computing structure with one control point. One of the many available instructions
is chosen at this control point based on the current state and inputs. The state is then processed by this
instruction and the cycle begins again.

In general, a microprocessor specification can consist of many abstraction levels. Every level except the
bottom specification (which is the structural specification) can be modeled as an interpreter. A hierarchical
approach to specification and verification has been shown to significantly reduce the amount of effort
required to complete the verification of a microprocessor [Win88].

Figure 2.1 shows a generalized hierarchy of interpreters. Note that each communicates with the state
and environment, although most interpreters see only an abstraction of the state. An interpreter sends
instructions to the interpreter below it and communicates (mostly timing) information to the interpreter
above it.

2.3.1 Abstract Theories.

A theory is a set of types, definitions, constants, axioms and parent theories. Logics are extended 'by
defining new theories. An abstract theory is parameterized so that some of the types and constants defined

10

ENVIRONEMENT
STATE

Figure 2.1: A Hierarchy of Interpreters.

in the theory are undefined inside the theory except for their syntax and a loose algebraic specification of
their semantics. Group theory is an example of an abstract theory. The multiplication operator is undefined
except for its syntax (a binary operator ontype »-group”) and a loose semantics given by the axioms of group
theory.

Abstract theories are useful because they provide proofs about abstract structures that can be used to
reason about specific instances of the structure. In groups, for example, after showing that addition over the
integers satisfies the axioms of group theory, we can use the theorems from group theory to reason about
addition on the integers.

An abstract theory consists of three parts:

1. An abstract representation of the uninterpreted constants and types in the theory. The abstract repre-
sentation contains a set of abstract operations and a set of abstract objects. (These are sometimes called
uninterpreted constants and uninterpreted types.)

2. A setof theory obligations defining relationships between members of the abstract representation. Inside
the theory, the obligations represent axiomatic knowledge concerning the abstract representation. Out-
side the theory, the obligations represent the criteria that a concrete representation must meet if it is to
be used to instantiate the abstract theory.

3. A collection of abstract theorems. The theorems are generally based on the theory obligations and can
stand alone only after the theory obligations have been met.

To instantiate an abstract theory, the concrete representation must meet the syntactic requirements of the
abstract representation as well as the semantic requirements of the theory obligations. If the syntactic and
semantic requirements are met, then the instantiation provides a collection of concrete theorems about the
new representation.

There are several specification and verification systems that support abstract theories. Some, such as
OBJ [Gog88] and EHDM [SRI88], offer explicit support. HOL, the verification environment used for the

11

research reported here, does not explicitly support abstract theories; however, HOL's metalanguage, ML,
combined with higher—order logic, provides a framework for implementing abstract theories [Win90a] in a
manner that does not degrade the trustworthiness of the theorem prover.

2.3.2 Temporal Abstraction

Before we can discuss the formal model, we must describe the temporal abstraction that it uses. The
development follows that of [Joy89,Mel88,Her88].

In general, different levels in the interpreter hierarchy will have different views of time. We use tempo-
ral abstraction to produce a function that maps time at one level to time at another. Figure 2.2 shows a tem-
poral abstraction function F. The circles represent clock ticks. The number of clock ticks required at the
implementing level to produce one clock tick at the implemented level is irregular.

The predicate, G, is true whenever there is a valid abstraction from the lower level to the upper level.
We can define a generic temporal abstraction function in terms of G. In a microprocessor specification, G is
usually a predicate indicating when the lower level interpreter is at the beginning of its cycle—a condition
that is easy to test.

We will use a function Temp_Abs as our temporal abstraction function. The function is defined recur-
sively so that (Temp_Abs g 0) is the first time that the predicate g is true and (Temp_Abs g (n+1)) is the next
time after time n when g is true. We will not develop the details of the temporal abstraction function here,
but refer the interested reader to the references given above and [Win90].

2.3.3 The Abstract Representation

We specify the abstract representation by defining a list of abstract objects and operations. Table 2.1
shows the operations and their types. We must emphasize that the representation is abstract and, therefore,
the objects and operations have no definitions. The descriptions that follow are what we intend for the rep-
resentation to mean. The representation is purely syntactic, however.

The following abstract types are used in the representation.
* :*state represents the state.

* *env represents the environment.

O O o O
¢ T T F T F T F F T T

Figure 2.2: The Temporal Abstraction Functions F and G.

12

Table 2.1: The abstract functions and their types for the generic interpreter model.

Operation Type
instructions | ":*key->(*state->*env->*state)"
select " *state->*env-> *key"
output “: *key->(*state-> *env->*out)"”
substate ":¥state'->*state”
subenv ":*eny’->*env"”
subout “r*out’->*out
Impl "(time'-> *state’)->(time’->*env’)->bool"
count " *state’->*env’->*key'”
start " *key’"

:*out represents the outputs.

*key is type containing all of the keys. Keys are used to select instructions. For example, the opcodes
form the keys in the top-level specification of a microprocessor.

We add primes to the types to indicate that they represent state, time, etc. at the implementing rather than
the implemented level of the hierarchy.

The abstract representation can be broken into two parts. The first contains those operations concerned

with the interpreter.

instructions is the instruction set. The set is represented by a function from a key to a state transition
function.

select picks a key based on the present state and environment.

output is a set of output functions. The set is represented by a function from a key to a function that pro-
duces output for a given state and environment.

substate is the state abstraction function for the interpreter. The substate function is used to hide the vis-
ible state in the interpreter.

subenv is the environment abstraction.
subout is the output abstraction.

Because we want to prove correctness results about the interpreter, we must have an implementation.

The second part of the abstract representation contains three functions that provide the necessary abstract
definitions for the implementation.

Impl is the abstract implementation. We could have chosen to make this function more concrete, but do-
ing so would have required that every implementation have some pre-chosen structure. Thus, we say
nothing about it except to define its type.

count is analogous to select except it operates at the implementing level.

start denotes the beginning of the implementation clock cycle.

13

We will ensure that count periodically reaches start as part of the synchronization process.
2.3.4 The Theory Obligations

Proving that the implementation implies the interpreter definition is typically done by case analysis on
the instructions; we show that when the conditions for an instruction’s selection are right, the instruction is
implied by the implementation. We call this the instruction correctness lemma.

The predicate INSTRUCTION_CORRECT expresses the conditions that we require in the instruction
correctness lemma: !

I-d,fINSTRUCI‘ION_CORRECT gis' e inst =
(Impl gi s’ €’) ==>

(!t:time’.
let st = (substate gi (s’t)) in
let et = (subenv gi (e’t)) in

let k (select gi (st) (et)) in
((inst = (instructions gi k)) A (ft) ==>
?c¢. Next f(tt+c) A (inst (st) (et) = (s(t+c))))

let ft -——- (count gi (s’t) (e’t) = (start gi)) in

INSTRUCTION_CORRECT operates on a single instruction inst. The implementation implies that for
every time, 1, if inst is selected and the implementation’s counter is at the beginning, then there is a time ¢
cycles in the future such that applying the instruction to the current state yields the same state change that
the implementation does in ¢ cycles.

INSTRUCTION_CORRECT is a good example of the kind of information that is captured in the generic
model. Previous microprocessor verifications created this lemma, or one similar to it, in a largely ad hoc
manner.

Because our model has outputs as well as inputs (the environment), we must also assume something
about the output in order to establish correctness. The predicate OUTPUT_CORRECT expresses the condi-
tions that we require in the output correctness lemma:

I-MOUTPUT_CORRECT gis'ep k =
(Impl gi s’ e’ p’) ==>
(It:time’.
let st = (substate gi (s’t)) in
let et = (subenv gi (e’t)) in
let pt = (subout gi (p’t)) in
let ft = (count gi (s't) (e’'t) = (start gi)) in
((count gi (s't) (e't) = (start gi)) A
(select gi (st (et) = k) ==>
(pt = (output gi k) (st) (e1))))

1. The HOL code in this report is shown using the HOL convention of representing universal quantification,
existential quantification, implication, conjunction, disjunction, and negation by the symbols !, 2, =>,AV,
and ~, respectively. The form “e1 => 2 | 3" represents “if el then e2 else e3.”

14

Using INSTRUCTION_CORRECT and OUTPUT_CORRECT we can define the theory obligations in our
model. The theory obligations are given as a predicate on an abstract representation gi:

I-MGI gi =
(!s’e’p’k. INSTRUCTION_CORRECT gi s’ e’ p’ k) A
(!s’e’p’k. OUTPUT_CORRECT gi s’ e’ p’ k)
The predicate says that every instruction in the instruction set satisfies the predicate INSTRUCTION_COR-
RECT and every output function satisfies the conditions set forth in OUTPUT_CORRECT.

2.3.5 Abstract Theorems

Using the abstract representation and the theory obligations, many useful theorem pertaining to inter-
preters can be established on the generic structure.

2.3.5.1 Defining the Interpreter

One of the important parts of the collection of abstract theorems is the definition of a generic interpreter.
The definition is based on functions from the abstract representation.

I-deleI'ERP gisep =

It:time.

let k = (select gi (st) (et)) in

(s(t+1) = (instructions gi k) (st) (e1) A

(pt = (output gi k (st) (e1))
The specification of an interpreter is a predicate relating the contents of the state stream at time #+1 to the
contents of the state stream at time . The relationship is defined using the functions from the abstract rep-
resentation. The definition also uses the currently selected output function to denote the current output.

2.35.2 Induction on Interpreters

The definition of the interpreter sets up a relation between the state at f and t+1. Sometimes it is useful
to have a more explicit statement regarding induction. The following theorem, which follows from the def-
inition of the interpreter given in Section 2.3.5.1, defines induction on an interpreter:

I-Q. INTERP gi s e p ==>
(Q (s0) A
!t. let inst = (instructions gi (select gi (st) (et)) in
Q (st) ==> Q (inst (s1) (e1))))==>
It. Q (st)
The theorem states that for any arbitrary predicate on states, Q, if Q is true of the state at time 0, and when
Q is true of the state at time ¢, it follows that it’s also true of the state returned by the current instruction,
then Q is true of every state.

We note that even though this theorem looks fairly simple, and indeed is quite easy to show in the
generic theory, the theorem will eventually be instantiated with the entire denotational description of the
semantics of a particular instruction set and will be quite involved. The same admonition holds for each of
the theorems and definitions presented in this section.

15

2.3.5.3 The Implementation is Live

Using the theory obligations, we can prove that the implementation is live. By live we mean that if the
implementation starts at the beginning of its cycle, then there is a time in the future when the implementation
will be at the beginning of its cycle again. That is, we show that the device will not go into an infinite loop.

I- Impl gi s" e’ ==
(!t. (count gi (s't) (e't) = start gi ==
(?n. Next (\r. count gi (s’t) (e’t) = start gi) (1, t+n)))

Next P (1, 12) says that 12 is the next time after £ when P is true.

2.3.54 The Correctness Statement

The correctness result can be proven from the definition of the interpreter and the theory obligations:

- let st = (substate gi (s't)) and
et = (subenv gi (e’t)) and
pt = (subout gi (p’t)) and
ft = (count gi (s’t) (e’t) = (start gi)) in

let abs = (Temp_ABSY) in

(Impl gi s’ ¢’ p’) A

(?t. ft) ==>

(INTERP gi) (s o abs) (e o abs) (p o abs)

In the correctness statement, s’, ¢’, and p’ are the state, environment, and output streams in the imple-
mentation. The terms (s o abs), (e o abs), and (e o abs) are the state, environment, and output streams for
the interpreter defined in the model. They are data and temporal abstractions of s°, e’, and p’. The correctness
statement says that if the implementation is valid on its state, environment, and output streams and there is

a time when the implementing clock is at the beginning of its cycle, then the interpreter is valid on its state
and environment streams.

16

2.35.5 Composing Interpreters Hierarchically

In [Win88], we show that hierarchical decomposition makes the verification of large microprocessors
practical. To support this decomposition, the generic interpreter model contains a theorem about composing
generic interpreters hierarchically.

\-(INTERP gi 1 = Impl gi 2) A
(select gi 1 = count gi 2) ==>
1(s" :time->*state”) (e :time->*env”) (p " :time-> *out”).
let s't = (substate gi 1 (s”t)) and
e’'t =(subenv gi 1 (e”t)) and
p’t = (subout gi 1 (p”t) and

ft = (count gi 1 (s”t) (e”t) = start gi 1) in
let st = (substate gi 2 (s't)) and

et = (subenv gi 2 (e’t)) and

pt = (subout gi 2 (p’t)) and

gt = (select gi 1 (s’t) (e’t) = start gi 2) in

let absl = (Temp_ABS f) in

let abs2 = absl o (Temp_ABS (g o absl)) in
(Impl gi 1 s” e” p”) A

(7t ft) ==>

(?t. (g 0 absl) t) ==>

INTERP gi 2 (s o abs2) (e o abs2) (p o abs2)

This theorem states that if gi] and gi 2 are generic interpreters and they are connected such that the inter-
preter definition of gi I is the implementation of gi 2 then the implementation of gi / implies the interpret-
er definition of gi 2.

This important theorem captures the temporal and data abstraction required to compose two interpreters.
This theorem is a good example of the utility of abstract theories in hardware verification. This theorem is
tedious to prove and were it not contained in the abstract theory, it would have to be proven numerous times
in the course of a single microprocessor verification.

2.4 Parallel Composition

Our eventual goal is to use the work that is described in Section 4 to show how a set of interpreters can
be composed with each other in parallel. This goal is significantly different from the theorem described in
Section 2.3.5.5. In hierarchical composition, the implementation of one interpreter model is the interpreter
from the other. In parallel composition, the two interpreters share a behavioral specification (i.e., interpreter
definition), and the implementation is two or more interpreters linked together. The interpreters can be
linked by shared state, common input, common output, and connections between the interpreters’ inputs and
outputs.

Undoubtedly, as our theory of composition matures, the generic interpreter theory will change. The
advantage of generic theories is that these changes can be made more easily in the generic theory than they
can in a specific definition of a VLSI device.

2.5 Conclusion

This section has described the generic interpreter model. The theory isolates the temporal and data
abstractions of the proof inside the abstract theory. The theory also contains several important theorems

17

about the abstract representation. These theorems are true of every instantiation of the abstract representa-
tion that meets the theory obligations.
The theory has many important benefits:

 The generic model structures the proof by stating explicitly which definitions must be made (one for each
of the members of the abstract representation) and which lemmas need to be proven about these defini-
tions (namely, the theory obligation). This is a substantial improvement over previous microprocessor
verifications where these decisions were made on an ad hoc basis.

» The generic model insulates users of the model from complex proofs about the data and temporal ab-
stractions. These proofs are done once and then made available to the user by instantiation.

» The use of a generic interpreter model for specifying and verifying microprocessors provides a method-
ological approach. Making specification and verification methodological is an important step in turning
what has been primarily a research activity into an engineering activity.

18

3 Design Specification

This section describes the lower five levels of the PIU specification hierarchy (Figure 1.3), which con-
stitute the design specification. The discussion proceeds bottom-up, beginning with the gate-level specifi-
cation of individual ports and finishing up with the clock-level specification for the entire PIU.

The gate-level specification, described in Section 3.1, corresponds to the lowest-level design imple-
mented by the PIU design team. Below this level a silicon compiler provides the translation to the mask lay-
out used for chip fabrication. The specification effort described in this report is not concerned with this
translation, which currently falls within the domain of the tool vendor — Mentor Graphics Corporation.

A set of detailed-design schematics was produced by the design team as part of the design process.
Unfortunately they are not suitable for this report because, in printed form, many are too small to be under-
stood. Because of this we created our own set of schematics, included in Section 3.1, to accompany the HOL
specifications located within the appendices. These schematics are provided as aids to understanding only,
since, due to time constraints in developing them, they are not complete nor are they fully accurate.

Sections 3.2 through 3.5 describe, in order, the phase-level specifications for the five ports, the clock-
level specifications for the five ports, the port-level structural specification, and the clock-level specification
for the entire PIU.

3.1 Gate-Level Structure

The gate-level specifications for the five PIU ports use the structural definition style described in
[Gor86] and in use throughout the HOL community. Within each port, each component, or block, has its
behavior specified in the form of a predicate; in essence, the block behavior is defined to be the relationship
between inputs, outputs, and internal states that results in the predicate’s being true. The behavior of the
composition of these blocks is defined as the logical conjunction of the individual block predicates. Exis-
tentially quantified variables are used for the block interconnections internal to the port-level composition.

The gate-level specification for the PIU is much too unwieldy for a detailed coverage in these pages.
This section therefore provides only a high-level explanation of the PIU’s operation and the HOL models
that represent it. References will be made to the appropriate sections of the appendices for the full details.

We begin in Section 3.1.1 with a description of the components used in the PIU design. Fortunately, the
design uses only a small subset of the component types available in the silicon compiler library, ranging in
complexity from individual logic gates to medium-scale integration (MSI) datapath elements and finite-state
machines. Section 3.1.2 explains how the components are combined to form the five PIU ports.

3.1.1 Component Descriptions

The HOL models for elementary logic gates follow closely the previous work in this area and we say
little about this subject. Modeling sequential logic is more interesting however. Previous sequential models
generally depict even the most elementary components as edge-sensitive devices — a flip-flop perspective.
However, in the design tool used for the PIU, the elementary sequential component is not edge-sensitive,
but rather the level-sensitive latch. Flip-flops are higher order components, consisting of two or more
latches. As explained below, the level-sensitive components used in the PIU require a different modeling
approach.

3.1.1.1 Combinational Logic

The PIU specification requires only a few inverters, AND and OR gates, and buffers from the compo-
nent library. The specification style used for these components follows that of earlier work and is demon-

19

strated in the AND-gate definition shown here. The theory gates_def in Appendix A contains the complete
HOL source for these components.

I- AND3_SPEC abcz = Y ttime. zt=(at)A(bt)A(ct)

3.1.1.2 Latches

The HOL definitions for the latches used in the PIU design are contained in the theory latches_def in
Appendix A. In this section we describe the modeling of a simple D latch as an explanation of the HOL
models.

The following definition of a D latch demonstrates the specification style that we use for PIU latches.
This specification states that the next state g_state (t+1) equals the input d_in ¢if the clock clk_in t is active,
otherwise it equals its current value g_state t. The latch output g_out ¢ equals the new state.

- DLAT_SPEC d_in clk_in q_state q_out =
YV ttime.
(q_state (1+1) = (clk_int) => d_in t1 q_state 1) A
(q_out t = q_state (t+1))

Latch behavior is being expressed here as a finite-state machine (FSM), using both a next-state function
and an output function. Previous latch models in HOL, where the next-state function was also used for out-
puts, failed to faithfully represent true latch behavior. To demonstrate why this is true, Figure 3.1(a) shows
an example circuit where two latches, in series, are clocked with the same phase of the system clock. To our
knowledge, scenarios such as this have not been considered in prior verification work; however, we cannot
dismiss them since they occur within the PIU design. Actually, such combinations might be expected in any
standard-cell approach to chip design where designers work with predefined cells containing a multitude of
latches in fixed locations. There are places in the PIU design, for example, where avoiding these combina-
tions would actually require a more complicated design.

The circuit in Figure 3.1(a) would be incorrectly modeled if latch models containing only the next-state
function of DLAT_SPEC were used. This is demonstrated in the HOL code segments of Figure 3.1(b), defin-
ing first the behavior of the implementation, including the next state of latch L2 derived from this behavior,
followed by a reasonable specification for its required behavior.

The behavior of the implementation (/MP) is a standard composition of individual latch behaviors. The
key observation here is that the value of z at time ¢+ depends on signal values at time -/ (e.g., a (t-1)).
However, as expressed in the model of required behavior (REQ), in reality the circuit of Figure 3.1(a), when
viewing the signal z, behaves no differently than a single A-clocked latch does (aside from propagation
delay differences not expressed at this level). Therefore, the value of z (¢+1) should be a function of signal
values at time t, not ¢-1. Note that for the general case of N series, same-phase latches, we would have z (1+1)
as a function of signals at time (¢-N-1); clearly this is not what we want. We note that the source of this prob-
lem is the level-sensitive nature of latches, which results in cascaded latches behaving very much like com-
binational logic; this is not true of edge-sensitive components such as flip-flops.

Revisiting fundamental FSM definitions suggests ways to solve this latch modeling problem. In autom-
ata theory texts, such as [Koh78], the next-state and present-output of an FSM are said to be functions of

20

Latch L1 Latch L2

phase_A phase_A
(a) Block diagram.

IMP = (b(t+1) = phase_At=>atlbt) A
(z(t+1) = phase_ At=>btlz1)

o (derived)
[J
z(t+1) = phase_At=>

(phase_A (t-1)=> a(t-1) 1 b (+-1)) |
zt

REQ = (b(t+l1)=phase At=>atlbt) A
(z(t+1)=phase_At=>atizl)

(b) Relationship between next z and current values, using standard latch model.

Figure 3.1: Two Series Latches Clocked by the Same Phase.

the present-state and present-inputs. Figure 3.2(a) is a pictoral representation of this where the present and
next times are denoted by and ¢+, respectively. Figure 3.2(b) shows an alternative approach where the
inputs and outputs use the time index of the next-state.

In models of synchronous systems such as FSMs, lower-level issues such as propagation delay are not
represented. For a latch, whose time interval is a single clock phase, the present- and next-states correspond
to the states at exactly the beginning and end of the phase, respectively. All present-inputs can similarly be
assumed to arrive at either the phase beginning or end. Present-outputs are defined in terms of the present-
state and -inputs, and are assumed to be transmitted with zero delay. Of course, in reality an input is a
present-input only if it satisfies the setup and hold times of the latch with respect to the falling edge (the end)
of the clock phase; state changes and output transmissions have propagation delay as well.

With this view of FSM behavior, it is clear that for a formal latch model to be composable in all clocking
scenarios it must use the same time index for both its present-inputs and -outputs. This is necessary to permit
signal propagation through series-connected, same-phase latches in zero time. In a latch model using only
a single FSM next-state function, this function must play the role of the output function as well; thus, the
time index of the current-output is ¢+ 1. If the standard interval representation of Figure 3.2(a) is used, then
the input and output time indexes don’t match, resulting in the problem explained above. Two obvious solu-

21

state t state (t+1) state t state (1+1)
o o @ o
l] | i
- — - >
inputs t inputs (1+1)
outputs t outputs (1+1)
(a) Standard approach. (b) Alternative approach.

Figure 3.2: Interval Representations.

tions are to either use the alternative interval representation of Figure 3.2(b) or else use a second FSM func-
tion for the output, matching its time index to that of the input.

We mention the first solution, using the alternative interval representation, only to point it out as a can-
didate for future consideration. We currently prefer the second approach, expressed in the model
DLAT_SPEC above, since it is consistent with the generic interpreter model described in Section 2.

3.1.1.3 Flip-Flops

HOL definitions for the flip-flops used in the PIU design are contained in the theory ffs_def of Appendix
A. In this section we describe the modeling of a simple D flip-flop as an explanation of the HOL models.

Flip-flops are built out of latches as in the example phase-A-clocked D flip-flop shown in Figure 3.3. In
this model inputs arriving at the flip-flop during phase B are latched on the falling edge of B. The new flip-
flop output is available at the beginning of phase A and remains stable for an entire clock period. From an
edge-triggered point of view this flip-flop is seen to be clocked on the rising edge of phase A.

It is an interesting side note that in discussions with the PIU designers it became clear that their view of
flip-flop behavior is somewhat different from the perspective that we employ. For example, if asked to
choose which of the two latches in the flip-flop model of Figure 3.3 represents the true state of the flip-flop,
the designers say latch L2 and we say L]. This difference is easy to understand given the modeling environ-
ments that each group uses, and it turns out that the FSM-based specification approach embodied in Figure
3.3(b) provides a perspective to help reconcile these two viewpoints.

The PIU designers view latch L2 as the important one because it is the only one directly visible to them
during simulation. All flip-flop changes occur on the rising edge of L2’s clock (phase A) and the flip-flop is
stable otherwise. From this perspective the purpose of latch L1 is only to ensure the edge-triggered nature
of the flip-flop by restricting possible flip-flop output values to those inputs arriving before phase A rises.

As formal verifiers we view LI as the important latch because it is clocked by phase B, the last phase in
the clock cycle. This is important when we make the jump in abstraction from the phase level to the clock
level and wish to eliminate one of the two state variables associated with these latches (data abstraction). As
a general rule it is best to keep the latch with the most up-to-date state among the candidates for elimination,
otherwise updated state will not be carried forward to the next clock cycle when the model is symbolically
executed. From this perspective latch L1 contains the essential state of the flip-flop of Figure 3.3 and L2
serves only to control the time at which the new flip-flop state is made externally visible.

At the clock level of abstraction we model the state of a flip-flop as the contents of its phase-B latch and

22

Latch L/ Latch L2

stateB stateA
din —D Q D Q}— gq_out

«

phase_A
(a) Functional block diagram.

|- DFF_SPEC d_in phase_A stateA stateB q_out =
V t:time.
(stateB (t+1) = ~(phase_At)=>d_int|stateB1t) A
(stateA (t+1) = (phase_At) => stateB t | stateA 1) A
(q_outt = stateA (t+1))

(b) HOL representation.

Figure 33: Example D Flip-Flop Constructed With Latches.

embed the behavior of the phase-A latch within the flip-flop output. This FSM-based approach is also com-
patible with the PTU designer perspective if we take a commonly-used black box view of fundamental com-
ponents such as flip-flops. In such an approach, only the inputs and outputs of these components are visible
to an outside observer during simulation — the internal state is hidden.

3.1.1.4 Counters

Counters are implemented as flip-flops surrounded by increment/decrement and selection logic. All of
the counters used in the PIU design are functionally of the form of the example in Figure 3.4 — increment-
ing is performed within the output stage rather than the input stage. The HOL source for all PIU counters is
contained in the theory counters_def of Appendix A.

The inputs Id_in and up_in control the operation of this counter. If ld_in is active then the input d_in is
loaded into the counter, otherwise the current value, incremented or nonincremented according to the up_in
input, is reloaded. The input up_in also controls the value output by the counter.

3.1.1.5 CTR Datapath Block

The PIU R_Port contains two 64-bit counters implemented using a total of four 32-bit CTR datapath
blocks. The CTR datapath blocks are themselves built from lower-level components of the compiler library,
but we treat them as primitives here since they are used directly in the R_Port specification. The HOL source
for the CTR datapath block is contained in the theory datapaths_def of Appendix A.

Figure 3.5 shows the functionality of the CTR datapath block. It behaves much like the counter of the
previous section, but with additional features such as provisions for carry-in and carry-out and multiple out-

put ports.

23

stateB stateA
d_in b Q D Q —— g_out
PaX
+1
id_in clock_B clock_A up_in
Figure 3.4: Functional Block Diagram of a Counter.
Bus_A 7 —
phase_A cir_rd cor_rd phase_A
L3 __] I_ L1l
Zx_G_lQ D D Q A\
Va\ A
' 17 L phase_B
phase_B carry D couUT
L1 7
Bus B—D Q ’]_D Q—» + [phase_B
’|\ A ' L8 L9 [LIO
D Q D Q
phase_A A Al A
cir wr phase_B phase_B phase_A phase_B
L5
CE D Q >
L2
c_ld —|D phase_A
N\
1 6
phase B CIN —D Q
phase_A

Figure 3.5: Functional Block Diagram of the CTR Datapath Block.

24

Of the 11 latches in this model, the one best representing the counter value is L4, holding the value ctr.
Latch L2 contains the load-input, controlling whether a new value is loaded or the updated counter value is
reloaded. Latches LI and L8 hold these two values, respectively. Latches L5 and L6 hold values controlling
the incrementer itself. For the top half of the 64-bit counters, L6 contains the carry-in from the lower half.
Latch L7 holds the carry-out from the counter. Latches L9 and L10 implement a flip-flop holding the updated
counter value for possible output. The two latches L3 and L1/ control the writing of latch values onto Bus_A,
from the input side and output side, respectively.

3.1.1.6 ICR Datapath Block

The R_Port contains a single Interrupt Control Register (ICR) implementing memory-mapped inter-
rupts for the local processor. The HOL source for this block is located in the theory datapaths_def of Appen-
dix A.

Figure 3.6 shows a functional block diagram of this block. The true ICR value is located in the flip-flop
implemented by latches L4 and LS. The flip-flop implemented by L/ and L2 holds the ICR value fed back
using Bus_A. Latch L3 holds a mask-adjustment value that resets or sets individual mask bits according to
the value of input icr_select. Latch L6 controls the writing of values onto Bus_A either as part of an ICR
read by an external processor or the feedback mentioned above.

Bus A
phase_A
7 L—
D Q
T
phase_B
Ll] L2
D Q 78 B %]
A 0 D Q
AL
phase_A
phase_A
phase_B :7
icr_wr_feedback —— phase_B
L3 D_ icr 1d —1
Bus B —D Q‘—
FAN
icr_select ICR
phase_B

Figure 3.6: Functional Block Diagram of the ICR Datapath Block.

25

3.1.1.7 CR Datapath Block

The R_Port contains two control registers (CRs), called GCR (for General Control Register) and CCR
(for Communications Control Register). The HOL source for the CR datapath block is located in the theory
datapaths_def of Appendix A.

Figure 3.7 shows a functional block diagram of the CR datapath block. In comparison with the previous
two datapath blocks, this one is relatively simple, containing a single latch (L) to hold a loaded 32-bit value
and a latch (L2) to control the writing of this value onto Bus_A. The second output port, always enabled,
provides the CR bits to the PIU subsystems controlled by the control register.

Bus_A
o
phase_A
|
Z L2
Q DI— cr_rd
Ll s
Bus B —D Q——4 |
A phase_B
phase_B
cr_wr CR

Figure 3.7: Functional Block Diagram of the CR Datapath Block.

3.1.1.8 SR Datapath Block

The R_Port contains a single Status Register (SR) that may be read by an external processor. The HOL
source for the SR datapath block is located with the previous datapath blocks in the theory datapaths_def of
Appendix A.

Figures 3.8 shows a functional block diagram of this datapath block. Inputs provided by several sub-
systems of the PIU are collected and stored in latch LJ; latch L2 controls the writing onto Bus_A.

3.1.1.9 Finite-State Machines

Finite-state machine (FSM) modules are used in every PIU port to control the sequencing of port oper-
ations. Each FSM module has the structure shown in Figure 3.9. FSM inputs are loaded during phase B, as
is the fed back present-state. Combinational logic implements the next-state and output functions, whose
results are loaded into the output latches during phase A for transmission to the external system.

26

Bus_ A

phase_ A ——

srrd —D Q

phase_B

phase_B

sror_ld ——

SR_IN

Figure 3.8: Functional Block Diagram for the SR Datapath Block.

3.1.2 Block Diagram Descriptions

To simplify the PIU specification task, we augmented the set of compiler-library components just
described with several logic-blocks built of more-primitive components. Two guidelines were followed in
constructing these superblocks. First, instances of multilevel logic were converted into equivalent behav-
joral descriptions. Secondly, memory elements holding multibit words were sometimes grouped into single
blocks to facilitate modeling with our array-access functions. Together, these steps greatly decreased the
number of components in the gate-level description of the PIU with a risk of introducing modeling error that

we consider to be low.

state
D 0 Combinational
inputs Logic outputs
—> —>
A A
phase_B phase_A

Figure 3.9: Functional Block Diagram for Finite-State Machines.

27

Creating superblocks also has the beneficial side effect of simplifying our description of the five PIU
ports. Even so, the complexity of the resulting specification remains formidable and a fully-detatiled pic-
toral description of the PIU structure is beyond the scope of this report. The HOL descriptions in Appendix
B should be considered the gate-level specification for the five PIU ports; the descriptions in this section are
intended only to provide insight so that the HOL is more easily understood. Although considerable care has
gone into the construction of these descriptions, they are not complete and contain minor inaccuracies as
well,

The ports are described in the order: P_Port, M_Port, R_Port, C_Port, and SU_Cont, in the following
five subsections.

3.1.2.1 P_Port Structure

The top-level block diagram of the P_Port, shown in Figure 3.10, describes the partitioning of the
P_Port into two subblocks: datapath and controller. These are further broken down in the two figures that
follow Figure 3.10.

L_Bus [™ I_Bus

ﬁ P_Port Controller @

Figure 3.10: P_Port Top-Level Block Diagram.

The P_Port Datapath, shown in Figure 3.11, consists mainly of latches to hold L_Bus-sourced informa-
tion and tristate buffers for driving the L_Bus and I_Bus. Read from top to bottom, the latch contents
are: 32-bit data, the 26 least significant address bits, the most significant address bit, the 4-bit byte enables,
and the write/read bit, all sourced by the local processor. All control signals are provided by the P_Port Con-
troller.

The P_Port Controller is shown in Figure 3.12. The FSM block implements the I_Bus protocol and sup-
ports atomic memory accesses by the local processor. The other blocks support the FSM by encoding infor-
mation received from the two adjacent buses and by handling some of the control-signal generation.

The Req_Inputs block implements the setting and resetting of the P_rgt latch, based on new-transaction
requests and transaction-completed messages received from the L_Bus and I_Bus, respectively. An active
high P_rqt indicates a pending or in-progress L_Bus transaction.

The Ctr_Logic block keeps track of the number of words remaining in the current transaction so that the
slave port can be notified when the last word is being accessed.

28

(to L_Bus) <—§ 32, (from I_Bus)

Data_Latches
P_wr_data 32 -
— P_addr 26
(from L_Bus)
-] P_destl]

(to I_Bus)

P_be_ { 4

o 10
i

Figure 3.11: Block Diagram of P_Port Datapath.

IR

L)

(to/from P_Port Controller)

The Lock_Inputs block and associated latches provide support for handling atomic operations. The
P_lock_latch holds the most recent valid lock signal provided by the local processor. The FSM implements
memory locking by locking the I_Bus.

3.1.2.2 M_Port Structure

The top-level structure of the M_Port is shown in Figure 3.13. It has the same form as the P_Port, con-
taining a single datapath block and a single controller block. These are described further in the two figures
following Figure 3.13.

Figure 3.14 shows the structure of the M_Port datapath. On the left is the interface to the M_Bus. The
EDAC_Decode_Logic block performs a Hamming decode on the 56-bit data received from the M_Bus,
while the Enc_Out_Logic block encodes 32-bit data for writing onto the M_Bus.

The Read_Latches block stores the 32-bit decoded data word read from memory. The Mux_Out_Logic
block selects bytes from this stored value or else the word currently on the I_Bus for writing onto the
M_Bus. The stored bytes are written back as part of a read-modify-write implementation of byte-write oper-
ations.

29

(to/from Datapath)

Lt
Y P_rgt Scat_Logic
:> Req_Inputs ~ ! ‘ a
Ctr_Logic
-
FSM
(toffrom L_Bus)
P_lock_
—

A el

al

A || LOCk_Inputs

—11 ¥

—

(to/from I_Bus)

misc logic :>

|

e ———

Figure 3.12: Block Diagram of the P_Port Controller.

I_Bus

Datapath

A

-
(—

M_Port Controller

—
—

™ M_Bus

Figure 3.13: M_Port Top-Level Block Diagram.

30

(to/from M_Port Controller)

|t

Detect_Enable_Logic

Edac_en_ {)o l

EDAC _Decode_Logic + 32, | N
56 ———®»{ Read_Latches - Pe —
—_/_——.’
32,

(toffrom M_Bus) (toffrom I_Bus)

Enc_Out_Logic y -
56 32 | Mux_Our_Logic |
B

Figure 3.14: Block Diagram of the M_Port Datapath.

The M_Port controller is shown in Figure 3.15. The left side of the figure is the I_Bus interface. The
SE_Logic block determines whether a memory access is to SRAM memory or to EEPROM memory, based
on the memory address. It drives the appropriate chip-select signal based on this determination.

The WR_Logic block determines whether a memory access is a read or write and provides this informa-
tion to the rest of the M_Port. The Addr_Ctr block and BE_Logic block store the memory address and byte
enables, respectively, for the word being accessed.

The Rdy_Logic, Ctr_Logic, and Srdy_Logic blocks together implement most of the I_Bus protocol for
the M_Port, which consists mainly of controlling the value of the I_srdy_ signal transmitted back to the
I_Bus master. The 2-bit counter in Ctr_Logic implements variable wait-states for the SRAM and EEPROM
memory.

The FSM block provides high-level control of the memory interface. It sequences through a series of
states, depending on the type of memory transaction, and provides output signals mainly used by the Ena-
ble_Logic block to implement the control of the M_Port datapath. The FSM also directly controls bus
enabling for the I_Bus.

The Memparity_In_Logic block and its associated latch store the error status for memory accesses. The
output MB_parity is transmitted to the R_Port where it is stored in the Status Register.

31

(to M_Bus)
to/from Datapath
T N (to/fro path)
- SE_Logic FSM > Enable_Logic :>
— |
> WR_Logic »-
Rdy_Logic M_rdy
> g AR - Srdy_Logic|
Addr_Ctr T -
— - l_$
Ctr_Logic
—- 1 /
lT <___ A e Memparity_In_Logic -
BE_Logic
—
l
-
(to/from I_Bus) ¥ M_pariy

Figure 3.15: Block Diagram of the M_Port Controller.

3.1.2.3 R_Port Structure

The R_Port top-level block diagram is shown in Figure 3.16. Of the five major blocks shown there three
are described further in the figures that follow Figure 3.16. The Register File block is not broken down fur-
ther since it consists entirely of the datapath blocks described in Sections 3.1.1.5 through 3.1.1.8. There are
four CTR blocks implementing two 64-bit counters, one ICR block, two CR blocks implementing the GCR
and CCR, and one SR block.

The Bus Interface block represents the multiple tristate buffers that potentially drive the Bus_A node of
the R_Port. This block is similar to the approach used to model buses described in [Joy90].

The Register File Controller is shown in Figure 3.17. The Wr_Lat block determines whether a register
access is a read or write and provides this information to the rest of the R_Port. The FSM block is a simple
3-state state machine providing high-level control of the register accesses and I_Bus interface. The RW_Sigs
block encodes the FSM output to implement this control.

The Reg_Sel_Ctr block contains a 4-bit counter holding the register number for the current access. The
R_srdy_del_ latch value is used to increment the counter on multiword accesses. The Reg_File_C1l block

32

:') Register File Controller :: N Register File

(toffrom I_Bus)

!

Bus Interface

-
<

Timer Interrupt Block

Int]
.—>
Int2
_.>

(to CPU)

Int0_
—

Register Interrupt Block | Int3_

3

Figure 3.16: R_Port Top-Level Block Diagram

decodes the register address to create most of the control signals needed by the register file.

The Timer Interrupt Block is shown in Figure 3.18. It consists of two identical sub-blocks, each imple-

menting the interrupt logic for one of the two 64-bit counters.

The latches R_c01_cout and R_c23_cout hold the carry-out values of the two counters. The Ctr_Int_-
Logic blocks use this information and several bits of the GCR to determine whether the timer interrupts
should be enabled or not. The two interrupt outputs, Int] and Inf2, are active-high signals sent to the local

Processor.

)

ﬂ Wr Lat |R-wr
-

FSM __:_> RW_Sigs >
—l_’ (to Register File)
—

.S V.N

(to/from I_Bus) R_srdy_del_
A A‘
Reg_Sel_Ctr i

8. Reg_File_Ctl ﬂ

Figure 3.17: Block Diagram of Register File Controller.

33

> Ctr_Int_Logic R int] en
R_c01_cout ™ A o
— L — I
A ALA
Intl
(from Register File)
> Ctr_Int_Logic R int2 en
R_c23 cout aat DN -
— A P Ala —
>—> Int2
Disable_int DD

Figure 3.18: Block Diagram of the Timer Interrupt Block.

Figure 3.19 shows the structure of the Register Interrupt Block. The And_Tree block receives the 32-bit
ICR value, consisting of 16 interrupt-set bits and 16 mask bits. Half of these bits are dedicated to interrupt
Int0_ and half to Int3_. If an interrupt-set bit and its associated mask bit are simultaneously active-high, then
the appropriate latch, R_int0_en or R_int3_en, is loaded with a logic-1.

R_int0_en
R_int0_dis
= A g Ala
(from Register File)| And_Tree | | L | Reg_Int_Logic | = Int0_
— .
R_int3_en
i > — Int3_
U
A, ALAIR int3 dis

Figure 3.19: Block Diagram of the Register Interrupt Block.

3.1.24 C_Port Structure

The C_Port top-level structure is shown in Figure 3.20, minus the complicated external interfaces. The
C_Port controller is divided into two subunits because of its large size. Because we could not identify a log-
ical partitioning, we simply divided the existing schematic down the center, creating a left half and a right
half, controllers A and B, respectively. .

Figure 3.21 shows the C_Port datapath block diagram. The right side of the figure shows the interface

34

Datapath

Controller A

——

Controller B

Figure 3.20: C_Port Top-Level Block Diagram.

(to C_Port Controller)

—

Grant_Logi

(from off-chip) |

(to/from I_Bus)

—>

Addressed_Logic

D_Writes_Logic

Disable_writes

Parity_Signal_Inputs

Al

CB_parity

CCR
| Write_Logi
324' 1> ~HoBte -
BE_Out_Logic —
A 324 432 (toffrom C_Port
* | Controller)

CB_In_Latches : CB_Out_Logic c___

3

Parity_Decode_Logic

18

(to/from C_Bus)

Figure 3.21: Block Diagram of the C_Port Datapath.

35

between the I_Bus and the C_Bus. The Parity_Decode_Logic block decodes the 18-bit parity-encoded data
received from the C_Bus data lines. It outputs 16-bit data and a single-bit error-detection fiag.

The CB_In_Latches block stores the messages received from the C_Bus. This information consists of
transaction header information, address, and data. The BE_Out_Logic block outputs the byte enables onto
the I_Bus. The CB_Our_Logic block parity-encodes data for transmission onto the C_Bus.

On the left side of the figure, the Grant_Logic block implements the C_Bus arbitration. The
Addressed_Logic block determines whether this PIU is being addressed by the C_Bus master. The
D_Writes_Logic block determines whether this PIU is an active channel or not; if not then it prohibits mem-
ory accesses using the Disable_writes output. The Parity_Signal_Inputs block controls the setting and reset-
ting of the C_parity latch, whose output, CB_parity, is transmitted to the R_Port SR.

Part (A) of the C_Port controller is shown in Figure 3.22. The two state machines: Master FSM and
Slave FSM, implement the C_Bus protocol from the master and slave perspectives, respectively. The Srdy
FSM controls the enabling of I_Bus slave signals transmitted by the C_Port.

The Last_Logic block and the latches holding C_lock_in_ and C_last_in_ preprocess the I_lock_ and
I_last_1_Bus signals received from the P_Port. The Hold_Logic block and the latches holding C_last_out_
and C_hold_ process the I_last_and I_hold__ signals transmitted over the I_Bus. The Cout_Sel_Logic block
determines which 16-bit word is to be transmitted over the C_Bus and provides selection signals to the data-
path to control this.

CIlkD
ClkA C_last_out
Srdy FSM B St Hold_Logic >
(from I_Bus) Y AlA - 8 :> A
::> C_hold_
A > >
-
Slave FSM
(from C_Bus, I_Bus, & Pt (to C_Bus, I_Bus, &
C_Port Datapath) C_Port Datapath)
1 Master FSM >
C_Tock_in_ T > AV J\},
[— Cout_Sel_Logic
“ o i
Last_Logic < C_last_in_

Figure 3.22: Block Diagram of the C_Port Controller (Part A).

36

Figure 3.23 shows part (B) of the C_Port controller. The DP_Ctls PLA block converts output signals
from both the master and slave state machines of part (A) into control signals for the datapath. The latches
at the output of this block, as well as the Cout_I_Le_Logic block, provide further processing for the datap-
ath, primarily to control the enabling of the datapath latches.

The CBss_Out_Logic block and the CBms_Out_Logic block determine the master-status and slave-sta-
tus, respectively, for C_Bus transactions. The Srdy_In_Logic block decodes the slave-status input from the
C_Bus to determine whether the slave is ready for the next transaction.

The Rdy_Logic block, the ISrdy_Out_Logic block, and intervening latches implement the generation
and transmission of the I_srdy_ signal to the I_Bus. The Jad_En_Logic block controls the enabling for
address and data transmissions over the I_Bus.

The Pe_Cnt_Logic block controls the enabling of parity-error counting within the datapath.

=
Rdy_Logic —I>

ISrdy_Out_Logic

(from C_Bus, I_Bus, & (to C_Bus, I_Bus, &
C_Port Controller Part A) Pe_Cnt_Logic C_Port Datapath)
—
Iad_En_Logic
>
CBss_Out_Logic
e
Srdy_In_Logic
1 Cout_I_Le_Logic
| DA
A
DNALA >
Ly\ DP_Ctls PLA —__l C_mrdy_del_
CBms_Out_Logic
L —ﬁ

EEaR!

Figure 3.23: Block Diagram of the C_Port Controller (Part B).

37

3.1.25 SU_Cont Structure

The SU_Cont structure is divided into the two subsections shown in Figures 3.24 and 3.25. The first
figure shows mainly the blocks that interact with the other ports within the PIU, while the second shows
mainly those that interface with the local processor.

The FSM block in Figure 3.24 controls the initialization process. It sequences through states that suc-
cessively reset and test CPUO, reset and test CPU1, then select and initialize the active mission processor.
It uses the output of the 18-bit counter block, via the Muxes block, to control its time duration in many of
its states. The Delay_In block processes the input signals for the counter block.

The Dis_Int_Out block determines and then transmits reset signals and various disable signals to the
other ports.

The blocks Scnt_In, Scnt_Inl, the 3-bit counter block, and the intervening latches support the software-
based acceptance test of each processor. The output S_Soft_Cnt contains the number of instances that the
local processor writes a specific pattern to the General Control Register in the R_Port. If not equal to a spe-
cific bit pattern, this counter value indicates a failed acceptance test.

(to PIU ports) ﬂ
— __p| Dis_Int_Out
D
FSM 3
-l
—
S_delay D\l({y - (to/from CPU Interface Block)
Muxes counter eay_in
— . (——
(from PIU ports & CPU)
S_Soft_Cn:
Scnt_In —w Scnt_Inl —{ counter -
e T

Figure 3.24: Block Diagram of the Startup Controller PIU-Port Interface.

38

Figure 3.25 shows the SU_Cont blocks that interact mainly with the local processor. The Cpu_Ok block
and the Fail_In block together control the loading of four latches holding failure-status information. The
Cpu_Ok block uses the S_Soft_Cnt signal just discussed and the Failure_ signals from the local processors.
The latch outputs are transmitted to the R_Port where they are stored in the Status Register.

The Bad_Cpu_In block controls the loading of two latches holding processed failure status of the two
local processors. These latch outputs are used, together with FSM block outputs, in the misc logic block to
control the loading of two other latches. These latch outputs are used to maintain the local processors in a
reset or nonreset state, as appropriate.

3.2 Port Phase-Level Behavior

The phase-level specification for each PIU port is a behavioral abstraction of the corresponding gate-
level structure. Each port is defined in terms of a 2-instruction instruction set, corresponding to the behavior
occurring during each of the two clock phases. Each instruction is itself represented using two functions,
defining the next-state transition and the output. Consistent with the generic interpreter model, the states and
outputs for the ports are represented as n-tuples.

(toffrom PIU-Port Interface Block) (toffrom CPU)
___> Bad_Cpu_lIn R misc logic |—] S_reset_cpuQ
> ,
* A S_reset_cpul
S_cpu_hist

] | _—D_‘A >

4 _-GZI_ S_pmm_fail .
A

B :> FailIn - S_cpu0_fail .

T S_cpul_fail .

ﬁ

Cpu_Ok

__> S_piu_fail
—
? ‘ Failure0_

Failurel _
vy

(to PIU ports)

Figure 3.25: Block Diagram of the Startup Controller CPU Interface.

39

Appendix C contains the HOL phase-level specification. The ports are presented in the order: P Port,
M Port, R Port, C Port, and SU_Cont, in Sections C.1 through C.5, respectively. Within each section the
next-state function for phase A is presented first, followed by the output function for phase A, and the next-
state and output functions for phase B.

3.3 Port Clock-Level Behavior

The clock-level specification for each PIU port is both a temporal abstraction and a data abstraction of
the corresponding phase-level specification. Here the unit of time is an entire 2-phase clock period, rather
than a single phase. Data abstraction is achieved by eliminating state variables representing certain latch val-
ues. Usually the eliminated latches are part of edge-triggered devices, such as flip-flops and counters, and
are clocked on phase A.

In contrast to the phase level, where the choice of instruction set is dictated by the number of clock
phases, the choice at the clock level is much more subjective. For example, only a single instruction is really
necessary to capture the behavior of the ports. This would provide the most concise description of behavior
at the cost of providing the least understandable description. At the opposite extreme, the ports could be
specified using an instruction set with millions of very simple and easy-to-understand instructions. How-
ever, verifying such a large instruction set would be infeasible, as would the mere goal of trying to print their
descriptions.

Instruction sets provide the human interface to state-transition system behavior. Their existence implies
an instruction selection capability such as that provided by the select function of the generic interpreter
model. Often this functionality is referred to as instruction decoding, and the proper choice of this function
(i.e., of the instruction set itself) is important for any specification attempting to provide a human-under-
standable yet concise description of behavior.

By their very nature, microprocessor instruction sets at the macro and microcode levels must be
straightforward to specify since they provide the programming interface for the microprocessor However,
since the PIU was never intended to be programmed, nor is it microcoded, (clock-level) instruction set ele-
gance received little consideration from the PIU design team. As a result, a clock-level instruction set for
each port in which each instruction specifies a single well-defined action would require many tens of indi-
vidual port-level instructions. The composition of these port-level instructions would require many tens or
hundreds of PIU-level instructions, requiring many thousands of pages to even print; verifying these instruc-
tions would be an enormous undertaking.

Based on these considerations, we have abandoned our earlier efforts to define human-friendly instruc-
tion sets at the clock level. Instead we have opted for practicality and we specify clock-level behavior using
a single instruction for each port. Each port instruction has two parts — a next-state function and an output
function, defining the next state and output under all operating conditions. Sections D.1 through D.5 of
Appendix D contain the HOL specification for this level.

3.4 PIU Port-Level Structure

The PIU port-level structure is a structural composition of the five clock-level port specifications. We
have used the standard approach to structural composition in which component-defining predicates are log-
ically ANDed to form the composite behavior. Existentially-quantified variables are used for component
outputs remaining internal to the composed system. Appendix E contains the HOL specification for this
level.

3.5 PIU Clock-Level Behavior

Appendix F contains the HOL specification for the PIU clock-level behavior. As with the individual
ports, the clock-level behavior of the entire PIU is represented using only a single instruction consisting of
a next-state function and an output function.

41

4 Models for Transaction Specification

This section describes the work undertaken to determine the most appropriate model for specifying the
top level of the Processor Interface Unit (PIU).

4.1 Introduction.

To complete the specification of the PIU, a top-level specification of the required behavior of the PIU
must be written. This behavioral model should describe the actions of the device with respect to its environ-
ment and internal state.

The PIU is essentially a bus controller. However, there are some differences: the PIU contains special
features for fault tolerance and dependability, such as an encoding of words sent to memory for error cor-
rection and the ability to select between two processors depending on the results of a power—on self test.

Our goal is to model each of the concurrent portions of the PIU individually using an interpreter (as dis-
cussed in Section 2) and to show that a composition of these interpreters entails the behavior of a more
abstract model. At first, we believed that the composite behavior of the PIU could be described using the
interpreter model as well. However, we found that the high-level behavior of a device such as the PIU is
not easily modeled as an interpreter.

An interpreter is a computational device with one major control point. That is, one of a set of instruc-
tions is chosen based on the current state and that instruction is used to process the state; following the exe-
cution of the instruction, the process begins anew. While interpreters describe many interesting devices, the
model is too restrictive to describe the PIU.

There are at least three aspects of the intended behavior of the PIU that make it difficult to describe using
existing techniques:

 The feature of a bus controller that causes the greatest difficulty in using an interpreter model to describe
it is its concurrency—a bus controller does many things at once. For example, most bus controllers con-
tain timers that, in conjunction with an on-board interrupt controller, can interrupt the CPU. These timers
operate concurrently with other portions of the bus controller, such as memory and network operations.

A typical top-level specification of the PIU might include the memory subsystem because this corre-
sponds to the CPU’s view of the PIU (see the next section for a more complete discussion of this). This
shared state between the PIU and other devices makes description using an interpreter model difficult.

« The outputs of the PIU do not correspond on a one—to—one basis with the inputs; there is a many—to—one
relationship between the outputs and inputs. The interpreter model assumes that the output at a particular
time is described by a function on the current state and environment. The PIU may make several outputs
in sequence because of a single input request (a block memory read request is a good example).

In exploring possible models for use in describing the behavior of hardware devices such as bus con-
trollers, we were concerned with the following issues:

+ The notation and semantics should be amenable to embedding and automation in an automatic theorem
prover such as HOL.

» The model and notation should be sufficiently general to allow a large number of interesting devices to
be described.

* The model and notation should be sufficiently defined to allow a rich set of theorems to be proven about
it in isolation of any particular application.

42

Bus Controller | HE8

Figure 4.1: The view from the CPU.
4.2 Abstract Views

Before exploring specific notations for describing the PIU, we consider some of the features of the PIU
that make its behavioral specification interesting. These abstract views contribute to the understanding nec-
essary to specify its operation. In general, the behavior of the PIU can be looked on as a combination of
behaviors from different viewpoints: that of the CPU, the network, and the memory. In order to simplify the
discussion that follows, we will ignore certain behaviors of the PIU. In particular, we will assume that the
start—up processor is finished and that the PIU is in steady-state operation.

Figure 4.1 shows the abstract view of the PIU from the CPU. In this view, the CPU sees the combination
of the PIU, Network, and Memory (PNM) as a monolithic address space. Similarly, interrupt signals can be
viewed as coming to the CPU from this abstract object rather than the individual components.

In the CPU view, when the CPU issues a read request to the PNM, the PNM responds with the informa-
tion located at the virtual address given by the CPU. The actual location of the requested data, that is,
whether it resides in local memory, remote memory, or a register in the PIU, is abstracted away. Similarly,
when the CPU issues a write request, it does not know whether the request will update local memory, remote
memory, or a register in the PIU.

Of course, inside the CPU view, the PIU either responds to requests from the CPU itself, or by issuing
other requests to the network or the memory. Specifying what requests the PIU makes to other devices in
response to a request from the CPU can be viewed as a specification of the implementation of the PNM.
Another way of viewing these requests is that they will be specified in the other views of the system. The
latter is the method we employ.

Figure 4.2 shows the view from the memory. The memory can be viewed as a processor, albeit a simple
one. In the memory view, the PTU/CPU/Network abstraction (PCN) makes memory read and write requests
and the memory responds appropriately. Because the memory device is simple, it makes no requests of the
PCN itself, but only responds to requests.

The fact that some of these requests originated with the CPU and others with other hosts on the network
is abstracted away. Inside the PCN abstraction, of course, the requests to the memory are originating with
the CPU or the network and after some processing by the PIU (such as error correction encoding and decod-
ing) are being passed on. The relationship between requests from the CPU and the network do not necessar-

43

Figure 4.2: View from the Memory.

ily correspond on a one—~to-one basis with the requests sent to the memory. A single request from the CPU
may result in many requests to the memory.

Figure 4.3 shows the view of the PIU from the perspective of the network. In this view, the PIU, mem-
ory, and CPU are abstracted into a single object (PMC). This is, perhaps, the most complex abstraction. The
network makes requests of the PMC and the PMC makes requests of the network. These requests are pri-
marily memory read and write requests.

The problem with the views presented in Figures 4.1-4.3 is that the abstractions include the behavior of
the CPU, network, and memory. Our goal is to specify the behavior of the PIU independent of the devices
to which it is connected. Each of these views can be thought of as a specification of the abstract interface to
one portion of the PIU. As Figure 4.4 shows, we can superimpose the specifications on one another. The
union of the PNM, PCN, and PMC specify the behavior of the entire unit. Their intersection, denoted by the
shaded area, is meant to represent the behavior that is specific to the PIU.

Figure 4.3: View from the Network.

Bus Controller

Figure 4.4: Abstraction Views for the PIU.

While we feel that this is a good way to think about the behavior of the PIU in abstract, we are not con-
vinced that it is an appropriate method of specifying the behavior of the PIU. Before such a decision can be
made, we will need to do further work. Primarily, we would like to attempt to model the specification of a
small device in this way and evaluate the specification for readability and ease of use in verification.

4.3 Representing Transaction Systems

The last section discussed the specification of the abstract interfaces of the PIU, but ignored the details
about how those specifications would be written. We talked abstractly about transactions between the PIU
and other system components, but the question remains of how to represent those transactions.

One of the difficulties of representing the PIU was touched upon in the last section. If we were only
faced with the problem of representing a transaction system such as the PNM (PIU, network, and memory
abstraction), the problem would be much simpler. The model would consist of a set of response functions
associated with incoming transactions. For each incoming transaction, the response function would update
the state of the system and generate an outgoing response based on the current value of the state.

In the model shown in Figure 4.4, the PIU is not a transaction system, but a transaction translation sys-
tem. The PIU cannot generate a response until it issues requests of its own and receives answers to those
requests. In addition, there may be state internal to the PIU that needs to be updated and affects the response.

The ultimate goal of the work presented in this report is not to just specify the PIU, but to verify that
specification against a lower—level specification. This goal creates several criteria that limit our choice of
notation for the behavioral specification:

1. The notation must be capable of specifying concurrent operations of the PIU.

2. The notation must be capable of describing the PIU independent of the other devices to which it might
be attached (i.e., the state of those devices should not be a necessary part of the PIU specification.

3. The notation must allow a many—to—one relationship between outputs and inputs.

4. The final specification must be concise and readable. We would like to be able to look at the specification
and capture some overall feeling for what it means. Without this level of abstraction, it is very difficult
to determine whether the specification is correct or not.

5. The notation must have, or be amenable to building, a collection of theorems about it so that we can rea-
son about the specification and its relationship to the lower-level implementations.

45

. The notation must be mechanizable and, since our verification system of choice is HOL, be representable
in the HOL logic.
There are a number of candidate notations:

. We could attempt to represent the transactions in HOL without resorting to any specific notation (i.e.,
raw HOL). We consider the generic interpreter theory (GIT) to be a representation of one kind of com-
putational object in raw HOL. The use of raw HOL to represent transactions implies that we would build
a model similar to the GIT, but capturing the abstractions envisioned in the previous section.

The advantages of this approach are that the model is likely to be tailored to the structure of the PIU more
closely than with the other approaches. This means that the meaning of the specification may be clearer.
Our experience with the GIT has shown us that abstract models built in HOL can be a fruitful avenue of
exploration because they yield a great deal of information to aid in understanding the structure at hand.
These models lend a structure to the specification and verification task that is usually not there otherwise;
the model states explicitly what definitions must be made to complete the specification and which lem-
mas need to be proven to complete the verification.

The disadvantages of using raw HOL are that the model of a transaction system would have to be built
and useful theorems about this model would have to be proven. This task is usually more easily done
when at least one concrete specification of the type being modeled has been built. This prototype speci-
fication serves to guide the model development.

. We could use temporal logic. The primary benefit of temporal logic is that transactions entail describing
and reasoning about actions that will occur in the future because of something that occurs now. For ex-
ample, when the CPU sends a memory read transaction to the PIU, this creates an obligation in the PIU
to respond to the request in the future. In between receiving the request and answering it, the PIU would
engage in a number of transactions with the network, memory, or both.

The primary advantage of temporal logic is that there has been much work in the area and it has been
successfully used to model hardware devices in other specification efforts.

The disadvantage is that it is as general as any other general purpose logic and thus, while expressive,
would not serve to structure the specification.

. We could use a well-developed process algebra [Hen88, Hoa85, Mil89a, Mil89b, Mil89c]. Milner
[Mil89a) presents a calculus of communicating concurrent processes called CCS; CCS is perhaps the
best known process algebra. In process algebras, the specification concentrates on the communication
between processes. The specification of the PIU would entail a specification of the events that occur and
the events that follow from them.

There are several advantages to using a process algebra. Process algebras are well understood and there
are several popular ones from which to choose. This implies that there are also a great many theories
developed and ready for use in a proof effort. To the extent that deduction rules and theorems about the
process algebra can be mechanized in HOL, the job of proving properties of the specification will be
eased. Indeed, several of the most popular process algebras have been mechanized in HOL and are avail-
able for use [Sch91, Cam89, Mel91]. These mechanizations are in various states, so the amount of effort
in using one is difficult to predict.

The disadvantages are similar to those of temporal logics. We fear that the specification will be largely
free—form because of the generality of the specification language and thus not structure the problem
enough to make the specification and verification methodical.

. We could use a formal model of a coordination language such as LINDA [But91] to model the actions
of the system. In this model, the PIU, CPU, memory, and network are modeled as communicating in a

46

common area called tuple space. Figure 4.5 shows how this would look. In this model, the PIU writes to
and reads from tuple space along with the other devices in the system. We can think of tuple space as an
abstract model of the bus.

We have given considerable thought to this option. The advantage of this option is that the model is gen-
eral and seems to be useful for describing ensembles of coordinated processes. The disadvantage is that
the model is not yet fully formalized (not to mention mechanized), and thus there would be considerable
work before we could begin using the model. Also, we consider this model to be better suited to describ-
ing interactions between system components (how ever they are specified) rather than specifying the
components themselves. Thus, we plan to pursue the formalization of LINDA as a model for composing
specifications, rather than for the specifications themselves.

Overall, we believe that approach (1) has the most promise and meets the criteria that we outlined above.
We do, however, recognize that there is a rich body of research surrounding process algebras and thus will
draw on that wherever possible. Indeed, much as the GIT looks similar to a state machine, but has specific
features designed to specify and verify microprocessors, our transaction model will 1ook similar to existing
process algebras but have features specific to specifying and verifying hardware devices such as the PIU.

4.4 Preliminary Transaction Model Design

This section discusses some preliminary design concepts for the transaction model and gives our devel-
opment plans.

4.4.1 The Transaction Model

Our preliminary transaction model contains elements common to other behavioral models, augmented
by features targeting transaction-level behavior.

Bus Controller

Tuple Space Microprocessor

Figure 4.5: Modeling the Buses in a Computer System using Tuple Space.

47

44.1.1 Ports

A transaction system has a number of ports. The system will receive requests on input ports, send
requests on output ports and communicate data on data ports. Our model will have an alphabet of port names
that can be used to identify ports uniquely.

44.1.2 State

The transaction system will have internal state. This state will be represented in a concrete object as a
tuple, but in the model will be represented abstractly.

4413 Transactions

A transaction will be a triple consisting of an identifying request (taken from an alphabet of possible
requests), a state transition function used to update the state, and a set of port—request function pairs repre-
senting the requests to be sent and the ports to issue them on in response to the transaction request. The
request functions use the current state and values on the data ports to generate a request.

4414 Operation

The model will be driven by request events. The model will consist of a set of transactions for each input
port. The set represents the legal requests on that port. For each input port, the model will, in parallel, read
a request, find the appropriate transaction in its transaction set, and use that transaction to update the state
and issue requests on output ports.

44.2 Development Plan and Comments

We plan to refine the preliminary concepts outlined above as follows:

1. Build a function program in ML of the behavior of the PIU based on the model present above. The pro-
gram will allow us to exercise the model and determine where there are problems. We chose ML since
it is close to the syntax of HOL and will be readily converted into HOL when we are satisfied with it.

2. The program built in the previous step will be specific to the PIU. Our plan is to generalize that program
into an abstract model of transaction systems. We plan to use the results of the experiments in the previ-
ous step to guide a formalization of the general model in HOL. Careful design of the abstraction in the
program will make this task easier. Provided that the results of the experiments yield favorable results,
we do not anticipate formalization to be a large effort.

3. After the model has been formalized, we will need to use it to assess its utility and determine what lem-
mas need to be proven in the abstract theory to enable effective reasoning in the concrete model. There
is no way to determine what these theories will be until the model is used the first time.

4. As the model is used, there will undoubtedly be refinements and extensions. Our experience with the
generic interpreter theory has shown that refining and extending abstract theories is not an arduous task
and anticipate that the same will be true of the new model.

There are several areas that may lead to difficulties:
» The model specifies each input port separately (in the spirit of the abstract views of Section 4.2). There
will have to be coordination between ports due to shared state and output ports. The network port and

the CPU port cannot both issue requests of the memory port simultaneously. This, of course, is also a
restriction in the design. Our problem is not what coordination to perform, since that exists in the PIU

48

already, but how to represent such coordination in the model. We hope that process algebras will give us
some guidance.

« The state is shared and thus may be updated by several ports at once (provided that such updating does
not cause interference). We hope that partial specifications of the changes, represented by predicates
rather than functions, will solve this problem.

« We have ignored the start-up operation of the PIU in our model. We do not believe that this is a problem
since the start-up portion of the chip operates in sequence with the rest of the PIU components. We can
model the start—up portion using an interpreter or transaction system (whichever is more appropriate) and
choose the behavior of the start-up device or the PIU device depending on the current state.

« The PIU has a number of on-board clocks that serve as interrupt timers. We hope that they can be mod-
eled using the concepts presented in this chapter by looking at the external clock port as another input
port with its own set of transactions. One of those transactions will trigger interrupts when the state is
correct.

4.5 Conclusions

Hardware devices such as the PIU present a unique challenge for behavioral specification. They differ
from interpreters primarily in that there is a lJarge amount of course—grained parallelism and they do not con-
trol all the state that they are expected to impact. The overall system (PIU, CPU, network, and memory)
could be modeled as an interpreter, but our desire is to model the PIU independently.

One could just make a laundry list of all the actions that occur and use this as the specification, but the
result would be nearly unreadable for a complex device such as the PIU. Our goal is to create an abstraction
that organizes that behavior so that the specification is readable as well as useful for verification. An unread-
able specification is likely to be wrong.

The research presented here is only a start at the top-level specification of the PIU. We plan the follow-
ing follow-on work:

* The preliminary transaction model must be refined as presented in Section 4.4. The models need to be
tested on the PIU design for utility. Furthermore, the model needs to be formalized in HOL.

« Further work must be done on the composition of our abstract-view approach to behavior. We plan a
further review of the literature for applicable work and a small test study involving a small device with
a simple semantics, but more than one interface, to determine whether composing the abstract behaviors
of the interface is sufficient to represent behavior.

+ We intend to pursue the formalization of the LINDA coordination language since it seems a likely can-
didate model for composing the specification of the PIU with the specifications of the CPU, memory,
and network. This composition would be used to implement a more abstract view of the system. This
work does not have consequences for the top-level specification of the PIU itself but may be important
for future compositions.

49

5 Towards an Integrated Simulation/Verification Environment

This section describes work that links the M hardware description language and the HOL theorem prov-
ing system.

The M hardware description language is part of a simulation and synthesis system from Mentor Graph-
ics Corporation. M is a superset of C with extensions for efficiently describing hardware.

The goal of the work presented in this section was to develop a prototype translator for converting M
descriptions to the equivalent HOL descriptions. We chose to describe the implementation of the PIU in M
for several reasons:

* Engineers working on the project are more comfortable with M descriptions than they are with the logic
of HOL. This is probably because of the similarity of M to imperative programming languages in which
most engineers are schooled.

* M descriptions can be executed. This allows the specifications to be animated, providing a form of sim-
ulation. Engineers can observe the operation of the specification in an effort to judge its correctness.

The translator described here is a profotype tool. We have used the AWK programming language
[Aho88] to construct a parser for the subset of M actually used in the description of the PIU. In addition to
parsing M, the tool generates HOL statements corresponding to the input. The generation is done on an ad
hoc basis—no attempt has been made to describe the semantics of M formally.

The translator between M and HOL is important because a hand translation would be tedious and error
prone. Using a machine translation, even one done informally, provides consistent translations. When an
error in a translation is found, the translator can be corrected and the other translations redone to ensure that
the error does not affect other specifications as well.

Future work may include a more formal translator between M and HOL if we determine that M descrip-
tions are useful. The more formal translator would include a parser built into the HOL theorem prover as
well as a formal semantic description. The translation would be done completely within the theorem prover
for added assurance.

The following section will discuss data types developed for use with the model. We will not discuss the
actual translation process in detail, but we will give a simple example of an M description of a finite state
machine and its equivalent form in HOL as produced by the M-to-HOL translator. The HOL definitions are
intended to be used with the generic interpreter model described in Section 2 of this report.

5.1 New Datatypes in HOL

In order to translate M to HOL, we had to make type definitions in HOL that correspond to the types
used in the M language. Two of the more involved type definitions were arrays and n—bit words.

5.1.1 Arrays

Since M is a superset of C, M descriptions make heavy use of arrays. HOL does not have a built-in array
type, but arrays are easy to model in higher—order logic using functions. In general we treat an array of
objects as a function from the natural numbers to the same objects. There are four basic operations on arrays
in M that needed to be defined in HOL: array indexing, array assignment, array subsetting, and subarray
assignment.

Array Indexing. In M, arrays are indexed using bracket notation. In HOL, since arrays are just func-
tions, arrays are indexed by function application. Thus, the M term x/i] is written in HOL as (x i).

Array Assignment. In M, one can use an indexed array variable as the Ivalue in an assignment state-
ment. Logic does not have assignment, so the corresponding definition is functional. We define a function

50

called ALTER that operates on an array, an index, and a value and returns a new array with the value stored
in the array at the index given. All other values are unchanged. Thus, the M term x[i] = y is written (ALTER
x (i) y)in HOL.

Array Subsetting. In M, one can use a subarray in an expression. The HOL function SUBARRAY serves
the same purpose. Thus, the M term x/15:5] (which represents an 11-element array with location 0 holding
the same value as x/5], location 1 holding the same value as x/6], and so on) would be written in HOL as
SUBARRAY x (15,5).

Subarray Assignment. In M, one can assign arrays to portions of an existing array. The HOL function
that does this is called MALTER. The M term x/15:5] = y, would be written in HOL as MALTER x (15,5) y.

The theory of arrays also contains theorems pertaining to these definitions that aid in reasoning about
arrays.

5.1.2 N-Bit Words

N-bit words are defined in M using arrays of booleans. Since we represent arrays as functions, the nat-
ural representation for n—bit words is a function from the natural numbers to the booleans. The theory of n-
bit words that we defined uses this representation and makes definitions that allow the representation to be
usable. There are four kinds of definitions in the n-bit word theory:

1. Definitions that interpret the meaning of an n-bit word.
2. Definitions that create n-bit words with special meanings and give them a name.
3. Definitions that fest an n-bit word for a given property.

4. Definitions that operate on n-bit words.

There are two major functions for interpreting n-bit words: VAL and WORDN. VAL returns the numeric
value of an n—bit word. WORDN returns the n-bit word representing a given number.

There are a number of functions for creating special n-bit words. We will not discuss all of them here,
but only give a few examples. SETN returns an n—bit word with all of its bits set. Similarly, RSTN returns
an n-bit word with all of its bits false.

Examples of test predicates include ONES which tests if all the bits in a word are true and ZEROS which
tests if all the bits in a word are false.

Operations on n-bit words implement common boolean and arithmetic operations on n-bit words. For
example, NOTN returns the n-bit complement of a word. INCN returns the n-bit word resulting from adding
1 (modulo n) to its argument.

So far, the theory does not contain many theorems regarding these definitions and their relationship to
one another. These theorems will be proven as necessary.

5.2 AnExampleinM

The following example shows how a finite state machine is described in M. For brevity, the description
contains only one state, SI; a more realistic description would contain more states, as well as more logic
variables. The example does illustrate some of the features of M that required translation such as logic oper-
ations, array subranging, and the mixture of output and logical statements in the same context.

51

/*****t***

Module: test .M
Authors: David Fura / Phillip Windley
Date: 13MAR92

Example of Mdescription for translation.
**/
#definevl 1
#definev2 2
MODULE test () {

/* State variables:*/

MEMORY LOGIC new_A, A;

MEMORY LOGIC new_B, B;

MEMORY LOGIC new_C([32], C[32];

/* Output variables:*/
ouT I_X{32];

/* Input variables:*/
IN Clock;

IN Rst;

INITIALIZE {}

SIMULATE {
switch (Decode (Clock)) {
case S1l:
new A= (C==V1) |} (C!=V2);
new_B = (C==V1) && new_A;
new C=wr(C,1);

I_X[31] =new_A

? Clock

: Rst;
I_X[30:29] =new _C[1:0]);
I_X[28:0] =new_B

? new_C[28:0]

: I_X[28:0]3;
break;
default:
PRINT (*\nILLEGAL”");
break;

52

5.3 An Examplein HOL

The following code represents the translation of the M code in the last section into HOL by the prototype
translator developed for this project. No substantive changes have been made to the text. Except for inden-
tation and spacing, everything is just as the translator produced it.

letVl=*1";;
let V2 = *27;;

let test_state = ((A, B, C): bool # bool # wordn) ;;
let test_inputs = ((Rst, Clock): bool # bool) ;
let test_outputs = ((I_X): wordn);;

let S1_inst_def = new_definition

(‘sl_inst’,

»31 _inst “test_sgstate “test_inputs =
let new A = (C = (WORDN ~V1)) \/ (~(C = (WORDN "V2)}) in
let new_B = (C = (WORDN ~V1)) /\ new_A in
let new_C=wr(C, (WORDN 1)) in

(new_A, new_B, new_C)*

Yi:

let S1_out_def = new_definition
{*Sl_out’,
*G1 out “test_state “test_inputs =
let new A = (C = (WORDN ~V1)) \/ (~(C = (WORDN "“V2})) in
let new_B = (C = (WORDN ~V1)) /\ new_A in
let new_C =wr{(C, (WORDN 1)) in
let I_X_31_31 =new_A
=> Clock
I Rst in
let I_X_30_29 = (SUBARRAY new_C (1,0)} in
let I_X 28_0 =new_B
=> {SUBARRAY new_C (28,0)})
| (SUBARRAY I_X (28,0)) in
let I_X = (MALTER
(MALTER
(MALTER I_X (31,31) I_X_31_31)
(30,29) I_X_30_29)
(28,0) I_X 28_0) in
(I_X)*
Yis

The translator does a good job of translating most M programs into HOL. The largest limitation on its
use is the simple type analysis that is done. A more thorough type analysis would catch some of the infre-
quent errors, but would have made the translator much more complicated. If a translator based on formal
semantics is constructed, we will overcome this limitation.

53

6 Conclusions

We have completed the design specification for a processor interface unit (PIU) and identified the mod-
eling approach to be used for the requirements specification. Along the way we have made progress in inte-
grating our hardware design and verification environments into a single unified framework.

In performing this task a number of important conclusions have been reached concerning the state-of-
the-art in formal specification, using HOL, with respect to the demands of real-world hardware systems.

The generic interpreter theory, described in Section 2, was shown to work well in a real-world hardware
application. It is clear that this theory, which was initially funded by NASA in a previous task [Win90], fits
applications well beyond the domain of microprocessors for which it was originally used. Our introduction
of outputs into the theory accommodates the composition of subsystems modeled as interpreters, and
enhances the theory’s applicability to future system modeling problems.

Developing the lower five levels of the PIU specification hierarchy, described in Section 3, stretched
existing specification tools and techniques to their limit. To illustrate the size of this modeling problem, the
five phase-level specifications together required equations for 280 state variables and 60 output variables.
The PIU clock-level model caused overflows in three different stacks in the original Lisp implementation
used to build the HOL system.

Because of delays in the PIU design schedule, this task began while the design was still undergoing con-
siderable change. Due to the multiple specification levels and the lack of any significant automation, mod-
ifying our models to reflect these changes required much more effort than that required by the design team,
for example. As a result, the total effort required to complete the design specification was far greater than
necessary. Although previous formal specification and verification efforts appear to have begun only after
the design was finalized, and therefore didn’t face this problem, formal methods will be most useful when
they can be applied before a chip is initially fabricated, and thus before the design is finished as well. Based
on this experience it is clear that major improvements are needed in the tools used to develop future design
specifications.

Perhaps our most significant discovery is that current hardware specification approaches, although suit-
able for the lower levels of the PIU specification hierarchy, are inadequate for the topmost level. This moti-
vated us to investigate the alternative modeling techniques described in Section 4, from which we have
defined a preliminary model for use in formalizing a new transaction-based modeling level.

Although not explicitly part of this task’s description, we have made progress in integrating our hard-
ware design and verification environments to support this and future work. The M-to-HOL translator,
described in Section 5, performs a nearly-complete translation of suitably-formatted M-language models
into HOL. The utility of this tool was demonstrated by our translation of all the port-level behavioral models
from their definitions in M. Although this translation is not based on a formal semantics for M, it provides
a consistent translation capability that is available for use now. It should have an immediate impact on pro-
ductivity for the next chip specification.

The work presented in this report has made a significant contribution to the specification and verification
of real-world devices, but much remains to be done. In particular, this report has outlined the following
tasks:

1. Before work on the specification of the top level can be completed, the formal model of the transaction
level must be completed. Section 4 gives a more detailed plan for completing this work.

2. The specification hierarchy was outlined in Section 3, but this task did not include the completion of the
specification. In particular, the PIU top-level specification remains to be written.

54

In addition to the work that must be completed to finish the specification, there are a number of open

questions that have a direct bearing on how this work is used:

1.

The proofs of correspondence between levels in the specification hierarchy should be completed. The
specification process itself is useful because it gives designers an abstract view of the device and aids
understanding. The detailed examination entailed in the specification is useful for finding errors. How-
ever, the primary benefit of a formal specification is that it is amenable to analysis.

If we intend to use the top-level specification along with specifications of other devices in the PMM,
such as the CPU and memory, to write a specification of the PMM, a model of composition must be de-
veloped. Section 4 recommended a formalization of LINDA as that model, but no work has been done
to explore the feasibility or utility of this method.

The translation between M and HOL is being done in a prototype system written in AWK. A more formal
approach, with more confidence in its correctness, would be to embed M in HOL. This would involve
defining the syntax of M (or a reasonable subset) in HOL and then defining a formal semantics of M for
use in the translation. Because the translation would be done by the verification system itself, we could
have increased confidence that the HOL model corresponded to the M model.

55

7 References

[Aho88] A.V. Aho, B.W. Kerninghan, P.J. Weinberger, The AWK Programming Language, Addison-Wes-
ley, 1988.

[Aro90] Tejkumar Arora, The formal verification of the VIPER microprocessor: EBM to microcode level,
Master’s thesis, University of California, Davis, 1990.

[But91] P. Butcher, “A Behavioral Semantics for Linda-2," Software Engineering Journal, July 1991.

[Cam89] A. J. Camilleri, “Mechanizing CSP Trace Theory in Higher—Order Logic,” Hewlett—Packard Lab-
oratories, Technical Memorandum HPL-ISC-TM-89-131, August 1989.

[Coh88] Avra Cohn, “Correctness properties of the VIPER block model: The second level,” University of
Cambridge Computer Laboratory, Technical Report 134, May 1988.

[SRI88] SRI International Computer Science Laboratory, EHDM Specification and Verification System: Us-
er’s Guide, Version 4.1, 1988.

[Gor86] M. Gordon, “Why Higher—Order Logic is a good Formalism for Specifying and Verifying Hard-
ware,” in G.J. Milne and P.A. Subrahmanyam, editors, Formal Aspects of VLSI Design, North-
Holland, 1986.

[Gor88] Michael J.C. Gordon, “HOL: A proof generating system for higher-order logic,” in G. Birtwistle
and P.A Subrahmanyam, editors, VLS! Specification, Verification, and Synthesis, Kluwer Academ-
ic Publishers, 1988.

[Gog88] J. Goguen and T. Winkler, “Introducing OBJ3,” SRI International, Technical Report SRI-CSL-88-
9, August 1988.

[Hen88] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

(Her88] John Herbert, “Temporal abstraction of digital designs,” in G.J. Milne, editor, The Fusion of Hard-
ware Design and Verification, Proceedings of the IFIP WG 10.2 International Working Confer-
ence, Glasgow, Scotland, North-Holland, 1988.

[Hoa85] C. A. R. Hoare, “Communicating Sequential Processes,” Prentice Hall, 1985.

[Hun87] Warren A. Hunt, Jr., “The mechanical verification of a microprocessor design,” in D. Borrione, ed-
itor, From HDL Descriptions to Guaranteed Correct Circuit Designs, Elsevier Scientific Publish-
ers, 1987.

[Hun92] Warren A. Hunt, Jr., and Bishop Brock, “A Formal HDL and its use in the FM9001 Verification,”
in C.A.R. Hoare and M.J.C. Gordon, editors, Mechanized Reasoning and Hardware Design, Pren-
tice Hall, 1992.

[Joy89] Jeffrey J. Joyce, Multi~Level Verification of Microprocessor-Based Systems, PhD thesis, Universi-
ty of Cambridge, December 1989.

[Koh78) Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hiil, 1978.

[Low89] Paul Loewenstein, “Reasoning about state machines in higher—order logic,” in M. Leeser and G.
Brown, editors, Workshop on Hardware Specification, Verification, and Synthesis: Mathematical
Aspects, Lecture Notes in Computer Science, Springer-Verlag, 1989.

[Mel88] Thomas Melham, “Abstraction mechanisms for hardware verification,” in G. Birtwistle and P. A.
Subrahmanyam, editors, VLS! Specification, Verification and Synthesis, Kluwer Academic Pub-
lishers, 1988.

56

[Mel90] T.E Melham, “Formalizing Abstraction Mechanisms for Hardware Verification in Higher Order
Logic,” University of Cambridge Computer Laboratory, Technical Report 201, August 1990,

[[Mel91] T. F. Melham, “A Mechanized Theory of the n—Calculus in HOL,” in G. Huet, G. Plotkin, and C.
Jones, editors, Second Annual Workshop on Logical Frameworks, Edinburgh, May 1991.

[Mii89a] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[Mil89b] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes, Part 1,” University of Ed-
inburgh, Laboratory for Foundations of Computer Science, Technical Report ECS-LFCS-89-85,
June 1989.

[Mil89c] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes, Part I1,” University of Ed-
inburgh, Laboratory for Foundations of Computer Science, Technical Report ECS—-LFCS-89-86,
June 1989.

[Sch91] E.T. Schubert, K. Levitt, G.C. Cohen,. “Towards Composition of Verified Hardware Devices,”
NASA Contractor Report 187504, November 1991.

[Win88] Phillip J. Windley, “A hierarchical methodology for the verification of microprogrammed micro-
processors,” in Proceedings of the IEEE Symposium on Security and Privacy, May 1990.

[Win90] Phillip J. Windley, The Formal Verification of Generic Interpreters, PhD thesis, University of Cal-
ifornia, Davis, Division of Computer Science, June 1990.

[Win90a] Phillip J. Windley, “A poor man’s implementation of abstract theories,” University of California,
Davis, Division of Computer Science, ” Technical Report CSE-90-06, 1990.

[Win91] Phillip J. Windley, “The formal specification of a high-speed CMOS correlator,” in Proceedings
of the Third Annual IEEE/NASA Symposium on VLSI Design, October 1991.

57

Appendix A ML Source for Component Specifications.

This appendix contains the HOL models for components used in the gate-level specification for the PIU
ports, as well as auxiliary definitions for n-bit words implemented as arrays and array accessing functions.

x,
Y, 4

File: gates_def.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the combinational logic gates used in the gate-level description of the
FTEP PIU, an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%o

system ‘rm gates_def.th‘;;
new_theory ‘gates_def*;;
map new_parent [‘aux_def'];;

let NOT_SPEC = new_definition
(*‘NOT_SPEC’,
“laz.
NOT_SPECaz=
(lt:ttme.zt=~at)"
s

let AND2_SPEC = new_definition
(‘AND2_SPEC*,
“labz.
AND2_SPECabz=
(lttime.zt=atAbt)”
%

let AND3_SPEC = new_definition
(*‘AND3_SPEC’,
“labecz.
AND3_SPECabcz=
(lttime.zt=atAbtAct)”
%

let OR2_SPEC = new_definition
(‘OR2_SPEC®,
“labz.
OR2_SPECabz=
(Ittime.zt=atVbt)’
5

let OR3_SPEC = new_definition

58

(*OR3_SPEC:,
“labcz.
OR3_SPECabcz=
(I ttime.zt=atVbtVct)’
%

let NAND2_SPEC = new_definition
(‘NAND2_SPEC',
“labz.
NAND2_SPECabz=
(I ttime.zt=~(atAbt))”
%5

let NAND3_SPEC = new_definition
(*NAND3_SPEC®,
“labcz.
NAND3_SPECabcz=
(Jttme.zt=~@atAbtAct))”’
)

let BUF_SPEC = new_definition
(‘BUF_SPEC*,
“) (a:time->*) Z .
BUF_SPECaz=
(lttime.zt=at)”
)i

let TRIBUF_SPEC = new_definition
(*“TRIBUF_SPEC",
“] (a:time->*) ez .
TRIBUF_SPECaez=
(I ttime . (et)==>(zt=at))"

X

close_theory();;

%
File: latches_def.ml
Author: (¢) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the latches used in the gate-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%o

system ‘rm latches_def.th*;;
new_theory ‘latches_def*;;

map new_parent [‘aux_def'];;

59

%

One-bit D-latch, no set, no reset, no enable.

let DLAT_SPEC = new_definition
(‘DLAT_SPEC*,
1 (din:time->bool) clk state gout .
DLAT_SPEC din clk state qout =
[t:time .
(state (t+1) = (clk t) => din t | state) A
(qout t = state (t+1))”
)%

a,
70

One-bit D-1atch, with set, no reset, no enable.

let DSLAT_SPEC = new_definition
(‘DSLAT_SPEC’,
“! (din:time->bool) set clk state qout .
DSLAT_SPEC din set clk state gout =
! t:time .
(state (t+1) = (clk t) => ((set t) => T | din t) | state t) A
(qout t = state (t+1))”
|

a,
7

One-bit D-latch, no set, with reset, no enable.

let DRLAT_SPEC = new_definition
(‘DRLAT_SPEC*,
“! (din:time->bool) rst clk state qout .
DRLAT_SPEC din rst clk state gout =
! t:time .
(state (t+1) = (clk t) => ((rst) => F | din t) | state t) A
(qout t = state (t+1))”
%

q,
4

One-bit D-latch, with set, with reset, no enable.

let DSRLAT_SPEC = new_definition

(‘DSRLAT_SPEC®,

“| (din:time->bool) set rst clk state qout .

DSRLAT_SPEC din set rst clk state gout =

1 t:time .
(state (t+1) = (clk t) => ((set t A ~rst t) => T |
(~settArstt)=>F|
(~settA~rstt)=>dint|
ARB)I
state t) A

{gout t = state (t+1))”
%

70

One-bit D-latch, no set, no reset, with enable.

let DELAT_SPEC = new_definition
(‘DELAT_SPEC*,
*| (din:time->bool) en clk state qout .
DELAT_SPEC din en clk state qout =
! t:itime .
(state (t+1) = (clk t Aent) =>din t | state) A
(qout t = state (t+1))”
%3

0

One-bit D-latch, no set, with reset, with enable.

let DRELAT_SPEC = new_definition
(‘DRELAT_SPEC*,
“! (din:time->bool) rst en clk state qout .
DRELAT_SPEC din rst en clk state qout =
! t:time .
(state (t+1) = (clk t Aen t) => ((rst t) => F | din t) | state) A
(qout t = state (t+1))"
%

70

One-bit D-latch, with set, no reset, with enable.

let DSELAT_SPEC = new_definition
(‘DSELAT_SPEC',
“! (din:time->bool) set en clk state qout .
DSELAT_SPEC din set en clk state qout =
1 t:time .
(state (t+1) = (clk t Aen t) => ((set t) => T | din t) | state t) A
(qgout t = state (t+1))”
%

10

One-bit D-latch, with set, with reset, with enable.

let DSRELAT_SPEC = new_definition

(‘DSRELAT_SPEC*,

“! (din:time->bool) set rst en clk state qout .

DSRELAT_SPEC din set rst en clk state qout =

! t:time .
(state (t+1) = (clk t Aen t) => ((set t A ~rst t) => T

(~settArstt)=>F|
(~sett A ~rstt)=>dint|

61

ARB) |
state t) A
(qout t = state (t+1))”
s

-4
70

Multiple-bit D-latch, no set, no reset, no enable.

let DLATn_SPEC = new_definition
(‘DLATn_SPEC‘,
*| (din:time->wordn) clk state qout .
DLATn_SPEC din clk state qout =
! t:time .
(state (t+1) = (clk t) => din t | state) A
(qout t = state (t+1))”
%

close_theory();;

%
File: ffs_def.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the flip-flops used in the gate-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%
system ‘rm ffs_def.th*;;
new_theory ‘ffs_def*;;
map new_parent [‘aux_def'];;
One-bit flip-flop, no set, no reset, no enable.
%

let DFF_SPEC = new_definition

(‘DFF_SPEC",

“1 (din:time->bool) clk state0 statel qout .

DFF_SPEC din clk stateO statel qout =

(! ttime . (stateQ (t+1) = (~clk t) =>din t | state0) A

(statel (t+1) = (clk t) => stateO t | statel t) A
(gout t = statel (t+1)))”

)

[A
0

One-bit flip-flop, no set, with reset, no enable.

62

let DRFF_SPEC = new_definition
(‘DRFF_SPEC’,
“1 (din:time->bool) rst clk state0 state] qout .
DRFF_SPEC din rst clk state0 statel qout =
(! t:time . (state (t+1) = (~clk t) => (st t => F | din t) | stateQ t) A
(statel (t+1) = (clk t) => stateO t| statel t) A
(qout t = statel (t+1)))”

%

o,
70

One-bit flip-flop, with set, no reset, no enable.

tet DSFF_SPEC = new_definition
(*DSFF_SPEC’,
“1 (din:time->bool) set clk stateD statel qout .
DSFF_SPEC din set clk stateQ statel qout =
(! t:time . (stateQ (t+1) = (~clk t) => (sett=>T | din t) | state0 t) A
(state] (t+1) = (clk t) => stateQ t| statel t) A
(qout t = statel (t+1)))”

%

0

One-bit flip-flop, with set, with reset, no enable.

let DRSFF_SPEC = new_definition

(‘DRSFF_SPEC’,

“! (din:time->bool) 1st set clk state0 statel qout .

DRSFF_SPEC din rst set clk stateO statel qout =

(! t:time . ((~clk t A set t A ~rst t) => state0 (t+1)=T) A

((~clk t A ~set t Arst t) ==> state0 (t+1) = A
((clk t V ~set t A ~rst t) => stateQ (t+1) = stateO t) A
(statel (t+1) = (clk t) => state0 t| statel t) A
(qout t = statel (t+1)))”

%

%

One-bit flip-flop, no set, no reset, with enable.

let DEFF_SPEC = new_definition
(‘DEFF_SPEC*,
*| (din: time->bool) en clk stateQ statel qout .
DEFF_SPEC din en clk state0 statel gout =
(! t:time . (stateO (t+1) = (~clk t} =>din t | state0 t) A
(statel (t+1) = (clk t Aen t) => state0 t | statel) A\
(qout t = statel (t+1)))”

%

[
7

Multiple-bit flip-fiop, no set, no reset, with enable.

63

let DEFFn_SPEC = pew_definition
(‘DEFFn_SPEC",
“1 (din:time->wordn) en clk state0 statel qout .
DEFFn_SPEC din en clk stateQ statel gout =
(1 ttime . (stateQ (t+1) = (~clk t) =>din t | stateQO t) A
(statel (t+1) = (clk t A en t) => state0 t | statel t) A
(gout t = statel (t+1)))”

aq,
A

One-bit flip-flop, no set, with reset, with enable.

let DREFF_SPEC = new_definition
(‘DREFF_SPEC:,
“! (din:time->bool) en rst clk stateO statel qout .
DREFF_SPEC din en st clk stateOQ statel qout =
(! t:time . (stateO (t+1) = (~clk t) => (rst t => F 1 din t) | stateO t) A
(statel (t+1) = (clk t A en t) => stateD t | state]l t) A
(qout t = statel (t+1)))”

%

aQ,
7

One-bit flip-flop, with set, no reset, with enable.

let DSEFF_SPEC = new_definition
(‘DSEFF_SPEC*,
“1 (din:time->bool) en set clk state0 state] gqout .
DSEFF_SPEC din en set clk stateO statel qout =
(! t:time . (state0 (t+1) = (~clk t) => (set t => T | din t) | stateO t) A
(statel (t+1) =(clk t Aen t) => stateO t | statel t) A
(qout t =statel (t+1)))”

%

q@Q,
o

One-bit flip-flop, with set, with reset, with enable.

let DRSEFF_SPEC = new_definition

(‘DRSEFF_SPEC*,

“1 (din:time->bool) en rst set clk stateQ statel qout .

DRSEFF_SPEC din en rst set clk stateQ statel qout =

(! ttime . ((~clk t A set t A ~rst t) => state0 (t+1) =T) A

((~clk t A ~set t Arstt) ==> state0 (t+1) = F) A
((clk t V ~set t A ~15t t) ==> state0 (t+1) = stateO t) A
(statel (t+1) = (clk t A en t) => stateQ t | statel t) A
(qout t = statel (t+1)))”

W

close_theory();;

File: counters_def.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the m! source for the counters used in the gate-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%o
system ‘rm counters_def.th*;;
new_theory ‘counters_def*;;
map new_parent [‘aux_def*;‘array_def* ;*wordn_def*];;
Up-counter, no reset.
%
let UPCNT_SPEC = new_definition
(‘UPCNT_SPEC",
“1 size (din:time->wordn) 1d up clk stateO state] qout zero .
UPCNT_SPEC size din Id up clk stateQ state] qout zero =
It:time .
(stateQ (t+1) = (~clk ©) =>
((Ildt)=>din tl
(up t) => INCN size (statel t) | statel t) |
stateQ t) A
(statel (t+1) = (clk t) => stateQ t | statel t) A
{gout t = (up t) => INCN size (state! (t+1)) I statel (t+1)) A
(zero t = (up t) => (INCN size (statel (t+1)) = WORDN 0) | (statel (t+1) = WORDN 0))”
%
Down-counter, no reset.
%

let DOWNCNT_SPEC = new_definition
(‘DOWNCNT_SPEC’,
“| size (din:time->wordn) 1d down clk state0 statel qout zero .
DOWNCNT_SPEC size din 1d down clk stateQ statel gout zero =
It:time .

(state0 (t+1) = (~clk t) =>
((idt)=>dintl
(down t) => DECN size (statel t) | statel t) |
stateQ t) A

(statel (t+1) = (clk t) => stateO t1statel) A

65

{qout t = (down t) => DECN size (state] (t+1)) | state] (t+1)) A
(zero t= (down t) => (DECN size (statel (t+1)) = WORDN 0} | (statel (t+1) = WORDN 0))”

%

0

Up-counter, with reset.

%
let UPRCNT_SPEC = new_definition
(‘UPRCNT_SPEC",
“1 size (din:time->wordn) Id up rst clk stateQ statel qout zero .
UPRCNT_SPEC size din Id up rst clk stateQ statel qout zero =
It:time .
(stateO (t+1) = (~clk t) =>
((idt)=>din t|
(up t) => INCN size (statel t) | statel t) |
state0) A\
(statel (t+1) =(clk t) =>
((rst t) => WORDN 0 | stateO t) |
statel t) A
(qout t = (up t) => INCN size (statel (t+1)) | statel (t+1)) A
(zero t = (up t) => (INCN size (statel (t+1)) = WORDN 0) | (statel (t+1) = WORDN 0))”
)i
%
Down-counter, with reset.
%

let DOWNRCNT_SPEC = new_definition
(‘DOWNRCNT_SPEC’,
“1 size (din:time->wordn) 1d down rst clk state0 statel gout zero .
DOWNRCNT_SPEC size din 1d down rst clk stateQ statel qout zero =
It:time .

(stateO (t+1) = (~clk t) =>
((dt)y=>dint!
(down t) => DECN size (statel t) | statel t) |
state0) A
(statel (t+1) =(clk t) =>
((rst t) => WORDN O | stateO t) |
statel) A
(qout t = (down t) => DECN size (state] (t+1)) | statel (t+1)) A
(zero t = (down t) => (DECN size (statel (t+1)) = WORDN 0) | (statel (t+1) = WORDN 0))”

%

close_theory();;

%
File: datapaths_def.ml
Author: (c) D.A. Fura 1992

66

Date: 31 March 1992

This file contains the ml source for the datapath blocks of the R-Port of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

system ‘rm datapaths_def.th*;;

new_theory ‘datapaths_def";;

map loadf [‘abstract‘];;

map new_parent [‘aux_def*;‘array_def*;'wordn_def'};;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

4

Counter block used to build timers.

let DP_CTR_SPEC = new_definition
(‘DP_CTR_SPEC",
“t clkA cIkB (busB_in:time->wordn) cir_wr ¢_ld cir_rd ce cin csror_ld cor_rd
r_ctr_in r_ctr_mux_sel r_ctr_irden r_ctr r_ctr_ce r_ctr_cinr_ctr_cry
r_ctr_new r_ctr_outA r_ctr_out r_ctr_orden busA_out! busA_out2 c_out .
DP_CTR_SPEC clkA clkB busB_in cir_wr c_ld cir_rd ce cin csror_ld cor_rd
r_ctr_inr_ctr_mux_sel r_ctr_irden r_ctr r_ctr_ce r_ctr_cin r_ctr_cry
1_ctr_new r_ctr_outA r_ctr_out r_ctr_orden busA_outl busA_out2 c_out =

It:time .

((clkA t) ==>
((r_ctr_in (t+1) =r_ctr_in) A
(r_ctr_mux_sel (t+1) = r_ctr_mux_sel t) A
(r_ctr_irden (t+1) =r_ctr_irden t) A
(r_ctr (t+1) = (r_ctr_mux_sel t) =>1_ctr_in t | r_ctr_new t) A
(r_ctr_ce (t+l)=cet) A
(r_ctr_cin (t+1)=cin) A
(r_ctr_cry (t+1) =r_ctr_cry t) A
(r_ctr_new (t+1)=r_ctr_new t) A
(r_ctr_outA (t+1) =r_ctr_new) A
(r_ctr_out (t+1) =r_ctr_outt) A
(r_ctr_orden (t+1) = r_ctr_orden t))) A
((clkB t) =>
((r_ctr_in (t+1) = (cir_wr t) => busB_in t I r_ctr_in t) A
(r_ctr_mux_sel (t+1) =c_ld) A
(r_ctr_irden (t+1) =cir_rd t) A
(retrt+l)=r_ctrt) A\
(r_ctr_ce (t+1) =r_ctr_ce) A
(r_ctr_cin (t+1) =r_ctr_cin) A
(r_ctr_cry (t+1) = (1_ctr_ce t) A (r_ctr_cin t) AONES 31 (r_ctr t)) A
(r_ctr_new (t+1) = ((r_ctr_ce t) A (r_ctr_cin t)) => INCN 31 (r_ctr) I r_ctr t) A
(r_ctr_outA (t+1) =r_ctr_outA) A

67

(r_ctr_out (t+1) = (csror_ld t) =>r_ctr_outA t I r_ctr_out) A
(r_ctr_orden (t+1) = cor_rd t))) A
((busA_outl t=((r_ctr_irden (t+1)) A (clkA t)) => 1_ctr_in (t+1) | ARBN) A
(busA_out2 t = ((r_ctr_orden (t+1)) A (cIkA t)) => r_ctr_out (t+1) | ARBN) A
(c_out t=r_ctr_cry (t+1)))”

%

0

Interrupt Control Register (ICR) block.

let DP_ICR_SPEC = new_definition
(‘DP_ICR_SPEC",
“| (rep:*rep_ty) clkA clkB (busA_in:time->wordn) busB_in icr_wr_feedback icr_wr icr_select icr_1d icr_rd
r_icr_oldA r_icr_old r_icr_mask r_icrA r_icr 1_icr_rden
busA_out icr_out .
DP_ICR_SPEC rep clkA clkB busA_in busB_in icr_wr_feedback icr_wr icr_select icr_Id icr_rd
r_icr_oldA r_icr_old r_icr_mask r_icrA r_icr r_icr_rden
busA_out icr_out =

Ittime .

((clkA) ==>
(r_icr_oldA (t+1) =busA_in t) A
(r_icr_old (t+1)=r_icr_old) A
(r_icr_mask (t+1) =r_icr_mask t) A
(r_icrA (t+1) = (icr_select t) => Andn rep (r_icr_old t, r_icr_mask t}
| Orm rep (r_icr_old ¢, r_icr_mask t)) A
(r_icr (t+1)=r_icr t) A
(r_icr_rden (t+1) = r_jicr_rden t)) A
((clkB t) =>
(r_icr_oldA (t+1)=r_icr_oldAt) A
(r_icr_old (t+1) = (icr_wr_feedback t) => r_icr_oldA tIr_icr_old) A
(r_icr_mask (t+1) = (icr_wr t) => busB_in t | r_icr_mask) A
(A (t+1) =1_ictAt) A
(r_icr (t+41) = (icr_ld t) => r_jicrA tlr_icr) A
(r_icr_rden (t+1) =icr_rd t)) A
((busA_out t = ((r_icr_rden (t+1) A (clkA t)) => r_icr (t+1) | ARBN)) A
(icr_out t = r_icr (t+1)))”

%

%

Control register used to build General Control Register (GCR) and Communication Control Register (CCR).
- %

let DP_CR_SPEC = new_definition
(‘DP_CR_SPEC*,
“! clkA clkB (busB_in:time->wordn) cr_wr cr_rd
r_crr_cr_rden
busA_out cr_out .
DP_CR_SPEC cIkA clkB busB_in cr_wr cr_rd
r_crr_cr_rden
busA_out cr_out =
Ittime .

68

((clkA t) ==>
(rer(t+l)=r_crt) A
(r_cr_rden (t+1) =r_cr_rden t)) A
((clkB t) ==>
(r_er (t+1) = (cr_wr t)=>busB_in tIr_cr) A
(r_cr_rden (t+1) =cr_rd t)) A
((busA_out t = ((r_cr_rden (t+1)) A (clkA t)) =>r_cr (t+1) ARBN) A
(cr_out t=r_cr (t+1)))”

M

o,
70

Status Register Block.

let DP_SR_SPEC = new_definition
(‘DP_SR_SPEC",
“] clkA clkB (inp:time->wordn) sror_Id sr_rd
1_srr_sr_rden
busA_out .
DP_SR_SPEC cIkA clkB inp sror_ld sr_rd
r_srr_sr_rden
busA_out =
It:time .
((clkA t)y =>
(r_sr (t+1)=1_sT) A
(r_sr_rden (t+1) =r_sr_rden t)) A
((clkB t) ==>
(r_sr (t+1) = (sror_Id t)y=>inp t I r_sr) A
(r_sr_rden (t+1) =sr_rd) A
(busA_out t = ((r_sr_rden (t+1)) A (clkA t)) =>r_sr (t+1) | ARBN)”
)

close_theory();;
File: buses_def.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the buses used in the gate-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%o

system ‘rm buses_def.th;;
new_theory ‘buses_def";;

map new_parent [‘aux_def‘];;

69

pew_type_abbrev(‘time’, “:num”);;

@,
0

Specification for a conflict-free bus.

let Bus_CF_12_SPEC = new_definition
(‘Bus_CF_12_SPEC",
“1 inE1 inE2 inE3 inE4 inES inE6 inE7 inE8 inE9 inE10 inE1l inE12 .
Bus_CF_12_SPEC inEl inE2 inE3 inE4 inES inE6 inE7 inE8 inE9 inE10 inE1l inE12 =
It:time .

(inE1 t) => ~((inE2 t) V (inE3 t) V (inE4) V (inES t) V (inE6 t) V (nE7t) V (inE8) V
(inE9 t) V (inE10 t) V (inE11 t) V (inE12 1)) |

(inE2 t) => ~((inE3 t) V (inE4 t) V (inES t) V (inE6 t) V (inE7 t) V (inEB t) V (inE9 ©) V
(inE10 t) V (inE11 t) V (inE12 t)) |

(inE3 t) => ~((inE4 t) V (inES t) V (inE6 t) V (inE7 t) V (inE8 t) V (inE9 t) V (inE1O) V
(inE11 t) V (inE12)} |

(inE4 t) => ~(GnES t) V (inE6 t) V (inE7 t) V (inE8 t) V (inE9 t) V (inE10 t) V (inE11 Y V
(inE12) !

(inES t) => ~((inE6 t) V (inE7 t) V (inE8 t) V (inE9 t) V (inE10 t) V (inE11 t) V (inE12)} |

(inE6 t) => ~((inE7 t) V (inE8 t) V (inE9) V (inE10 t) V inE11 t) V (inE12 1)) |

(inE7 t) => ~((inE8 t) V (inES t) V (inE10 t) V (inE11 t) V (inE12) |

(inE8 t) => ~((inE9 t) V (inE10 t) V (inE11) V (inE12 1)) |

(inE9 t) => ~((inE10 t) V (inE11 t) V (inE12 1)) |

(inE10 t) => ~((inE11 t) V (inE12 v)) |

(inE1l ty => ~(inE12) | T”

%

[
L4

Specification for a 12-input bus component.

let Bus_12_1_SPEC = new_definition
(‘Bus_12_1_SPEC:,
“| (inD1:time->*) inD2 inD3 inD4 inDS inD6 inD7 inD8 inD9 inD10 inD11 inD12
inE1 inE2 inE3 inE4 inES inE6 inE7 inE8 inE9 inE10 inE11 inE12 out .
Bus_12_1_SPEC inD1 inD2 inD3 inD4 inD$ inD6 inD7 inD8 inD9 inD10 inD11 inD12
inE1 inE2 inE3 inE4 inES inE6 inE7 inE8 inE9Y inE10 inE1l inE12 out =
lttime .

(Bus_CF_12_SPEC inF1 inE2 inE3 inE4 inE5 inE6 inE7 inE8 inE9 inE10 inEll inE12) ==>
((inEl t==> (out t=inD1 t)) A
(inE2 t => (out t=inD2) A
(inE3 t => (out t =inD3 t)) A
(inE4 t => (out t = inD4 t)) A
(inES t => (out t =inDS t)) A
(inE6 t => (out t =1nD6 t)) A
@inE7 t => (out t =inD7 t)) A
(inE8 t ==> (out t = inD8 t)) A
(inE9 t => (out t =inD9 t)) A
(inE10 t => (outt= D10) A
(inE11 t ==> (out t =1nD11 {)) A
(inE12 t => (out t = inD12 t)))”

70

%

Specification for a single-input bus component where the input is sourced by an A-clocked latch.
%

let Bus1 A_SPEC = new_definition
(‘Busl A_SPEC’,
“! (in_A:time->*) out_A out_B .
BuslA_SPECin_Aout_A out B=
It:time .

(out_At=in_ AQ)A
(out_Bt=in_At)"
)

o,
70

Specification for a single-input bus component where the input is sourced by a B-clocked latch.
%

let Bus1B_SPEC = new_definition
(‘Bus1B_SPEC",
“! (in_B:time->*) out_A out_B .
Bus1B_SPEC in_B out_A out_B =
It:time .

(out_A t=in_B (t-1)} A
(out_B t=in_B t)”
s

close_theory();;

%
File: aux_def.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains auxiliary definitions needed for the gate-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

system ‘rm aux_def.th*;;
new_theory ‘aux_def";;
loadf ‘abstract’;;

new_type_abbrev(‘time*, “:num”);;
new_type_abbrev(‘wordn’, *:(num->bool)”);

71

let pfsm_ty_Axiom =
define_type ‘pfsm_ty_Axiom'
‘pfsm_ty =PHIPAIPDIP_ILL";
let pc_state_ty = (wordo#bool#wordn#bool#pfsm_ty#bool#boolitbool#bool#bool#wordn#bool#bool#bool#bool#tbool)”;;
let pc_env_ty = “:(boolébool#bool#wordn#boolitbool#wordni#boo¥bool#wordn#bool#bool#bool)™;;
let pc_out_ty = «:(wordn#bootwordn#wordn#wordn#booli#bool#bool#bool#bool#booli#tbool#bool)”;;

let cmfsm_ty_Axiom =
define_type ‘cmfsm_ty_Axiom*
‘cmfsm_ty = CMI | CMR | CMA3 | CMA1 1 CMAO | CMA2 | CMDI1 | CMDO
|CMW | CMABT";;
let csfsm_ty_Axiom =
define_type ‘csfsm_ty_Axiom'
‘csfsm_ty = CSI | CSL I CSA1 | CSAO 1 CSAOW | CSALE | CSRR | CSD1 | CSDO | CSACK | CSABT";;
let cefsm_ty_Axiom =
define_type ‘cefsm_ty_Axiom*
‘cefsm_ty = CEl | CEE*;;
let cc_state_ty = “:(cmfsm_ty#bool#bool#bool#bool#wordo#bool#
csfsm_ty#bool#bool#bool#wordn#
cefsm_ty#bool#tbool#bool#bool#bool#bool#
bool#worda#bool#bool#bool#wordn#bool#
bool#bool#bool#bool#bool#bool#bool#
bool#boobool#wordn#wordn#wordn¥wordn#wordn#wordn)”';;
let cc_env_ty = “:(wordn#wordn#bool#bool#bool#tbool#bool#bool#bool#bool#bool#
wordn#wordp#wordn#wordn#bool#bool#bool#bool#iwordn#wordn#booli#tbool#wordn#bool)”;;
let cc_out_ty = “:(bool¥bool¥bool#bool#bool#booi#boowordn#wordn#
bool#wordn#wordn#wordn#wordn#booltbool)’;;

let mfsm_ty_Axiom =
define_type ‘mfsm_ty_Axiom*
‘mfsm_ty = MI | MA | MW IMRR IMR | MBW IM_ILL*;;
let mc_state_ty = “:(mfsm_ty#bool#bool#bool#bool#wordn#bool#bool#wordn#wordn#bool#bool#bool#wordn#wordn)";;
let mc_env_ty = “:(bool#bool#bool#bool#bool#wordn#bool#bool#wordn#booli#wordn#booli#tbool)™;;
let mc_out_ty = “:(wordn#bool#wordn#wordn#bool¥bool#bool#booli#tbool)™;;

let rfsm_ty_Axiom =
define_type ‘rfsm_ty_Axiom*
‘tfsm_ty = RIIRA{RD";;
let rc_state_ty = “:(rfsm_ty#bool#bool#bool#bool#wordn#bool¥wordn#bool#wordn#boolwordn#bool¥wordn#bool#
wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#boowordn#bool#wordn#bool#wordn#bool#
wordn#bool#wordn¥#bool¥wordn#boo#bool#wordn#wordn#bool#wordn#wordn#booitwordn#bool#wordnd#
bool#boolbool#bool#bool#bool#bool#boolfbool#bool#wordn#wordn)™;;
letrc_env_ty = “(bool#bool#wordn#boolfbool#wordn#bool#bool#boolibooli#tbool#boobool#bool#bool#
wordn#wordn#wordn#boo#bool#wordn)”;;
let rc_out_ty = “:(wordn#bool#bool#bool#bool#boo¥wordn#wordn#bool#bool)”;;

let sfsm_ty_Axiom =
define_type ‘sfsm_ty_Axiom'
‘sfsm_ty = SSTART | SRA | SPF | SCOI | SCOF | ST | SC1I!
SCIFISS1SSTOPISCSISNISOIS_ILL;
let sc_state_ty = “:(sfsm_ty#bool#bool#bool#bool#bool#bool#wordn#wordn¥
bool#bool#bool#bool#bool#bool#boolbool#bool)”;;
let sc_env_ty = “:(bool#bool#bool#bool#bool#wordn#boolitbool)”;;

72

let sc_out_ty = “:(wordn#bool#bool#bool#boo]#bool#bool#bool#boo}#bool#bool)";',

let VDD = new_definition
(‘VDD*,
“It:time . VDD t=T"
s

Jlet GND = new_definition
(‘GND"*,
“ t:time . GND t=F"
)

let abs_rep = new_abstract_representation |
(‘Andn*, “:(wordn#wordn->wordn)"),
(‘Om*, “:(wordn#wordn->wordn)”);
(‘Ham_Dec*, “:(wordn->wordn)”);
(‘Ham_Det1", “:(wordn->wordn)™);
(‘Ham_Det2', “:(wordn#bool->bool)”);
(‘Ham_Enc®, “:(wordn->wordn)”);
(‘Par_Dec*, “:(wordn->wordn)”);
(‘Par_Det’, “:(wordn->bool)");
(‘Par_Enc*, “:(wordn->wordn)”);
(‘p_interp’, “:("pc_state_ty#’”pc_env_ty#"pc_out_ty->bool)");
(‘c_interp*, “:("cc_state_ty# cc_env_ty#Acc_out_ty->bool)”);
(‘m_interp‘, “:(mc_state_ty#*mc_env_ty# mc_out_ty->bool)”);
(‘r_interp’, “:(*rc_state_ty#*re_env_ty#ire_out_ty->bool)”);
(‘s_interp', “:(Asc_state_ty#*sc_env_ty#sc_out_ty->bool)")];;

make_inst_thms abs_rep;;
let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

close_theory();;

File: array_def.ml
Author: (c) P. J. Windley 1992
Description:

Prove auxilliary theorems about functions so that functions
can be easily used to represent arrays.

Modification History:
24FEB92 -- Original file. Many of the theorems included were
motivated by theorems defined on lists in
lList_aux.ml.
26FEB92 -- [DAF] Modified order of parameters in calls to

ALTER, MALTER, SUBARRAY to match simulation
language syntax. Added definition of ELEMENT.

73

% Removed 26FEB92. [DAF]
loadf ‘libs_aux*;;

system ‘/bin/rm array_def.th;;
%

system ‘rm array_def.th*;;

new_theory ‘array_def*;;

% Added 26FEB92 (from PJW). [DAF] %

let SYM_RULE =
(CONV_RULE (ONCE_DEPTH_CONV SYM_CONYV))
? failwith ‘SYM_RULE";;

[

0

Auxilliary array definitions and theorems.

We will use functions to represent arrays. The definition

that follows defines a ALTER function that can be used to set
the nth member of an array. The following lemmas are useful
in reasoning about array operations.

%

let ALTER_DEF = new_definition
(‘ALTER_DEF*,
“ALTER (f:*->**)n x = (\m. (m = n) =>x | (f m}))"
%

let ALTER_THM = prove_thm
(‘ALTER_THM',
“ALTER (f*->**)nxy=(y=n)=>x1(fy)",
REWRITE_TAC [ALTER_DEF]
THEN BETA_TAC
THEN REFL_TAC
%

o,

ALTER_EQUAL is simlar to the EL._SET_EL lemma for lists.
%

let ALTER_EQUAL = prove_thm
(* ALTER_EQUAL"',
“Ixn(f:*>**) . (ALTER fox)n=x",
REPEAT GEN_TAC
THEN REWRITE_TAC [ALTER_DEF]
THEN BETA_TAC
THEN REWRITE_TAC []
M

74

@,

ALTER_NON_EQUAL is similar to NOT_EL_SET_EL for lists.
%

let ALTER_NON_EQUAL = prove_thm
‘ALTER_NON_EQUAL",
“I'mm (f*->**)x.
~(n=m)=>
(f n=(ALTER f m x) n)",
REPEAT GEN_TAC
THEN REWRITE_TAC [ALTER_THM]
THEN STRIP_TAC
THEN ASM_REWRITE_TAC (]
%

0

ALTER_COMMUTES is similar to SET_EL_SET_EL for lists.
%

let ALTER_COMMUTE = prove_thm
(‘ALTER_COMMUTE',
“1 (d1:*) d2 (f:*->**) (x:**) y .
~(dl =d2) =>
((ALTER (ALTER fd2 x)dl y) =
(ALTER (ALTER fd1 y) d2 x))”,
REPEAT GEN_TAC
THEN CONV_TAC (ONCE_DEPTH_CONV FUN_EQ_CONYV)
THEN REWRITE_TAC [ALTER_THM]
THEN STRIP_TAC
THEN GEN_TAC
THEN REPEAT COND_CASES_TAC
THEN ASM_REWRITE_TAC []
THEN UNDISCH_TAC “~((d1:*) = d2)”
THEN ASSUM_LIST (hl . REWRITE_TAC (map SYM_RULE thl}))
¥

o,
70

Until now, it hasn’t mattered what the type of the subscript is
and so the previous lemmas were all general, even though
someone using them to representa arrays, would probably be
using numbers as subscripts.

Now, we want to reason about subarrays given as a sequence from
a starting value to an ending value. This presupposes that the
subscripts can be totally ordered. To make life easy, we won’t

be that general, but will use numbers as subscripts.

%

let SUBARRAY_DEF = new_definition
(‘SUBARRAY_DEF',
“! o m (f:oum->*) .
SUBARRAY f (m,n) = \x. ((x+n) <= m) => f(x+8) | ARB”
%

75

let SUBARRAY_THM = prove_thm
(*SUBARRAY_THM',
“l p m (f'num->*) .
SUBARRAY f (m,n) x = ((x+1) <=m) => f(x+n) | ARB",
REPEAT GEN_TAC
THEN REWRITE_TAC [SUBARRAY_DEF]
THEN BETA_TAC
THEN REFL_TAC
»

let ELEMENT_DEF = new_definition
(‘ELEMENT_DEF*,
“I m (f:oum->*) .
ELEMENT f (m) = f m”
X

a,

MALTER alters multiple values in an array.

let MALTER_DEF = new_definition
(‘MALTER_DEF‘,
“! nm f (g:num->*) .
MALTERf(mn) g =
x.(h<=xAx<=m)=>g (x-0) | fx”
%

let MALTER_THM = prove_thm
(‘MALTER_THM®,
“! n m (x:num) g (f:num->*) .
MALTER f(m,n) g x=(n<=xAx<=m)=>g (x-n) | fx",
REPEAT GEN_TAC
THEN REWRITE_TAC [MALTER_DEF]
THEN BETA_TAC
THEN REFL_TAC
s

let MALTER_SUBARRAY_IDENT = prove_thm
(‘MALTER_SUBARRAY_IDENT",
“io m (f:num->*) . MALTER f (m.n) (SUBARRAY f (m,n)) =f",
REPEAT GEN_TAC
THEN CONV_TAC (ONCE_DEPTH_CONYV FUN_EQ_CONYV)
THEN REWRITE_TAC [MALTER_THM;SUBARRAY_THM]
THEN GEN_TAC
THEN REPEAT COND_CASES_TAC
THEN ASM_REWRITE_TAC{]
THEN ASSUM_LIST (Mhl . MAP_EVERY ASSUME_TAC
(flat (map CONJUNCTS (filter (is_conj o concl) th))))
THEN IMP_RES_TAC SUB_ADD
THEN TRY (UNDISCH_TAC “~((n’ - n) + n) <=m”)
THEN ASM_REWRITE_TAC (]
)

76

let MALTER_SUBARRAY_SUBSCRIPTS = prove_thm

(‘MALTER_SUBARRAY_SUBSCRIPT",

“Inm x (f:num->*) g .

MALTER f (m,n) (SUBARRAY g (m,n)) x =
(p<=xAx<=m)=>gxIfx",

REPEAT GEN_TAC

THEN CONV_TAC (ONCE_DEPTH_CONV FUN_EQ_CONYV)
THEN REWRITE_TAC [MALTER_THM;SUBARRAY_THM]
THEN REPEAT COND_CASES_TAC

THEN ASM_REWRITE_TAC {]

THEN ASSUM_LIST (\thl . MAP_EVERY ASSUME_TAC
(flat (map CONJUNCTS (filter (is_conj o concl) thl))))

THEN IMP_RES_TAC SUB_ADD

THEN TRY (UNDISCH_TAC *~((x - n) + D) <=m")

THEN ASM_REWRITE_TAC []
%

close_theory();;

@,
70

File: wordn_def.ml
Description:
Defines a theory of words which contains a definition for
converting between functions from numbers to booleans and
patural numbers and proves various useful theorems about
this definition. This file is based on a theory that was
orginally authored by Graham Birtwhistle of the University
of Calgary in 1988.
Authors: (c) Graham Birtwhistle, Phillip Windley, 1988, 1992
Modification History:
28FEB92 -- {[PTW] Original file from words.ml
10MAR92 -- [PJW] Added definition of WORDN.

13MARY2 -- [DAF] Added definitions of by, SETN, RSTN, GNDN,
NOTN, INCN, DECN, ARBN.

%

% Removed 13MAR92. [DAF]
let add_root s = */users/staff/windley/hol/Library/* # s;;

set_search_path(search_path() @
(map add_root
[‘bits/*;
‘numbers/*;
‘array/‘]))i;

7

%

system ‘/bin/rm wordn_def.th*;;

new_theory ‘wordn_def";;

% Replaced 13MAR92. [DAF]

map load_parent [*bits‘; ‘bum_thms* ; ‘exp’ ; ‘array_def'];;
:ap new_parent [‘aux_def*; ‘array_def*];;
new_type_abbrev (‘wordn‘,”:num->bool™);;

9

0

Definitions

let bv = new_definition
(‘bv',
“! (b:bool) .
bvb=(b)=>110"
%

let VAL = new_prim_rec_definition
(‘VAL",
“(VAL O (f:wordn) = bv (f 0))
N
(VAL (SUC n) f = ((2 EXP (SUC n)) * (bv (f (SUC n}})) + VAL nf)”
¥

let pos_val = new_definition
(‘pos_val’,
“f (x:wordn) (y:num) .
pos_val xy = (bv(x y)) * 2EXP y)"

s

let ONES = new_prim_rec_definition
(‘ONES®,
“(ONESOa=(a0))
A
(ONES (SUC n) a= (a(SUC n)) A (ONES n a))
%

let ZEROS = pew_prim_rec_definition
(‘ZEROS"',
“(ZEROS O0a=~(a0))
A

(ZEROS (SUC n) a = ~(a(SUC n)) A (ZEROS n a))
“¥s

% Modified 13MAR92. [DAF]
let WORDN = new_definition
(*WORDN’,
“! (x:pum) . WORDN x = \n. (x DIV (2 EXP n)) MOD 2"

78

X
%
let WORDN = new_definition
(‘WORDN:,
“! (x:num) . WORDN x = \n. ((x DIV (2QEXPn)) MOD2=1)"
)

let SETN = new_definition
(‘SETN?,
1 (x:pum) . SETN x = \(n:num). (n <= x) => T | ARB”
)

% Equivalent to “WORDN 0” but perhaps more convenient %
let RSTN = new_definition

(‘RSTN*,

“| (x:num) . RSTN x = \(n:num). (n <= x) =>F| ARB”

s

let GNDN = new_definition
(‘GNDN',
“{ (x:pum) (t:time) . GNDN x t = {(n:num). (0 <= x)=>F| ARB”
)i

let NOTN = new_definition
(‘NOTN:,
“| (x:pum) (f:wordn) . NOTN x f = \(n:num) . (n <=X) => ~(f n)} ARB”
)i

let INCN = new_definition
(‘INCN*,
“Iaf.
INCN n f = (ONES n f) => RSTN n | WORDN ((VAL n f) + 1)”
%

let DECN = new_definition
(‘DECN',
“Inf.
DECN n f = (ZEROS n f) => SETN n | WORDN ((VAL n f) - 1)”

%

let ARBN = new_definition
(‘ARBN',
“(ARBN:num->bool) = \n. ARB”
)

Theorems

% Removed theorems for now 13MARS2. [DAF]

close_theory();;

79

Appendix B ML Source for the Gate-Level Specification of the PIU Ports.

This appendix contains the HOL models for the gate-level specification for the PIU ports. The ports are
listed in the order: P_Port, M_Port, R_Port, C_Port, and SU_Cont.

B.1 P Port Specification

a,
70

File: p_block.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the gate-level specification of the PIU P-Port, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/pin/hol/lib/‘]);;

system ‘rm p_block.th';;

new_theory ‘p_block';;

map new_parent | ‘gates_def"; ‘latches_def*;'ffs_def*;‘counters_def";‘aux_def*;‘array_def*;'paux_def'};;

let p_state_ty = “:(pfsm_ty#bool#bool#bool#wordn#wordn#boowordn#boowordn#num#bool#bool#
pfsm_ty#boolftbool#booli#tbool#bool#bool#bool#bool#num#booli#bool¥bool#bool#bool#bool)”;;
let p_state = “((P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hida_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale_) .
Ap_state_ty)";;

let p_env_ty = “:(bool#bool#bool#wordn#boolbool#wordu#bool#boowordn#bool#bool#bool)™;;
let p_env = “((CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_,L._be_, L_wr,L_lock_, I_ad_in, I_cgnt_, I_hold_, I_srdy_)
:Ap_env_ty)”;;

let p_out_ty = “:(wordn#booWwordn#wordn#wordn#bool#bool#bool#bool#bool#bool#bool#bool)™;;

let p_out = “((L_ad_out, L_ready_, I_ad_data_out, I_ad_addr_out,I_be_, I_rale_, I_male_, I_crqt_,I_cale_,
I_mrdy_, I_last_, I_hlda_, I_lock_}
:Ap_out_ty)"s;

a,
70

P-Port data latches.

let Data_Latches_SPEC = new_definition
(‘Data_Latches_SPEC*,
“ clkA clkB (lad_in:time->(num->bool)) (Ibe_in:time->(num->bool)) (Iwr_in:time->bool) en_in be_sel
wr_data addr destl be wr be_n

80

data_out addr_out be_out .
Data_Latches_SPEC clkA cIkB lad_in lbe_in Iwr_in en_in be_sel
wr_data addr destl be wr be_n
data_out addr_out be_out =
It:time .

((clkA t) =>
((wr_data (t+1)=lad_in) A
(addr (t+1) = (en_in t) => (lad_in t) | (addr t)) A
(dest] (t+1) = (en_in ty => (ELEMENT (lad_in t) 31)} | (destl tH A
(be (t+1) = (en_in t} => (Ibe_in t) | (be) A
(wr (t+1) = (en_in t) => (Iwr_in t) | (wr t)) A
(be_n (t+1) =1be_in))) A
((cikB t) =>
((wr_data (t+1) = wr_datat) A
(addr (t+1) =addr) A
(dest] (t+1)=destl) A
(be (t+1)=be) A
(wr(t+l)=wrt) A
(be_n (t+1) =be_n t)) A

((data_out t = wr_data (t+1)) A

(let od1 = MALTER (addr_out t) (31,27) (be (t+1)) in

(let 0od2 = ALTER od1 (26) Fin

(let 0d3 = MALTER od2 (25,24) (SUBARRAY (addr (t+1)) (1,0)) in

(let 0d4 = MALTER od3 (23,0) (SUBARRAY (addr (t+1)) (25,2))in

(addr_out t = 0d4)))) A

(be_out t = (be_sel t) => (be (t+1)) | (be_n (t+1))))"
)

a,
0

Input logic for P_rqt latch.

let Req_Inputs_SPEC = new_definition
(‘Req_Inputs_SPEC‘,
“t1_ads_1_den_ (reset_rqt:time->bool) rqt_inS rqt_inR rqt_inE .
Req_Inputs_SPEC 1_ads_1_den_ reset_rqt rqt_inS rqt_inR qt_inE =
it:time .
(rqt_inS t = ~(L_ads_) A (I_den_t)) A
(rqt_inR t =reset_rqt) A
(rqt_inE t = (rqt_inS t) V (rqt_inR t))”
%

[
/0

Input logic for P_size counter.

let Ctr_Logic_SPEC = new_definition
(‘Ctr_Logic_SPEC",
“{ clkA clkB 1_ad_in load_in down_in zero_cnt
p_size p_sizeA p_load p_loadA p_down p_downA .
Ctr_Logic_SPEC clkA cIkB I_ad_in load_in down_in zero_cnt
p_size p_sizeA p_load p_loadA p_down p_downA =
lt:time .

81

((clkA t) =>
((p_sizeA (t+1) = p_size) A
_loadA (t+1) = p_load t) A
(p_downA (t+1) = p_down t) A
(p_size (t+1) = p_size t) A
(p_load (t+1)=p_load t) \
(p_down (t+1) = p_down t))) A
((cIkB t) =>
((p_sizeA (t+1) = p_sizeA t) A
(p_loadA (t+1) = p_loadA t) A
(p_downA (t+1) = p_downA) A
(p_size (t+1) = (p_loadA t) => SUBARRAY (l_ad_in t) (1,0)
(p_downA t) => DECN 2 (p_sizeA t) |
p_sizeA t) A
(p_load (t+1) = load_in t) A
(p_down (t+1) =down_in) A
(zero_cnt t = (p_downA t) => (DECN 2 (p_sizeA (t+1)) = (WORDN 0)) | (p_sizeA (t+1) = (WORDN 0)))"

%
/0

Accumulated random logic.

let Scat_Logic_SPEC = new_definition
(‘Scat_Logic_SPEC',
“! rst fsm_astate fsm_dstate fsm_hlda_ p_addr p_wr p_rqt zero_cnti_srdy_
1_ad_data_out_en |_ad_out_en_i_rale_i_male_i_crqt_
fsm_mrqt fsm_rst fsm_sack reset_rqt I_ready .

Scat_Logic_SPEC rst fsm_astate fsm_dstate fsm_hlda_ p_addr p_wr p_rqt zero_cnt i_srdy_
i_ad_data_out_en 1_ad_out_en_i_rale_i_male_i_crqt_
fsm_mrqgt fsm_rst fsm_sack reset_rqt |_ready =

It:time.
(i_ad_data_out_en t = (p_wr t) A (fsm_dstate t)) A
(1_ad_out_en_ t = (p_wr t) A (fsm_dstate t) V ~(fsm_hlda_ t) V (fsm_astate t)) A
(i_rale_ t = ~(~(ELEMENT (p_addr t) (31)) A
(VAL 26 (SUBARRAY (p_addr t) (25,24)) =3)A
(fsm_astate t) A
(prqt) A
(i_male_ t = ~(~(ELEMENT (p_addr t) 31)) A
~(VAL 26 (SUBARRAY (p_addr t) (25,24))=3) A
(fsm_astate t) A
@_mtO) A
(i_crqt_ t = ~((ELEMENT (p_addr t) (31)) A (p_rqt t))) A
(fsm_mrqt t = ~(ELEMENT (p_addr t) 31)) A(p_rqtt)) A
(fsm_rstt=rst) N\
(fsm_sack t = (zero_cnt t) A ~(i_srdy__t) A (fsm_dstate t)) A
(reset_rqtt = (rstt) V (fsm_sack t)) A
(I_ready t = ~(i_srdy_ t) A (fsm_dstate t))”

A

Input logic for P_lock _ latch.

82

let Lock_Inputs_SPEC = new_definition
(‘Lock_Inputs_SPEC*,
“| rst fsm_dstate p_male_ p_rale_ lock_inE lock_inh_inE .
Lock_Inputs_SPEC rst fsm_dstate p_male_ p_rale_ lock_inE lock_inb_inE =
It:time .
(lock_inE t= (rst t) V (fsm_dstate t}) A
(lock_inh_inE t = (rst t) V ~(p_male_ t) V ~(p_rale_t1))"
%

a0
o

P-Port controller state machine.

Jet FSM_SPEC = new_definition
(‘FSM_SPEC’,
“| cIkA clkB rst_in mrqt_in sack_in cgat_in_ crqt_in_ bold_in_ lock_in_
state rst mrqt sack cgnt_ crqt_ hold_ lock_
stateA astate dstate hlda_
astate_out dstate_out hida_out_ .
FSM_SPEC clkA clkB rst_in mrqt_in sack_in cgnt_in_ crqt_in_ bold_in_ lock_in_
state rst mrqt sack cgnt_ crqt_hold_ lock_
stateA astate dstate hida_
astate_out dstate_out hlda_out_=
Ittime .
(clkA t) =>
((state (t+1) =state) A
(st (t+1) =18t t) A
(mrqt (t+1) =mrqt) A
(sack (t+1) =sack t) A
(cgnt_ (1+1)=cgnt_t) A
(crqt_ (t+1) = crqt_t) A
(hold_ (t+1)=hold_t) A
(lock_ (t+1) =lock_t) A
(stateA (t+1) =
((rstt) => PA |l
(state t = PH) => ((hold_ t) => PA | PH) |
(state t = PA) => ({((mrgqt t) V ~(cgnt_t) A ~(crqt_t)) =>PD|
(((lock_ t) A ~(hold_ t)) => PH I PA)) |
({((sack t) A (hold_t)) =>PA|
((sack t) A ~(bold_ t) A ~(lock_t))=>PA |
((sack t) A ~(hold_ t) A (lock_ t)) => PH I PD))) A
(astate (1+1) = (stateA (t+1)=PA) A
(dstate (t+1) = (stateA (t+1)=PD)) A
(hlda_ (t+1) = ~(stateA (t+1) = PA))A
((clkB t) =>
((state (t+1) = stateA t) A
(rst (t+1)=rst_in t) A
(mrqt (t+1) = mrqt_in) A
(sack (t+1) = sack_in) A
(cgnt_ (t+1)=cgnt_in_t) A
(crqt_ (t+1) = crqt_in_t) A
(hold_ (t+1) =hold_in_t) A
(lock_ (t+1)=lock_in_t) A
(stateA (t+1) = stateA t) A

83

(astate (t+1) = astate t) A
(dstate (t+1) = dstate t) A
(blda_ (t+1) = hida_t))) A
((astate_out t = astate (t+1)) A
(dstate_out t = dstate (t+1)) A
(hida_out_ t = hida_ (t+1)))”
%

P-Port Block.

let P_Block_SPEC = new_definition

(‘P_Block_SPEC:,
“| (P_fsm_stateA P_fsm_state :time->pfsm_ty)
(P_wr_data P_addr P_be_ P_be_n_ P_sizeA P_size :time->wordn)
(P_fsm_astate P_fsm_dstate P_fsm_hlda_ P_destl P_wr P_loadA P_downA P_fsm_rst P_fsm_mrqt
P_fsm_sack P_fsm_cgnt_ P_fsm_crqt_ P_fsm_hold_P_fsm_lock_P_rqt P_load P_down P_lock_
P_lock_inh_ P_male_ P_rale_ :time->bool)
(L_ad_in L_be_I_ad_in :time->wordn)
(CIkA CIkB Rst L_ads_L_den_L_wrL_lock_I_cgnt_I_hold I srdy_ :time->bool)
(L_ad_out I_ad_data_out I_ad_addr_out I_be_ :time->wordn)
(L_ready_1_rale_I_male_I_crqt_I cale I_mrdy I last I hida_ I_lock_ :time->bool) .
P_Block_SPEC (P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hlda_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale)
(CIkA, CIkB, Rst,L_ad_in, L_ads_, L _den_,L_be_ L_wr L _lock_, I ad_in, I_cgnt_, I_hold_, I srdy_)
(L_ad_out, L_ready_, I_ad_data_out, I_ad_addr_out, I_be_, I_rale_,I_male_, I crqt_, L cale_,
I_mrdy_, I_last , I _hlda_, I lock)=

7 fsm_astate fsm_dstate rqt data_out addr_out be_out data_out_en reset_rqt
rqt_inS rqt_inR rqt_inE rqt_outQ load_in down_in zero_cnt zero_cat_
1_ad_out_en_ rale_ male_ fsm_mrqt fsm_rst fsm_sack |_ready i_cgnt
lock_inE lock_outQ lock_inh_inE lock_inh_outQ p_male_outQ p_rale_outQ lock_outQ_.

(Data_Latches_SPEC CIkA CIkB L_ad_in L_be_ L_wr rqt fsm_astate
P_wr_data P_addr P_destl P_be_P_wr P_be_n_
data_out addr_out be_out) A
(TRIBUF_SPEC data_out data_out_en I_ad_data_out) A
(TRIBUF_SPEC addr_out fsm_astate I_ad_addr_out) A
(TRIBUF_SPEC be_outI_hida_I_be)A
(Req_Inputs_SPEC L_ads_ L_den_ reset_rqt rqt_inS rqt_inR rqt_inE) A
(DSRELAT_SPEC GND rqt_inS$ rqt_inR rqt_inE ClkB P_rqt rqt_outQ) A
(NOT_SPEC rqt_outQ reset_rqt) A
(Ctr_Logic_SPEC CIkA CIkB L_ad_in load_in down_ip zero_cnt
P_size P_sizeA P_load P_loadA P_down P_downA) A
(Scat_Logic_SPEC Rst fsm_astate fsm_dstate I_hlda_ P_addr P_wr P_rqt zero_cnt I_srdy_
data_out_en 1_ad_out_en_ rale_male_I_crqt_
fsm_mrqt fsm_rst fsm_sack reset_rqt |_ready) A
(TRIBUF_SPEC rale_1_hlda_I_rale_) A
(TRIBUF_SPEC male_ |_hlda_I_male_)A
(TRIBUF_SPEC GND I_hlda_I_mrdy) A
(NOT_SPEC zero_cnt zero_cnt_) A

(TRIBUF_SPEC zero_cnt_[_hlda_1 last) A

(NOT_SPEC |_ready L_ready_) A

(DSELAT_SPEC L _lock_ Rst lock_inE CIkB P_lock_ lock_outQ) A

(DSELAT_SPEC L_lock_ Rst lock_inh_inE CIkB P_lock_inh_ lock_inh_outQ) A

(Lock_Inputs_SPEC Rst fsm_dstate p_male_outQ p_rale_outQ lock_inE lock_inh_inE) A

(DELAT_SPEC male_ fsm_astate CIkB P_male_ p_male_outQ) A

(DELAT_SPEC rale_ fsm_astate CIkB P *_rale_ p_rale_outQ) A

(NOT_SPEC lock_outQ lock_outQ) A

(NAND2_SPEC lock_outQ_ lock_inh_outQ I_lock_) A

(NOT_SPEC I_cgnt_i_cgnt) A

(NAND3_SPEC i_cgnt fsm_astate I_hold_ I_cale)A

(BUF_SPECI_ad_in L_ad_out) A

(FSM_SPEC CIkA CIkB fsm_rst fsm_mrqt fsm_sack I_cgnt_I_crqt_I_hold_lock_outQ
P_fsm_state P_fsm_rst P_fsm_mrqt P_fsm_sack P_fsm_cgnt_ P_fsm_crqt_
P_fsm_bold_
P_fsm_lock_ P_fsm_stateA P_fsm_astate P_fsm_dstate P_fsm_hlda_
fsm_astate fsm_dstate I_hida_)”

)

close_theory();;

85

B.2 M Port Specification

R

File: m_block.ml
Author: (¢) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the gate-level specification of the P-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piu/hol/lib/]);;

system ‘rm m_block.th*;;

new_theory ‘m_block';;

loadf ‘abstract‘;;

map new_parent [‘gates_def*; ‘latches_def";'ffs_def*;'counters_def";‘'maux_def‘;'aux_de! *;'array_def*;‘wordn_def*];;

let m_state_ty = “:(mfsm_ty#bool#bool#bool#bool#bool#wordn#wordn#wordn#bool#wordn#
mfsm_ty#bool#bool#bool#bool#bool#boolbool#bool#
bool#bool#wordn#wordn#wordn#bool#bool#bool¥wordn#wordn)”;;
let m_state = “((M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
Am_state_ty)”;;

let m_env_ty = “:(bool#bool#bool#bool#boolwordn#bool#bool#wordn#boo¥wordn#boolibool)”;;
let m_env = “((ClkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I_last_, I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
Am_env_ty)"s;

let m_out_ty = “:(wordo#bool#wordn#wordu#bool#bool#bool#bool#bool)”;;

let m_out = “((I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_,
MB_parity)
Am_out_ty)”s;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

9@,
4

SRAM/EEPROM selection logic.

let SE_Logic_SPEC = new_definition
(*SE_Logic_SPEC*,
“! clkA clkB (i_ad:time->wordn) male mem_enable M_se cs_e_cs_s_ .

86

SE_Logic_SPEC clkA clkB i_ad male mem_enable M_se cs_e_cs_s_=
It:time .
((clkA t) ==> ((M_se (t+1) = M_se t))) A
((clkB t) ==> ((M_se (t+1) = (male t) => ELEMENT (i_ad t) (23) I M_se))) A

((cs_e_ t = ~((mem_enable t) A ~(M_se (t+1)))) A
(cs_s_ t = ~((mem_enable t) A (M_se (t+1)))))”

)

9%
7

Read/write selection logic.

let WR_Logic_SPEC = new_definition
(*“WR_Logic_SPEC*,
“1 clkA clkB i_ad male mem_enable M_wr wr rd_mem wr_mem .
WR_Logic_SPEC clkA clkB i_ad male mem_enable M_wr wr rd_mem wr_mem =
It:time .
((clkA ¢) ==> (M_wr (t+1) = M_wr) A
((cIkB t) ==> (M_wr (t+1) = (male t) => ELEMENT (i_ad t) (27) |M_wr A
((wr t=M_wr (t+1) A
(rd_mem t = (mem_enable t) A ~(M_wr (t+1))) A
(wr_mem t = (mem_enable t) A (M_wr (t+1))))”

i

o,
Y 4

Address counter logic.

let Addr_Ctr_SPEC = new_definition

(‘Addr_Ctr_SPEC",
“! clkA clkB (i_ad:time->wordn) male rdyA M_addr M_addrA addr_out .

Addr_Ctr_SPEC clkA cIkB i_ad male rdyA M_addr M_addrA addr_out =
It:time .

((cikA t) ==>

((M_addr (t+1) =M _addr) A

(M_addrA (t+1) =M_addr t))) A
((cIkB t) =>

((M_addr (t+1) = (male t) => (SUBARRAY (i_ad t) (18,0)) |

{rdyA t) => (INCN 18 (M_addrA t)) | (M_addrA 1)) A
(M_addrA (t+1)=M_addrA) A

(addr_out t = (rdyA t) => (INCN 18 (M_addrA (t+1))) | M_addrA (t+1))"

%

9%
/0

Byte enable logic.

let BE_Logic_SPEC = new_definition
(‘BE_Logic_SPEC*,
“| clkA clkB (i_be:time->wordn) male srdy wr_mem M_be M_beA be_out ww bw.
BE_Logic_SPEC cIkA clkB i_be male srdy wr_mem M_be M_beA be_out ww bw =
It:time .
((cIkA t) =>
((M_be (t+1)=M_be t) A

87

_beA (t+1)=M_be) A
((ckkB t) =>
((M_be (t+1) = ((male t) V (srdy t)) => (i_be t) | (M_be t)) A
(M_beA (t+1) =M_beA))) A
((be_out t = M_beA (t+1)) A
(ww t=(wr_mem t) A (VAL 3 (M_be (t+1)) = 15)) A
(bw t = (wr_mem t) A ~(VAL 3 (M_be (t+1)) = 15)))”
)

0

Input logic for M_rdy latch.

let Rdy_Logic_SPEC = new_definition
(‘Rdy_Logic_SPEC*,
“| write read zero_cat wr_mem rdy .
Rdy_Logic_SPEC write read zero_cnt wr_mem rdy =
lt:time .
{rdy t = (write t) A (zero_cnt t) V (read t) A (zero_cnt t) A ~(wr_mem t))”
)i

ag,
70

Wait state counter logic.

let Ctr_Logic_SPEC = new_definition
(*Ctr_Logic_SPEC’,
“1 clkA clkB in dn id M_count M_countA zero_cnt .
Ctr_Logic_SPEC clkA cikB in dn Id M_count M_countA zero_cnot =
lt:time .
((clkA t) =>
(M_count (t+1) = M_count t) A
(M_countA (t+1) = M_count t))) A
({(clkB t) =>
((M_count (t+1) = (Id t) => ((in t} => (WORDN 1) | (WORDN 2)) |
(dn t) => (DECN 1 (M_countA t)) | (M_countA t)) A
(M_countA (t+1) =M_countA t))} A
(zero_cot t = (M_countA (t+1) = ((dn t) => (WORDN 1) | (WORDN 0)»))"
i

o,
70

Memory control signal logic.

let Enable_Logic_SPEC = new_definition
(‘Enable_Logic_SPEC*,
“1 cs_eeprom_ rd_mem address read write byte_write wwdel
disable_eeprom disable_writes oe_ edac_le we_mb_wr_en_ .
Enable_Logic_SPEC cs_eeprom_ rd_mem address read write byte_write wwdel
disable_eeprom disable_writes oe_ edac_le we_mb_wr_en_=
lt:time .
(oe_t = ~((rd_mem t) A (address t) V (read t))) A
(we_ t = ~(cs_eeprom_ t) A (disable_eeprom t) V
(disable_writes t) V

88

~{(write t) V (byte_write t) V (wwdel t))) A
(edac_le t=read) A
(mb_wr_en_ t = ~(write t))”
s

0

Generation logic for I_srdy_.

let Srdy_Logic_SPEC = new_definition
(‘Srdy_Logic_SPEC",
“! wr rdy 1dy_outQ srdy_ .
Srdy_Logic_SPEC wr rdy rdy_outQ srdy_ =
It:time .
srdy_ t = ~((rdy_outQ t) A ~(wr t) V (rdy t} A (wr t)”
)

L4

Memory decode logic.

let EDAC_Decode_Logic_SPEC = new_definition
(‘EDAC_Decode_Logic_SPEC",
“! (rep:*rep_ty) (mb_data_in:time->wordn) edac_en data_out detect_out .
EDAC_Decode_Logic_SPEC rep mb_data_in edac_en data_out detect_out =
It:time .
(data_out t = (edac_en t) => (Ham_Dec rep (mb_data_in t)) | (mb_data_in t)) A
(detect_out t = (edac_en t) => (Ham_Det1 rep (mb_data_in t)) | (WORDN 0))”
)

70

Memory read latches.

let Read_Latches_SPEC = new_definition
(‘Read_Latches_SPEC",
“| (rep:*rep_ty) clkA clkB (data_inD:time->wordn) edac_en edac_le detect_inD detect_inE
M_rd_data M_rd_dataA M_detect m_data_outQ m_detect_outQ .
Read_Latches_SPEC rep clkA cIkB data_inD edac_en edac_le detect_inD detect_inE
M_rd_data M_rd_dataA M_detect m_data_outQ m_detect_outQ =
It:time .
((ckA t) =>
((M_rd_data (t+1) =M_rd_datat) A
(M_rd_dataA (t+1) =M_rd_data t) A
_detect (t+1) = (detect_inE t) => (detect_inD t) | (M_detect)))) A
((clkB t) =>
((M_rd_data (t+1) = (edac_le t) => (data_inD t) | (M_rd_datat)) A
(M_rd_dataA (t+1) =M_rd_datat) A
(M_detect (t+1) = M_detect t))) A
((m_data_outQ t = M_rd_dataA (t+1)) A
(m_detect_outQ t = Ham_Det2 rep ((M_detect (t+1)), (edac_en o))"

89

Enable input logic for EDAC correction reporting.

let Detect_Enable_Logic_SPEC = new_definition
(‘Detect_Enable_Logic_SPEC*,
“! edac_en edac_rd detect_inE .
Detect_Enable_Logic_SPEC edac_en edac_rd detect_inE =
ttime .
(detect_inE t = (edac_en t) A (edac_rd t) V ~(edac_rd t))”
)

%,
70

Memory write data multiplexer.

let Mux_Out_Logic_SPEC = new_definition
(*Mux_Out_Logic_SPEC"*,
“1 (m_data_outQ:time->wordn) i_ad be mb_data_out .
Mux_Out_Logic_SPEC m_data_outQ i_ad be mb_data_out=
ittime .

letodl =
(MALTER (mb_data_out t) (7,0) (ELEMENT (be t) (0)) => (SUBARRAY (i_ad t) (7,0))

| (SUBARRAY (m_data_outQ t) (7,0))))

in
(letod2 =
(MALTER od1 (15,8) ((ELEMENT (be t) (1)) => (SUBARRAY (i_ad ¢) (15,8))
| (SUBARRAY (m_data_outQ t) (15,8))))
in
(letod3 =
(MALTER od2 (23,16) ((ELEMENT (be t) (2)) => (SUBARRAY (i_ad t) (23,16))
| (SUBARRAY (m_data_outQ t) (23,16))))
in
(let od4 =
(MALTER od3 (31,24) ((ELEMENT (be t) (3)) => (SUBARRAY (i_ad t) (31,24))
| (SUBARRAY (m_data_outQ t) (31,24))))
in (mb_data_out t = 0d4))))”
%

%

Data encoding logic.

let Enc_Out_Logic_SPEC = new_definition
(‘Enc_Out_Logic_SPEC",
“| (rep:*rep_ty) (mb_data_out:time->wordn) mb_edata_out .
Enc_Out_Logic_SPEC rep mb_data_out mb_edata_out =
It:time .
(mb_edata_out t = Ham_Enc rep (mb_data_out t))”
%

ag,
70

Input logic for M_parity latch.

let Memparity_In_Logic_SPEC = new_definition
{(‘Memparity_In_Logic_SPEC",
“) srdy mem_enable detect_outQ rst reset_parity memparity_inS memparity_inR memparity_inE .
Memparity_In_Logic_SPEC srdy mem_enable detect_outQ rst reset_parity
memparity_inS memparity_inR memparity_inE =
It:time .

(memparity_inS t= (srdy t) A (mem_enable t) A\ (detect_outQ t)) A

(memparity_inR t = (rst t) V (reset_parity t)) A

(memparity_inE t = (memparity_in$ t) V (memparity_inR 0))”
%

o,
70

M-Port controller state machine.

let FSM_SPEC = new_definition
(‘FSM_SPEC',
“1 clkA clkB male_in_rd_in bw_in ww_in last_in_ mrdy_in_ zero_cnt_in rst_in
state male_ rd bw ww last_ mrdy_ zero_cnt rst
stateA address read write byte_write mem_enable
address_out read_out write_out byte_write_out mem_enable_out .
FSM_SPEC clkA clkB male_in_rd_in bw_in ww_in last_in_ mrdy_in_ zero_cnt_in rst_in
state male_ rd bw ww last_ mrdy_ zero_cnt rst
stateA address read write byte_write mem_enable
address_out read_out write_out byte_write_out mem_enable_out =
It:time.
((clkA t) =>
((state (t+1) = state t) A
(male_ (t+1) = male_t) A
(rd t+1)=rd) A
(bw (t+1) =bw)} A
(ww (t+1)=wwt) A
(last_ (t+1) =last_t) A
(mrdy_ (t+1) = mrdy_t) A
(zero_cnt (t+1) = zero_cnt t) A
(rst (t+1)=rst) A
(stateA (t+1) =
((rst t) => MI|
(state t = MI) => ((~(male_ t)) => MA IMD)
(state t = MA) => ((~(mrdy_ t) A (ww 1)) => MW |
(~(mrdy_ t) A ((rd) V (bw 1)) => MR I MA) |
(state t = MR) => (((bw t) N\ (zero_cnt t)) => MBW |
((last_ t) A (rd t) A (zero_cnt t)) => MA |
(~(last_t) A (rd t) A (zero_cnt t)) => MRR | MR) !
(state t = MRR) => MI |
(state t = MW) => (((zero_cnt t) A ~(last_t)) => MI |
{(zero_cnt t) A (last_ t)) => MA IMW) |
MW) A
(address (t+1) = (stateA (t+1)= MA) A
(read (t+1) = (stateA (t+1) =MR)) A
(write (t+1) = (stateA (t+1) = MW) A
(byte_write (t+1) = (stateA (t+1)= MBW) A
(mem_enable (t+1) = ~(stateA (t+1) = MI)) A

91

N

({clkB t) =>

((state (t+1) = stateA) A

(male_ (t+1) =male_in_t)A

(rd (t+1) = rd_in) A
(bw(t+1)=bw_in) A

(ww (t+1) = ww_in) A

(last_ (t+1) =last_in_) A

(mrdy_ (t+1) =mrdy_in_t) A
(zero_cat (t+1) = zero_cnt_in t) A
(rst (t+1)=rst_int) A

(stateA (t+1) = stateA t) A
(address (t+1) = address t) A

(read (t+1) =read t) A

(write (t+1) = write t) A
(byte_write (t+1) = byte_write t) A
(mem_enable (t+1) = mem_enable t))) A

((address_out t = address (t+1)) A
(read_out t = read (t+1)) A

(write_out t = write (t+1)) A
(byte_write_out t = byte_write (t+1)) A
(mem_enable_out t = mem_enable (t+1)))

%,
Y,

M-Port Block.

let M_Block_SPEC = new_definition

(*M_Block_SPEC‘,
| (M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable M_rdyA

M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last_ M_fsm_mrdy_M_fsm_zero_cnot M_fsm_rst M_se

M_wr M_rdy M_wwdel M_parity :(time->bool))

(M_addrA M_beA M_countA M_rd_dataA M_addr M_be M_count M_rd_data M_detect :(time->wordn))

(M_fsm_stateA M_fsm_state :(time->mfsm_ty))

(CIkA CIkB Rst Disable_eeprom Disable_writes I_male_I_last_I_mrdy_ Edac_en_ Reset_parity :(time->bool))

(I_ad_in I_be_ MB_data_in :(time->wordn))

srdy MB_cs_eeprom_ MB_cs_sram_ MB_we_ MB_oe_ MB_parity :(time->bool))

(I_ad_out MB_addr MB_data_out :(time->wordn})

(rep:*rep_ty) .
M_Block_SPEC (M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)

(CIkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, _male_, I last_,I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
(I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_ceprom_, MB_cs_sram_, MB_we_, MB_oe_,

MB_parity)
rep =

? male address read write byte_write mem_enable wr rd_mem wr_mem rdy_outQ srdy
be ww bw zero_cnt rdy count_inDN count_inl.D wwdel_inD wwdel_outQ edac_le
rdy_outQ srdy_ edac_en data_out detect_out data_inD detect_inD detect_inE
m_data_outQ m_detect_outQ mb_data_out mb_edata_out mb_wr_en_ mb_wr_en
memparity_inS memparity_inR memparity_inE .

(NOT_SPEC I_male_ male) A
(SE_Logic_SPEC CIkA CIkB I_ad_in male mem_enable M_se MB_cs_eeprom_ MB_cs_sram_) A
(WR_Logic_SPEC ClkA CIkB I_ad_in male mem_enable M_wr wr rd_mem wr_mem) A
(Addr_Ctr_SPEC CIkA CIkB I_ad_in male rdy_outQ M_addr M_addrA MB_addr) A
(BE_Logic_SPEC CIkA CIkB I_be_ male srdy wr_mem M_be M_beA be ww bw) A
(Rdy_Logic_SPEC write read zero_cnt wr_mem rdy) A
(Ctr_Logic_SPEC CIkA ClkB MB_cs_eeprom_ count_inDN count_inL.D M_count M_countA zero_cnt) A
(OR2_SPEC write read count_inDN) A
(OR2_SPEC address byte_write count_inLD) A
(AND2_SPEC ww address wwdel_inD) A
(DLAT_SPEC wwdel_inD CIkB M_wwdel wwdel_outQ) A
(Enable_Logic_SPEC MB_cs_eeprom_ rd_mem address read write byte_write wwdel_outQ
Disable_eeprom Disable_writes MB_oe_ edac_le MB_we_ mb_wr_en_) N\
(DFF_SPEC rdy CIkA M_rdy M_rdyA rdy_outQ) A
(Srdy_Logic_SPEC wr rdy rdy_outQ srdy_) A
(TRIBUF_SPEC srdy_ mem_enable I_srdy_) A
(NOT_SPEC srdy_ srdy) A
(NOT_SPEC Edac_en_ edac_en) A
(EDAC_Decode_Logic_SPEC rep MB_data_in edac_en data_out detect_out) A
(Read_Latches_SPEC rep ClkA CIkB data_inD edac_en edac_le detect_inD detect_inE
M_rd_data M_rd_dataA M_detect m_data_outQ m_detect_outQ) A
(TRIBUF_SPEC m_data_outQ rd_mem I_ad_out) A
(Detect_Enable_Logic_SPEC edac_en rd_mem detect_inE) A
(Mux_Out_Logic_SPEC m_data_outQ I_ad_in be mb_data_out) A
(Enc_Out_Logic_SPEC rep mb_data_out mb_edata_out) A
(NOT_SPEC mb_wr_en_mb_wr_en) A
(TRIBUF_SPEC mb_edata_out mb_wr_en MB_data_out) A
(Memparity_In_Logic_SPEC srdy mem_enable m_detect_outQ Rst Reset _parity
memparity_inS memparity_inR memparity_inE) A
(DSRELAT_SPEC GND memparity_inS memparity_inR memparity_inE CIkB
M_parity MB_parity) A

(FSM_SPEC CIkA CIkB I_male_ rd_mem bw ww _last_ I_mrdy_ zero_cnt Rst

M_fsm_state M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last_ M_fsm_mrdy_

M_fsm_zero_cot M_fsm_rst

M_fsm_stateA M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable

address read write byte_write mem_enable)”
%

close_theory();;

93

B.3 R Port Specification

%
File: r_block.ml
Author: (c) D.A. Fura 1992

Date: 31 March 1992

This file contains the ml source for the gate-level specification of the R-Port of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piu/hol/lib/*]);;
system ‘rm r_block.th‘;;

new_theory ‘r_block";;

map loadf [‘abstract‘;‘buses_def*];;

map new_parent [‘gates_def; ‘latches_def*;ffs_def";‘counters_def";"datapaths_de: “.‘raux_def"; ‘aux_def";
‘array_def*;' wordn_def'];;

let r_state_ty = “:(rfsm_ty#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#wordn#wordn#
bool¥bool#wordn¥wordn#bool#bool#wordn#wordn#bool#boolfwordn#wordnitbool#tbool#
wordn#bool#wordn#wordn#wordn#
rfsm_ty#bool#¥bool#bool#bool#bool#booli#bool#booli#boolitbool#boobool#bool#wordn#wordn#
bool#booli#bool#wordn#wordn#bool#wordn#bool¥bool#bool#wordn#wordn#bool#wordn#
bool#bool#bool#wordn#wordn#bool¥wordn#bool#boolfbooléwordn#wordn#boobool#
wordn#wordn#wordn#boowordn#boo#wordn#bool#wordn#bool)”;;
let r_state = “((R_fsm_stateA, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_cO1_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctrO_ce, R_ctr0_cin, R_ctr0_owtA, R_ctri, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_c01_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg _sel, R_ctr0_in,
R_ctrO_mux_sel, R_ctr0_irden, R_ctrO_cry, R_ctrO_new, R_ctr0_out, R_ctr0_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctrl_irden, R_ctr]_cry, R_ctrl_new, R_ctrl_out, R_ctrl_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_ccr_rden, R_gcr, R_ger_rden, R_sr,
R_sr_rden)
Ar_state_ty)";;

letr_env_ty = “.(booHbool#bool#wordn#bool#bool#wordn#bool#bool#bool#wordn#wordn#bool#boo#
wordn#wordn#wordn#bool#bool#wordn)”’;;

let r_env = “((CIkA, CIkB, Rst, I_ad_in, I_rale_, I last_, I_be_, I_mrdy_, Disable_int, Disable_writes,

Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChanpelID, CB_parity, MB_parity, C_ss)

Ar_env_ty)s;

letr_out_ty = “:(wordn#bool#bool#bool#bool#bool#wordn#wordn#bool#bool)”;;
let r_out = “((I_ad_out, I_stdy_, Int0_, Intl, Int2, Int3_, Cer, Led, Reset_error, Pmm_invalid)
Ar_out_ty)”";:

let rep_ty = abstract_type ‘aux_def' ‘Andn*;;

70

R-Port controller state machine.

let FSM_SPEC = new_definition
(‘FSM_SPEC*,
“| (ClkA:time->bool) CIkB ale_in_ mrdy_in_ last_in_ rst_in
ale_ mrdy_ last_ rst state
cntlatch srdy_ (stateA:time->rfsm_ty)
sO_out s1_out cntlatch_out srdy_out_ .
FSM_SPEC ClkA CIB ale_in_ mrdy_in_ last_in_ rst_in
ale_ mrdy_ last_ rst state
cntlatch srdy_ stateA
s0_out s1_out cntlatch_out srdy_out_ =

It:time .

((CIKA t) ==>
((stateA (t+1) = ((rst t) => RI |
((state t) = RI) => ((~ale_t) =>RA IRD) |
((state t) = RA) => ((~mrdy_t) =>RD IRA)|
((~tast_t) => RI{RAY A
(cntlatch (t+1) = ((state t =RI) A ~ale_t)) A
(srdy_ (t+1) = ~((state t = RA) A ~mrdy_1t)) A
(state (t+1) = state t) A
(ale_ (t+1) =ale_t) A
(mrdy_ (t+1) =mrdy_t) A
(last_ (t+1) = last_t) A
(st (t+1) =15t))H A
((CIkB ¢) ==
((stateA (t+1) =stateAt) A
(cntlatch (t+1) = catlatch t) A
(srdy_ (t+1) =srdy_Q A
(state (t+1) = stateA t) A
(ale_ (t+1) =ale_in_t) A
(mrdy_ (t+1) = mrdy_in_t) A
(last_ (t+1) = last_in_t) A
(rst (t+1) = rst_in)H A
((sO_out (t+1) = (stateA (t+1) = RD)) A
(s1_out (t+1) = ((stateA (t+1) = RA) V (stateA (t+1)=RD)) A
(cntlatch_out t = cntlatch (t+1)) A
(srdy_out_ t=srdy_ (t+1)))”
¥

oy
0

R_wr latch definition.

95

let Wr_Lat_SPEC = new_definition

(‘Wr_Lat_SPEC",

“! clkB (iad_in:time->wordn) wr_inE r_wr wr_outQ .

Wr_Lat_SPEC clkB iad_in wr_inE r_wr wr_outQ =

It:time .

((~(clkB t)) => (r_wr (t+1)=r_wrt)) A
((cIkB t) => (r_wr (t+1) = (wr_inE t) => (ELEMENT (iad_in t) (27)) Ir_wr t)) A
(wr_outQ t=r_wr (t+1))"

70

Generation logic for control signals dp_read, r_write, r_read, icr_rd_en, srdy_en.

let RW_Sigs_SPEC = new_definition
(‘RW_Sigs_SPEC’,
“! r_wr §0 51 disable_writes dp_read r_write r_read icr_rd_en srdy_en .
RW_Sigs_SPEC r_wr s0 s1 disable_writes dp_read r_write r_read icr_rd_en srdy_en =
(It:time .
(dp_read t = (~r_wrt) A((sO) V(s1 t)) A
(r_write t = (~disable_writes) A (1_wr) A(sOt) A (s1) A
(r_read t= (~r_wr t) A (~=sO) A(s1) A
(icr_rd_ent=(~sOt)NA(s1 t) A
(srdy_ent = (sOt) V (sl t)))”
%

%

R_reg_sel counter and logic.

let Reg_Sel_Cur_SPEC = new_definition
(‘Reg_Sel_Ctr_SPEC",
“! clkA iad_in inl inU_ r_reg_sel r_reg_selA outQ .
Reg_Sel_Ctr_SPEC clkA iad_in inl. inU_r_reg_sel r_reg_selA outQ =
It:time .
((clkA t) =>
((r_reg_sel (t+1) =r1_reg_sel) A
(r_reg_selA (t+1) =r_reg _sel) A
((~(clkA t)) =>
((r_reg_sel (t+1) =
(inL t) => SUBARRAY (iad_in t) (3,0) |
(~inU_t) =>INCN 3 (r_reg_selA t) | r_reg_selA t) A
(r_reg_selA (t+1) =r_reg selAt))) A
(outQ t = (~inU_ t) => INCN 3 (r_reg_selA (t+1)) | 1_reg_selA (t+1))”
)

%

Generation logic for register file control signals.

let Reg_File_Ctl_SPEC = new_definition
(‘Reg_File_Ct_SPEC*,
“! (reg_sel:time->wordn) write read icr_rd_en

96

cir_wr01 cir_wr23

cOir_wr cOir_rd cOor_rd clir_wr clir_rd clor_rd
¢2ir_wr c2ir_rd c2or_rd c3ir_wr ¢3ir_rd c3or_rd
icr_wr_feedback icr_select icr_rd

cer_wrcer_rd ger_wr ger_rd sr_rd .

Reg_File_Ctl_SPEC reg_sel write read icr_rd_en

cir_wr0l cir_wr23

c0ir_wr c0ir_rd cOor_rd clir_wr clir_rd clor_rd
¢2ir_wr c2ir_rd c2or_rd c3ir_wr c3ir_rd c3or_rd
icr_wr_feedback icr_select icr_rd

cer_wr cer_rd ger_wr ger_rd sr_rd =

(!t:time .

%

(cir_wr01 t = (write t) A (((reg_sel t) = WORDN 8) V ((reg_sel t) = WORDN 9) A
{cir_wr23 t = (write t) A (((reg_sel t) = WORDN 10) V ((reg_sel t) = WORDN 1)) A
(cOir_wr t = (write t) A ((reg_sel t) = WORDN 8)) A

(cOir_rd t = (read t) A ((reg_sel t) = WORDN 8)) A

(cOor_rd t = (read t) A\ ((reg_sel t) = WORDN 12)) A

(clir_wr t = (write t) A\ ((reg_sel t) = WORDN M) A

(clir_rd t = (read ¢) A ((reg_sel t) = WORDN 9)) A

(clor_rd t = (read t) A ((reg_sel t) = WORDN 13)) A

(c2ir_wr t = (write t) A ((reg_sel t) = WORDN 10)) A

(c2ir_rd t = (read t) A ((reg_sel t) = WORDN 10) A

(c2or_rd t = (read t) A ((reg_sel) = WORDN 14)) A

(c3ir_wr t = (write t) A ((reg_sel t) = WORDN 11))A

(c3ir_rd t = (read ¢) A\ ((reg_sel t) = WORDN 11)) A

(c3or_rd t = (read t) A ((reg_sel t) = WORDN 15)) A

(icr_wr_feedback t = (write t) A (((reg_sel) = WORDN 0} V ((reg_sel t) = WORDN 1))) A
(icr_select t = ~((reg_sel t) = WORDN 1)) A

(icr_rd t = (icr_rd_en t) A (((reg _sel t) = WORDN 0) V ((reg_sel t) = WORDN 1))) A
(ccr_wr t = (write t) A ((reg_sel t) = WORDN 3)) A

(cer_rd t = (read t) A\ ((reg_sel t) = WORDN) A

(ger_wr t= (write t) A ((reg_sel t) = WORDN 2)) A

(ger_rd t = (read t) N\ ((reg_sel t) = WORDN 2)) A

(st_rd t = (read t) A ((reg_sel t) = WORDN 4)))”

70

Input logic for R_intl_en, R_int2_en latches.

let Ctr_Int_Logic_SPEC = new_definition
(‘Ctr_Int_Logic_SPEC‘,
“| one_shot interrupt reload cout cout_del cir_wr

int_en_inR int_en_inS int_en_inEc_Id.

Ctr_Int_Logic_SPEC one_shot interrupt reload cout cout_del cir_wr

int_en_inR int_en_inS int_en_inE c¢_Id =

(tt:time .

)%

(int_en_inR t = (one_shot t) A (cout_del t) V (~interrupt t)) A
(int_en_in$ t = (interrupt t) A ((cout t) A (reload t) V (cir_wr) A
(int_en_inE t = (one_shot t) A (cout_del t) V (~interrupt t) Y

(interrupt t) A ((cout t) A\ (reload t) V (cir_wr 1)) A
(c_ld t = (cout t) A (reload t) V (cir_wr 1)))”

97

a
7

Input logic for R_int0_en, R_int3_en latches.

let And_Tree_SPEC = new_definition
(‘And_Tree_SPEC®,
“I icr outQ out3 .
And_Tree_SPEC icr outD out3 =
(It:time .

(outD t = (ELEMENT (icr t) (0)) A (ELEMENT (icr t) (8)) V
(ELEMENT (icr t) (1)) A (ELEMENT (icr t) (9)) V
(ELEMENT (icr t) (2)) A (ELEMENT (icr t) (10)) V
(ELEMENT (icr t) (3)) A (ELEMENT (icr t) (11)) V
(ELEMENT (icr t) (4)) A (ELEMENT (icr t) (12)) V
(ELEMENT (icr t) (5)) A (ELEMENT (icr t) (13)) V
(BELEMENT (icr t) (6)) A (ELEMENT (icr t) (14)) V
(ELEMENT (icr t) (7)) A (ELEMENT (icr t) (15)) A

(out3 t = (ELEMENT (icr t) (16)) A (ELEMENT (icr t) (24))V
(ELEMENT (icr t) (17)) A(ELEMENT (ier t) (25)) V
(ELEMENT (icr t) (18)) A (ELEMENT (icr t) (26)) V
(ELEMENT (icr t) (19)) A(ELEMENT (icr t) 27) V
(ELEMENT (icr t) (20)) A (ELEMENT (icr t) (28)) V
(ELEMENT (icr t) (21)) A(ELEMENT (icr t) (29)) V
(ELEMENT (icr t) (22)) A (ELEMENT (icr t) (30)) V
(ELEMENT (icr t) (23)) A(ELEMENT (icr t) (31))”

o
7/

Generation logic for IntO_, Int3_ signals.

let Reg_Int_logic_SPEC = new_definition
(‘Reg_Int_Logic_SPEC",
“! int0_en int0_dis int3_en int3_dis disable_int int0_ int3_ .
Reg_Int_Logic_SPEC intO_en int0_dis int3_en int3_dis disable_int int0_ int3_ =
(lt:time .
(int0_ t = ~((int0_en t) A (~intO_dis t) A (~disable_int t))) A
(int3_ t = ~((int3_en t) A (~int3_dis t) A (~disable_int t))))”
)i

a.
7

Virtual logic to package several R-Port inputs into single SR input word.

let SR_Inputs_SPEC = new_definition
(*SR_Inputs_SPEC*,
*! cpu_fail reset_cpu piu_fail pmm_fail s_state
id channellD) cb_parity c_ss mb_parity (sr_inp:time->wordn) .
SR_Inputs_SPEC cpu_fail reset_cpu piu_fail pmm_fail s_state
id channellD cb_parity c_ss mb_parity sr_inp =
It:time .
let al = (MALTER ARBN (1,0) (cpu_fail t)) in
let a3 = (MALTER al (3,2) (reset_cpu t)) in
let a5 = (ALTER a3 (8) (piu_fail t)) in

98

let a6 = (ALTER a5 (9) (pmm_fail t)) in
let a7 = (MALTER a6 (15,12) (s_state t)) in
let a8 = (MALTER a7 (21,16) (id t)) in
let a9 = (MALTER a8 (23,22) (channelID t)) in
let a10 = (ALTER a9 (24) (cb_parity ¥)) in
letall = (MALTER a10 (27,25) (c_ss t)) in
let al2 = (ALTER all (28) (mb_parity t)) in
(sr_inp t =al2)"”

%

%
/

Virtual logic to distribute single GCR output word as several pieces.

let GCR_Outputs_SPEC = new_definition
(‘GCR_Outputs_SPEC*,
“1 (ger_out:time->wordn)
led reload01 oneshotQ1 interruptO] enable01
reload23 oneshot23 interrupt23 enable23 reset_error pmm_invalid .
GCR_Outputs_SPEC ger_out led reload01 oneshotQ1} interruptOl
enableO1 reload23 oneshot23 interrupt23 enable23 reset_error pmm_invalid =
lt:time .
(led t = SUBARRAY (ger_out t) (3,0)) A
{reload01 t = ELEMENT (ger_out t) (16)) A
(oneshot01 t = BLEMENT (ger_out t) (17)) A
(interrupt01 t = ELEMENT (ger_out t) (18)) A
(enable01 t = ELEMENT (ger_out t) (19)) A
(reload23 t = ELEMENT (ger_out t) (20)) A
(oneshot23 t = ELEMENT (ger_out t) (21)) A
(interrupt23 t = ELEMENT (ger_out ¢) (22)) A
(enable23 t = ELEMENT (ger_out t) (23)) A
(reset_error t = ELEMENT (ger_out £) (24)) A
(pmm_invalid t = ELEMENT (gcr_out t) (28))”
%

[
Y,

Virtual logic to generate the 12 tristate driver enables for datapath Bus A.

let Bus_Enab_SPEC = new_definition
(‘Bus_Enab_SPEC‘,
“1 ¢lkA r_ctrO_irden r_ctrO_orden r_ctr1_irden r_ctrl_orden r_ctr2_irden r_ctr2_orden
r_ctr3_irden r_ctr3_orden r_icr_rdenr_ccr_rdenr -_ger_rden r_sr_rden
busA_cO_enl busA_cO_en2 busA_cl_enl busA_c1_en2 busA_c2_enl busA_c2_en2
busA_c3_enl busA_c3_en2 busA_icr_en busA_ccr_en busA_ger_en busA_sr_en.
Bus_Enab_SPEC clkA r_ctr0_irden r_ctrxQ_orden r_ctr]_irden r_ctr]_orden r_ctr2_irden r_ctr2_orden
r_ctr3_irden r_ctr3_orden r_icr_rden 1_ccr_rden r_ger -_rden r_sr_rden
busA_cO_enl busA_cO_en2 busA_c1_enl busA_cl_en2 busA_c2_enl busA_c2_en2
busA_c3_enl busA_c3_en2 busA_icr_en busA_ccr_en busA_gcr_en busA_sr_en =
It:time .
(busA_cO_enl t = (cIkA t) A (r_ctrQ_irden t)) A
(busA_cO_en2 t = (cIkA t) A (r_ctrO_orden t)) A
(busA_cl_enl t=(clkA) A (r_ctrl_irden t)) A
(busA_cl_en2 t= (ckA t) A(r_ctrl_orden t)) A

(busA_c2_enl t = (clkA t) A (r_ctr2_irden t)) \
(busA_c2_en2 t = (clkA t) A (r_ctr2_orden t))} A
(busA_c3_enl t = (clkA t) A (r_ctr3_irden t)) N
(busA_c3_en2 t = (clkA t) A (r_ctr3_orden t)) A
(busA_icr_ent = (clkA t) A (r_icr_rden t)) A
(busA_ccr_en t = (clkA t) A (r_ccr_rden t)) A
(busA_ger_en t = (clkA t) A (r_ger_rden t)) A
(busA_sr_en t = (clkA t) A (r_st_rden t))”

@,
70

R-Port block.

let R_Block_SPEC = new_definition
(‘R_Block_SPEC*,
“I (rep:Arep_ty)

(R_fsm_stateA R_fsm_state :time->rfsm_ty)

(R_reg_selA R_ctrO R_ctr0_outA R_ctrl R_ctrl_outA R_ctr2 R_ctr2_outA R _ctr3 R_ctr3_outA R_icr_oldA
R_icrA R_busA_latch R_reg_sel R_ctrO_in R_ctrO_new R_ctr0_out R_ctrl_in R_ctrl_new R_ctrl_out
R_ctr2_in R_ctr2_new R_ctr2_out R_ctr3_in R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr
R_cer R_ger R_sr :time->wordn)

_fsm_cntlatch R_fsm_srdy_ R_int0_en R_int0_disA R_int3_en R_int3_disA R_c01_cout R_c01_cout_delA
R_c23_cout R_c23_cout_delA R_cntlatch_delA R_srdy_delA_ R_ctrO_ce R_ctrO_cin R_ctrl_ce R_ctrl_cin
R_ctr2_ce R_ctr2_cin R_ctr3_ce R_ctr3_cin R_icr_loadA R_fsm_ale_ R_fsm_mrdy_R_fsm_last_ R_fsm_rst
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del
R_srdy_del_ R_ctrO_mux_sel R_ctr0_irden R_ctrO_cry R_ctrO_orden R_ctrl_mux_sel R_ctrl_irden
R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R_ger_rden
R_sr_rden :time->bool)

(I_ad_in I_be_ Cpu_fail Reset_cpu S_state Id ChannelID C_ss :time->wordn)

(CIkA CIkB Rst I_rale_I_last_I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail
CB_parity MB_parity :time->bool)

_ad_out Ccr Led :time->wordn)
(I_srdy_ Int0_ Intl Int2 Int3_ Reset_error Pmm_invalid :time->bool) .
R_Block_SPEC rep

(R_fsm_stateA, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctrO_ce, R_ctrO_cin, R_ctrO_outA, R_ctrl, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_cOl_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg_sel, R_ctr0_in,
R_ctrO_mux_sel, R_ctrO_irden, R_ctr0_cry, R_ctr0_new, R_ctrO_out, R_ctrO_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctrl_irden, R_ctrl_cry, R_ctrl_new, R_ctrl_out, R_ctr]l_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_ccr_rden, R_gcer, R_ger_rden, R_sr,
R_sr_rden)

(CIKA, CIkB, Rst, I_ad_in, I_rale_, I_last_, I_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB_parity, C_ss)

(I_ad_out, I_srdy_, Int0_, Int1, Int2, Int3_, Ccr, Led, Reset_error, Pmm_invalid) =

? fsm_sO fsm_s1 fsm_cntlatch fsm_srdy_ srdy_en wr_inE wr_outQ

100

dp_read r_write r_read icr_rd_en c13or_Id srdy_del_outQ_reg_sel

icr_rd_en r_cir_wr01 r_cir_wr23 cOir_wr cOir_rd cOor_rd cl ir_wr clir_rd clor_rd

c2ir_wr c2ir_rd c2or_rd c3ir_wr c3ir_rd c3or_rd icr_wr_feedback icr_select icr_rd

cer_wr cor_rd ger_wr ger_rd sr_xd icr_Id ¢O1_cout ¢01_cout_outQ c01_cout_delA_outQ
€23_cout c¢23_cout_outQ ¢23_cout_delA_outQ

oneshot0]1 interruptO1 reloadOl intl_en_inR intl_en_inS int1_en_inE intl_en_outQ c01_Id
oneshot23 interrupt23 reload23 int2_en_inR int2_en_inS int2_en_inE int2_en_outQ c23_1d
enable01 enable23 cO_cout c2_cout ccr_out ger_out sr_inp

disable_int_ int0_en_inD int0_en_outQ int0_dis_outQ int3_en_inD int3_en_outQ int3_dis_outQ
icr_out BusA BusB_in busA_latch_out

(BusA_c0_outl BusA_c0_out2 BusA_c1_outl BusA_c1_out2 BusA_c2_outl BusA_c2_out2
BusA_c3_outl BusA_c3_out2 BusA_icr_out BusA_ccr_out BusA_ger_out BusA_sr_out :time->wordn)
(BusA_cO_en}l BusA_cO_en2 BusA_cl_enl BusA_cl_en2 BusA_c2_enl BusA_c2_en2
BusA_c3_enl BusA_c3_en2 BusA_icr_en BusA_ccr_en BusA_gcr_en BusA_sr_en :time->bool)

(FSM_SPEC CIkA CIkB I_rale_I_mrdy_I_last_ Rst
R_fsm_ale_ R_fsm_mrdy_ R_fsm_last R_fsm_rst R_fsm_state
R_fsm_cntlatch R_fsm_srdy_ R_fsm_stateA
fsm_sO fsm_s1 fsm_cntlatch fsm_srdy_) A
(TRIBUF_SPEC fsm_srdy_ srdy_en I_srdy_) A
(NOT_SPEC I_rale_ wr_inE) A
(Wr_Lat_SPEC CIkB I_ad_in wr_inE R_wr wr_outQ) A
(RW_Sigs_SPEC wr_outQ fsm_s0 fsm_s1 Disable_writes dp_read r_write r_read ict_rd_en srdy_en) A\
(DFF_SPEC fsm_cntlatch CIkA R_cntlatch_del R_cntlatch_delA cl3or_ld) A
(DFF_SPEC fsm_srdy_ CIkA R_srdy_del_ R_srdy_delA_ srdy_del_outQ_) A
(Reg_Sel_Ctr_SPEC CIkA I_ad_in wr_inE srdy_del_outQ_ R_reg_sel R_reg_selA reg_sel) A
(Reg_File_Ctl_SPEC reg_sel r_write r_read icr_rd_en
r_cir_wr0l1 r_cir_wr23
c0ir_wr c0ir_rd cOor_rd clir_wr clir_rd clor_rd
c2ir_wr c2ir_rd c2or_rd ¢3ir_wr c¢3ir_rd c3or_rd
icr_wr_feedback icr_select icr_rd
ccr_wr cer_rd ger_wr ger_rd st_rd) A
(DFF_SPEC icr_wr_feedback ClkA R_icr_load R_icr_loadA icr_Id) A
(DLAT_SPEC c01_cout ClkA R_c01_cout c01_cout_outQ) A
(DLAT_SPEC ¢23_cout ClkA R_c23_cout c23_cout_outQ) A
(DFF_SPEC c01_cout_outQ ClkA R_c01_cout_del R_cO1_cout_delA c01_cout_delA_outQ) A
(DFF_SPEC c¢23_cout_outQ ClkA R_c23_cout_del R_c23_cout_delA c23_cout_delA_outQ) A
(Ctr_Int_Logic_SPEC oneshotOl interrupt01 reload01 cO1_cout_outQ c01_cout_delA_outQ
r_cir_wrO] int]_en_inR intl_en_inS intl_en_inE c01_ld)A
(Ctr_Int_Logic_SPEC oneshot23 interrupt23 reload23 ¢23_cout_outQ c23_cout_delA_outQ
r_cir_wr23 int2_en_inR int2_en_inS int2_en_inE c23_ld) A
(DSRELAT_SPEC GND intl_en_inS intl_en_inR int]l_en_inE CIkB R_intl_en intl_en_outQ) A
(DSRELAT_SPEC GND int2_en_inS int2_en_inR int2_en_inE CIkB R_int2_en int2_en_outQ) A
(NOT_SPEC Disable_int disable_int_) A
(AND3_SPEC c01_cout_outQ int1_en_outQ disable_int_Int1) A
(AND3_SPEC ¢23_cout_outQ int2_en_outQ disable_int_Int2) A
(And_Tree_SPEC icr_out int0_en_inD int3_en_inD) A
(DLAT_SPEC int0_en_inD CIKA R_int0_en int0_en_outQ) A
(DLAT_SPEC int3_en_inD CIkA R_int3_en int3_en_outQ) A
(DFE_SPEC int0_en_outQ ClkA R_int0_dis R_int0_disA int0_dis_outQ) A
(DFF_SPEC int3_en_outQ ClkA R_int3_dis R_int3_disA int3_dis_outQ) A
(Reg_Int_Logic_SPEC int0_en_outQ int0_dis_outQ int3_en_outQ int3_dis_outQ
Disable_int Int0_ Int3_) A

101

(DLATn_SPEC BusA CIkA R_busA_latch busA_latch_out) A
(TRIBUF_SPEC busA_latch_out dp_read I_ad_out) A
(BUF_SPECI_ad_in BusB_in) A
(DP_CTR_SPEC CIkA CIkB BusB_in cOir_wr cO1_ld cOir_rd enable01 VDD fsm_cntlatch
cOor_rd R_ctrO_in R_ctrO_mux_sel R_ctrO_irden R_ctrO R_ctr0_ce R_ctr0_cin
R_ctrO_cry R_ctr0_new R_ctr0_outA R_ctrO_out R_ctrO_orden
BusA_cO_outl BusA_c0_out2 cO_cout) A
(DP_CTR_SPEC CIkA CIkB BusB_in clir_wr c01_ld clir_rd VDD c0_cout c13or_Id
clor_rd R_ctrl_in R_ctrl_mux_sel R_ctrl_irden R_ctrl R_ctrl_ceR_ctrl_cin
R_ctrl_cry R_ctrl_pew R_ctrl_outA R_ctrl_out R_ctrl_orden
BusA_cl_outl BusA_cl_out2 c0l_cout) A
(DP_CTR_SPEC CIkA CIkB BusB_in c2ir_wr c23_ld c2ir_rd enable23 VDD fsm_cntlatch
c2or_rd R_ctr2_in R_ctr2_mux_sel R_ctr2_irden R_ctr2 R_ctr2_ce R_ctr2_cin
R_ctr2_cry R_ctr2_new R_ctr2_outA R_ctr2_out R_ctr2_orden
BusA_c2_outl BusA_c2_out2 c2_cout) A
(DP_CTR_SPEC CIkA CIkB BusB_in c3ir_wr ¢23_Id ¢3ir_rd VDD ¢2_cout c13or_Id
c3or_rd R_ctr3_in R_ctr3_mux_sel R_ctr3_irden R_ctr3 R_ctr3_ce R_ctr3_cin
R_ctr3_cry R_ctr3_new R_ctr3_outA R_ctr3_out R_ctr3_orden
BusA_c3_outl BusA_c3_out2 c23_cout) A
(DP_ICR_SPEC rep CIkA CIkB BusA BusB_in icr_wr_feedback icr_rd icr_select R_icr_loadA icr_rd
R_icr_oldA R_icr_old R_icr_mask R_icrA R_icr R_icr_rden
BusA_icr_out icr_out) A
(DP_CR_SPEC CIkA CIkB BusB_in ccr_wr cer_rd R_cer R_ccr_rden BusA_cer_out cer_out) A
(DP_CR_SPEC ClkA CIkB BusB_in ger_wr ger_rd R_ger R_ger_rden BusA_ger_out ger_out) A
(GCR_Outputs_SPEC gcr_out Led reload01 oneshot01 interruptO1
enable0] reload23 oneshot23 interrupt23 enable23 Reset_error Pmm_invalid) A
(SR_Inputs_SPEC Cpu_fail Reset_cpu Piu_fail Pmm_fail S_state
Id ChannelID CB_parity C_ss MB_parity sr_inp) A
(DP_SR_SPEC CIkA CIkB sr_inp fsm_cntlatch st_rd R_sr R_sr_rden BusA_sr_out) A
(Bus_Enab_SPEC CIkA R_ctrO_irden R_ctrO_orden R_ctrl_irden R_ctrl_orden R_ctr2_irden R_ctr2_orden
R_ctr3_irden R_ctr3_orden R_icr_rden R_ccr_rden R_gor_rden R_sr_rden
BusA_cO_enl BusA_cO_en2 BusA_cl_enl BusA_cl_en2 BusA_c2_enl BusA_c2_en2
BusA_c3_enl BusA_c3_en2 BusA_icr_en BusA_ccr_en BusA_gcr_en BusA _sr_en) A
(Bus_12_1_SPEC BusA_c0_out] BusA_c0_out2 BusA_cl_outl BusA_cl_out2 BusA_c2_outl BusA_c2_out2
BusA_c3_out! BusA_c3_out2 BusA_icr_out BusA_ccr_out BusA_gcr_out BusA_sr_out
BusA_cO_en] BusA_c0O_en2 BusA_cl_enl BusA_cl_en2 BusA_c2_enl BusA_c2_en2
BusA_c3_en] BusA_c3_en2 BusA_icr_en BusA_ccr_en BusA_gcr_en BusA_sr_en BusA)”

i

close_theory();;

102

B.4 C Port Specification

R

File: c_block.ml
Author: (c) D.A. Fura 1992
Date: 31 March 19952

This file contains the ml source for the gate-level specification of the C-Port of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

set_search_path (search_path() @ [*/home/titan3/dfura/ftep/pin/hol/lib/*1);:

system ‘rm c_block.th*;;

new_theory ‘c_block";;

loadf ‘abstract;;

map new_parent [‘gates_def*; ‘latches_def* .ffs_def*;‘counters_def*;'caux_def*;‘aux_def"; array_def*;'wordn_def‘];;

let MSTART = “WORDN 4”;;
let MEND = “WORDN 5”;;
let MRDY = “WORDN 6";;
let MWAIT = “WORDN 77;;
let MABORT = “WORDN 0”;;

let SACK = “WORDN 5";;
let SRDY = “WORDN 6;;
let SWAIT = “WORDN T77;;
let SABORT = “WORDN 07;;

let c_state_ty = “:(cmfsm_ty#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#
wordn#bool#bool#booi#bool#bool#
csfsm_ty#wordn#bool#bool#bool#bool#boo]#bool#boowbool#bool#bool#bool#bool#
cefsm_ty#bool#
bool#bool#bool#bool#wordn#bool#bool#bool#bool#bool#bool#bool#bool#wordn#wordn#wordn#
cmfsm_ty#bool#bool#booI#bool#bool#bool#bool#bool#bool#bool#wordn#bool#
csfsm_ty#bool#bool#bool#bool#bool#bool#wordn#
cefsm_ty#bool#bool#bool#boolitbool#booi#
bool#wordn#bool#bool#bool#bool#bool#wordn#bool#bool#bool#bool#bool#bool#booI#
bool#booltwordn#wordn#wordn)”’;;
let c_state = “((C_mfsm_stateA,C _mfsm_mabort,C_mfsm_midle,C_mfsm_mrequest,C _mfsm_ma3,C_mfsm_ma2,C_mfsm_mal,
C_mfsm_m20,C_mfsm_mdl,C_mfsm _md0,C_mfsm_iad_en_m,C_mfsm_m_cout_sell,C _mfsm_m_cout_sel0,
C_mfsm_ms,C_mfsm_rqt_,C_mfsm_cgnt_,C_mfsm_cm_en,C_mfsm_abort_le_en_,C_mf _mparity,
C_sfsm_stateA,C_sfsm_ss,C_sfsm_iad_en_s C_sfsm_sidle,C_sfsm_slock,C_sfsm_sal,C_sfsm_sa0,
C_sfsm_sale,C_sfsm_sd1,C_sfsm_sd0,C_s fsm_sack,C_sfsm_sabon,C_sfsm_s_eout__selO,C_sf sm_sparity,
C_efsm_stateA,C_efsm_srdy_en,
C_clkAA,C_sidle_delA,C_mrqt_delA.C_last_inA_,C_ssA,C_holdA_,C_rd_srdy.C_cout_O_le_delA,

103

C_cin_2_leA,C_mrdy_delA_,C_iad_en_s_delA,C_wrdyA,C_rrdyA,C_iad_out,C_ala0,C_a3a2,
C_mfsm_state,C_mfsm_srdy_en,C_mfsm_D,C_mfsm_grant,C_mfsm_rst,C_mfsm_busy,C_mfsm_write,
C_mfsm_crqt_,C_mfsm_hold_,C_mfsm_last_,C_mfsm_lock_,C_mfsm_ss,C_mfsm_invalid,
C_sfsm_state,C_sfsm_D,C_sfsm_grant,C_sfsm_rst,C_sfsm_write,C_sfsm_addressed,C_sfsm_hida_,C_sfsm_ms,
C_efsm_state,C_efsm_cale_,C_efsm_last_,C_efsm_male_,C_efsm_rale_,C_efsm_srdy_,C_efsm_rst,
C_wr,C_sizewrbe,C_clkA,C_sidle_del,C_mrqt_del,C_last_in_,C_lock_in_,C_s5,C_last_out_,
C_hold_,C_cout_0_le_del,C_cin_2_le.C_mrdy_del_,C_iad_en_s_del,C_wrdy,

C_rrdy,C_parity,C_source,C_data_in,C_iad_in)
Ac_state_ty)";;

let c_env_ty = “:(wordn#wordn#bool#bool#boobool#bool#bool#bool#bool#bool¥
wordn#wordn#wordn#wordn#bool#bool#bool#bool#wordo#wordn#booHbool#wordn#bool)”;;
let c_env = “((I_ad_in, I_be_in_, I_mrdy in_, I_rale_in_, I _male_in_, I_last_in_, I_srdy_in_,
1 lock_, I_cale_, I_hlda_, I_crqt_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in,
Rst, ClkA, CIkB, CIkD, Id, ChannellD, Pmm_failure, Piu_invalid, Ccr, Reset_error)
Ac_env_ty)";;

let c_out_ty = “:(boolbool#bool#bool#bool#bool#bool#wordn¥wordn#
bool#wordn#wordn#wordo#wordn#bool#bool)”;;
let c_out = “((I_cgnt_, I_mrdy_out_, I_hold_, I_rale_out_, I_male_out_, I_last_out_, I_srdy_out_,
1_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)
Ae_out_ty)'s;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

%

Input logic for C_last_in_ flip-flop.

let Last_Logic = new_definition
(‘Last_Logic*,
“! rst clkD mfsm_md1 mfsm_mabort last_in_inE .
Last_Logic rst clkD mfsm_md] mfsm_mabort last_in_inE =
It:time .
(last_in_inE t = (rst t) V ((cIkD t) A (mfsm_md1 t)) V (mfsm_mabort t))”
%

.
7

Input logic for C_last_out_ latch.

let Hold_Logic = new_definition
(‘Hold_Logic*,
“! (cb_ms:time->wordn) clkD sfsm_sal last_out_inS last_out_inR last_out_inE .
Hold_Logic cb_ms clkD sfsm_sal last_out_inS last_out_inR last_out_inE =
It:time .
(last_out_inS t = sfsm_sal) A
(last_out_inR t = (clkD t) A ((cb_ms t = AMEND) V (cb_ms t = "MABORT))) A
(last_out_inE t = (last_out_inS t) V (last_out_inR t))”
)

]

104

Generation logic for cout_sel signal.

let Cout_Sel_Logic_SPEC = new_definition
(‘Cout_Sel_Logic_SPEC*,
“| sfsm_s_cout_sel0 mfsm_m_cout_sell mfsm_m_cout_selO sfsm_sdO sfsm_sd1 (cout_sel:time->wordn) .
Cout_Sel_Logic_SPEC sfsm_s_cout_sel0 mfsm_m_cout_sell mfsm_m_cout_sel0 sfsm_sdO sfsm_sd1 cout_sel =
It:time .
(cout_sel t = ((sfsm_sd0 t) V (sfsm_sd1 t))
=> (let al = (ALTER (cout_sel t) 0 (sfsm_s_cout_sel0 t))
in (ALTER al 1 F))
| (let al = (ALTER (cout_sel) 0 (mfsm_m_cout_sel0 t))
in (ALTER al 1 (mfsm_m_cout_sell 1))))”

%

o
0

Generation logic for srdy signal.

let Srdy_In_Logic_SPEC = new_definition
(‘Srdy_In_Logic_SPEC*,
“1 (cb_ss:time->wordn) dfsm_srdy .
Srdy_In_Logic_SPEC cb_ss dfsm_srdy =
tt:time. (dfsm_srdy t = (cb_ss t = ASRDY))”
%

a,
70

Input logic for C_wrdy, C_rrdy latches.

let Rdy_Logic_SPEC = new_definition
(‘Rdy_Logic_SPEC*,
“| mfsm_mdO mfsm_md1 clkD write srdy wrdy_inD rrdy_inD .
Rdy_Logic_SPEC mfsm_md0 mfsm_md1 clkD write srdy wrdy_inD rrdy_inD =
lt:time .
(wrdy_imD t = (srdy t) A (write t) A (mfsm_md1 t) A (clkDt)) A
(rrdy_inD t = (stdy t) A ~(write t) A (mfsm_md0 t)} A (clkD tv))”
%

A
70

Generation logic for I_srdy_out_ signal.

let ISrdy_Out_Logic_SPEC = new_definition
(*ISrdy_Out_Logic_SPEC*,
“I wrdyA_outQ mdyA_outQ fsm_mabort cale_ stdy_en isrdy_inD isrdy_inE .
ISrdy_Out_Logic_SPEC wrdyA_outQ rrdyA_outQ fsm_mabort cale_ srdy_en isrdy_inD isrdy_inE =
lt:time .
(isrdy_inD t = ~((wrdyA_outQ t) V (rrdyA_outQ) V (fsm_mabort t))) A
(isrdy_inE t = ~(cale_ t) V (srdy_en t))"
%

0,
70

Generation logic for CBss_out signal.

105

let CBss_Out_Logic_SPEC = pew_definition
(*CBss_Out_Logic_SPEC",
“| (sfsm_ss:time->wordn) pmm_failure piu_valid cbss_out .
CBss_Out_Logic_SPEC sfsm_ss pmm_failure piu_valid cbss_out =
It:time .
(cbss_out t = (let al = (MALTER (cbss_out t) (1,0) (SUBARRAY (sfsm_ss t) (1,0)))
in (ALTER al (2) (ELEMENT (sfsm_ss t} (2)) A (pmm,_failure t) A (piu_valid t)))))”
)i

o9,
70

Generation logic for CBms_out signal.

let CBms_Out_Logic_SPEC = new_definition
(*CBms_Out_Logic_SPEC‘,
“! (mfsm_ms:time->wordn) pmm_failure piu_valid cbms_out .
CBms_Out_Logic_SPEC mfsm_ms pmm_failure piu_valid cbms_out =
Ittime .
(cbms_out t = (let al = (MALTER (cbms_out t) (1,0) (SUBARRAY (mfsm_ms t) (1,0)))
in (ALTER al (2) (ELEMENT (mfsm_ms t) (2)) A ~(pmm_failure t) A ~(piu_valid)))))”
%

9%
70

Generation logic for cout_1_le signal.

let Cout_1_Le_Logic_SPEC = new_definition
(‘Cout_l1_Le_Logic_SPEC",
“| dfsm_master cout_0_le_del dfsm_cout_1_le cout_1_le .
Cout_1_Le_Logic_SPEC dfsm_master cout_0_le_del dfsm_cout_1_le cout_1_le =
It:time .
(cout_1_le t = ~(dfsm_master t) A (dfsm_cout_1_le t) V (dfsm_master t) A (cout_0_le_del t))”
)

o

Generation logic for iad_en signal.

let Jad_En_Logic_SPEC = new_definition
(‘lad_En_Logic_SPEC‘,
“! mfsm_iad_en_m sfsm_jad_en_s iad_en_s_del iad_en .
lad_En_Logic_SPEC mfsm_iad_en_m sfsm_iad_en_s iad_en_s_del iad en =
It:time .
(iad_en t = (mfsm_iad_en_m t) V (sfsm_iad_en_s t) V (iad_en_s_del t))"
¥

0

Generation logic for c_pe_cnt signal.

let Pe_Cnt_Logic_SPEC = new_definition
(*Pe_Cnt_Logic_SPEC‘,

106

“1 clkD (sfsm_sparity:time->bool) mfsm_mparity (cb_ss_in:time->wordn) ¢_pe_cnt .
Pe_Cnt_Logic_SPEC clkD sfsm_sparity mfsm_mparity cb_ss_inc_pe_cnt=
It:time .
(c_pe_cntt=(clkDt) A
(~((sfsm_sparity t) = (mfsm_mparity t)) V (SUBARRAY (cb_ss_in t) (1,0)) = WORDN 0)))"
%

o
70

Generation logic for c_grant, c_busy signals.

let Grant_Logic_SPEC = new_definition
(‘Grant_Logic_SPEC‘,
“1 (id:time->wordn) (rqt_:time->wordn) busy grant .
Grant_Logic_SPEC id rqt_ busy grant =
it:time .
(busy t = ~(ELEMENT (qt_t) (3)) V ~(ELEMENT (rqt_t) (2)) V ~(ELEMENT (rqt_t) (D) A
(grant t = (SUBARRAY (id t) (1,0)) = WORDN O) A ~(ELEMENT (rqt_t) (0)) V
((SUBARRAY (id t) (1,0)) = WORDN 1) A ~(ELEMENT (rqt_t) (0)) A(ELEMENT (rqt_t) (1)) V
((SUBARRAY (id t) (1,0)) = WORDN 2) A ~(ELEMENT (rqt_1) (0)) A(ELEMENT (rgt_t) A) A
(ELEMENT (rqt_t) (2)} V
((SUBARRAY (id t) (1,0)) = WORDN 3) A ~(ELEMENT (rqt_t) (0)) A (ELEMENT (rqt_t) (1)) A
(ELEMENT (rqt_t) (2)) A (ELEMENT (rqt_ t) (3)))"
%

o,
70

Generation logic for addressed signal.

let Addressed_Logic_SPEC = new_definition

(‘ Addressed_Logic_SPEC*,

*1 (id:time->wordn) (source:time->wordn) addressed .

Addressed_Logic_SPEC id source addressed =

It:time .
(addressed t = (ELEMENT (id t) (0)) = (ELEMENT (source (10N A

((ELEMENT (id t) (1)) = (ELEMENT (source t) (11))) A
((ELEMENT (id t) (2)) = (ELEMENT (source t) (12))) A
((ELEMENT (id t) (3)) = (ELEMENT (source t) (13))) A
((ELEMENT (id t) (4)) = (ELEMENT (source t) (14))) A
((ELEMENT (id t) (5)) = (ELEMENT (source t) (15))))"

)

o,
4

Generation logic for Disable_writes signal.

let D_Writes_Logic_SPEC = new_definition

(‘D_Wnrites_Logic_SPEC®,

“| dfsm_slave (chan_id:time->wordn) (source:time->wordn) disable_writes .

D_Writes_Logic_SPEC dfsm_slave chan_id source disable_writes =

It:time .
(disable_writes t = (dfsm_slave t) A ~((ELEMENT (chan_id t) (0)) A (ELEMENT (source t) (6)))

A ~((ELEMENT (chan_id t) (1)) A (ELEMENT (source t) (€3))
A ~((ELEMENT (chan_id t) (2)) N (ELEMENT (source t) (8))

107

A ~((ELEMENT (cbhan_id t) (3)) A (ELEMENT (source t} (9))))”

%
70

Generation logic for c_pe signal.

let Parity_Decode_Logic_SPEC = new_definition
(*Parity_Decode_Logic_SPEC*,
“Irep cad_in cad_in_dec cad_in_det .
Parity_Decode_Logic_SPEC rep cad_in cad_in_dec cad_in_det =
It:time .
(cad_in_dec t = (Par_Dec rep (cad_in t))) A
(cad_in_det t = (Par_Det rep (cad_in t)))”
)i

%

Input logic for C_parity latch.

let Parity_Sigoal_Inputs_SPEC = new_definition
(‘Parity_Signal_Inputs_SPEC®,
“! rst cad_in_det clkD c_pe_cnt reset_parity
c_parity_inS c_parity_inR c_parity_inE .
Parity_Signal_Inputs_SPEC rst cad_in_det clkD c_pe_cnt reset_parity
c_parity_inS c_parity_inR c_parity_inE =
lttime .
(c_parity_inS t = (cad_in_det t) A (clkD t) A (c_pe_cnt) A
(c_parity_inR t = (rst t) V (reset_parity t)) A
(c_parity_inE t = (c_parity_inS t) V (c_parity_inR t))”
)

Q@
4

C-Bus input latches.

let CB_In_Latches_SPEC = new_definition
(‘CB_In_Latches_SPEC:,
“! clkA clkB rst (cad_in_dec:time->wordn) cin_0_le cin_1_le cin_2_le cin_3_le cin_4_le
(source:time->wordn) (sizewrbe:time->wordn) iad_preout
¢_source c_data_in c_sizewrbe c_iad_preout .
CB_In_Latches_SPEC clkA clkB rst cad_in_dec cin_0_le cin_1_le cin_2_lecin_3_lecin_4_le
source sizewrbe iad_preout
¢_source c_data_in c_sizewrbe c_iad_preout =
It:time .
((cIkA t) =>
((c_source (t+1) = c_source t) A
(c_data_in (t+1) = c_data_in) A
(c_sizewrbe (t+1) = c_sizewrbe t) A
(c_iad_preout (t+1) = (cin_2_le t) => (c_data_in t) | (c_iad_preout t)))) A
((cIkB t) =>
((c_source (t+1) = (rst t} => WORDN 0|
(cin_3_le t) => (cad_in_dec t) |
(c_source t)) A

108

(c_data_in (t+1) = (rst t) => MALTER (c_data_in t) (31,16) (WORDN 0)

{(cin_1_le t) A (~cin_0_le t)) => MALTER (c_data_in t) (31,16) (cad_in_dec t) |

(c_data_in (t+1))) A
(c_data_in (t+1) = (rst t) => WORDN O |

((cin_0_le t) A (~cin_1_le t)) => MALTER (c_data_in t) (15,0) (cad_in_dec t)

(c_data_in (t+1))) A
(c_sizewrbe (t+1) = (st t) => WORDN O |
(cin_4_le t) => SUBARRAY (c_data_in t) (31,22)|
(c_sizewrbe t)) A
(c_iad_preout (t+1) = (c_iad_preout t)))) A
((source t = c_source (t+1)) A
(sizewrbe t = c_sizewrbe (t+1)) A
(iad_preout t = c_iad_preout (t+1)))”
s

%,
7

Generation logic for I_be_out_ signal.

let BE_Out_Logic_SPEC = new_definition
(*BE_Out_Logic_SPEC‘,
“| (sizewrbe:time->wordn) hida be_out .
BE_Out_Logic_SPEC sizewrbe hlda be_out =
It:time .
((hida t) ==> (be_out t = SUBARRAY (sizewrbe t) 9,6)))”
%

o,
70

Generation logic for write signal.

let Write_Logic_SPEC = new_definition
(*Write_Logic_SPEC‘,
“] clkA clkB (iad_in:time->wordn) sizewrbe cale_ master_tran C_wr write .
Write_Logic_SPEC clkA clkB iad_in sizewrbe cale_ master_tran C_wr write =
It:time .
((cIkA t) ==> C_wr (t+1) = C_wr) A
((cIkB t) ==> C_wr (t+1) = (~cale_t) => (ELEMENT (iad_in t) @N)IC_wrt)A
(write t = (master_tran t) => (C_wr (t+1)) | (ELEMENT (sizewrbe t) o))"

%

9,
Y

C-Bus output latches.

let CB_Out_Logic_SPEC = new_definition
(*CB_Out_Logic_SPEC*,

“! rep clkA clkB (iad_in:time->wordn) (ccr:time->wordn) dfsm_cout_0_le cout_1_le mfsm_mrequest cout_sel cad_preout

C_iad_in C_ala0 C_a3a2.

CB_Out_Logic_SPEC rep clkA clkB iad_in ccr dfsm_cout_0_le cout_1_le mfsm_mrequest cout_sel cad_preout

C_iad_in C_ala0 C_a3a2 =
It:time .
((clkA t) =>
((C_iad_in (t+1) = C_jad_in t) A

109

(C_ala0 (t+1) = (cout_1_le t) => (C_iad_in t) | (C_alaO t)) A
(C_a3a2 (t+1) = (mfsm_mrequest t) => (ccr t) 1 (C_a3a2) A
((clkB t) =>
((C_iad_in (t+1) = (dfsm_cout_0_le t) => (iad_in t) | (C_iad_in t)) A
(C_ala0 (t+1) =C_ala0t) A
(C_a3a2 (t+1) =C_a3a2 t))) A
(cad_preout t = ((cout_sel (t+1)) = WORDN 0) => (Par_Enc rep (SUBARRAY (C_ala0 (t+1)) (1500 1
((cout_sel (t+1)) = WORDN 1) => (Par_Enc rep (SUBARRAY (C_ala0 (t+1)) (31,16))) |
((cout_sel (t+1)) = WORDN 2) => (Par_Enc rep (SUBARRAY (C_a3a2 (t+1)) (15.0))) |
(Par_Enc rep (SUBARRAY (C_a3a2 (t+1)) (31,16))))"

a,
y,

C-Port Block.

let C_Block_SPEC = new_definition
(*C_Block_SPEC*,
“1 (C_mfsm_state A C_mfsm_state :time->cmfsm_ty)

(C_sfsm_stateA C_sfsm_state :time->csfsm_ty)

(C_efsm_stateA C_efsm_state :time->cefsm_ty)

(C_mfsm_ms C_sfsm_ss C_ssA C_iad_out C_ala0 C_a3a2 C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss
C_source C_data_in C_iad_in :time->wordn)

(C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2 C_mfsm_mal
C_mfsm_ma0 C_mfsm_md] C_mfsm_md0 C_mfsm_jad_en_m C_mfsm_m_cout_sell C_mfsm_m_cout_sel0
C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en C_mfsm_abort_le_en_ C_mfsm_mparity
C_sfsm_iad_en_s C_sfsm_sidle C_sfsm_slock C_sfsm_sal C_sfsm_sa0
C_sfsm_sale C_sfsm_sd] C_sfsm_sd0 C_sfsm_sack C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
C_efsm_srdy_en
C_clkAA C_sidle_delA C_mrqt_delA C_last_inA_ C_holdA_ C_rd_srdy C_cout_0_le_delA
C_cin_2_leA C_mrdy_delA_ C_iad_en_s_delA C_wrdyA C_mrdyA
C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last_ C_mfsm_lock_ C_mfsm_invalid
C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed C_sfsm_hida_

C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_sidle_del C_mrqt_del C_last_in_ C_lock_in_ C_last_out_

C_hold_ C_cout_0_le_del C_cin_2_le C_mrdy_del_ C_iad_en_s_del C_wrdy
C_rrdy C_parity :time->bool)
(I_mrdy_in_I_rale_in_I_male_in_1I_last_in_I srdy_in_1I_lock_1I_cale_I_hlda_I crqt_
Rst ClkA CIkB ClkD Pmm_failure Piu_invalid Reset_error :time->bool)
(I_ad_ip I_be_in_ CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID Ccr :time->wordn)
(I_cgnt_I_mrdy_out_I_hold_I_rale_out_I _male_out_I_last out_I_srdy_out CB_rqt_out
Disable_writes CB_parity :time->bool)
(I_ad_out I_be_out_ CB_ms_out CB_ss_out CB_ad_out C_ss_out :time->wordn)
(rep:*rep_ty) .

C_Block_SPEC (C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal, C_mfsm_ma0, C_mfsm_md1, C_mfsm_md0, C_mfsm_iad_en_m, C_mfsm_m_cout_sell,
C_mfsm_m_cout_sel0, C_mfsm_ms, C_mfsm_rqt_, C_mfsm_cgnt_, C_mfsm_cm_en,
C_mfsm_abort_le_en_, C_mfsm_mparity,

C_sfsm_stateA, C_sfsm_ss, C_sfsm_iad_en_s, C_sfsm_sidle, C_sfsm_slock, C_sfsm_sal,
C_sfsm_sa0, C_sfsm_sale, C_sfsm_sd1, C_sfsm_sd0, C_sfsm_sack, C_sfsm_sabort,
C_sfsm_s_cout_sel0, C_sfsm_sparity, C_efsm_stateA, C_efsm_srdy_en,

C_clkAA, C_sidle_delA, C_mrqt_delA, C_last_inA_, C_ssA, C_holdA_, C_rd_srdy,
C_cout_0_le_delA, C_cin_2_leA, C_mrdy_delA_, C_iad_en_s_delA, C_wrdyA, C_mrdyA, C_iad_out,

110

C_ala0, C_a3a2,

C_mfsm_state, C_mfsm_srdy_en, C_mfsm_D, C _mfsm_grant, C_mfsm_rst, C_mfsm_busy,
C_mfsm_write, C_mfsm_crqt_, C_mfsm_hold_, C _mfsm_last_, C_mfsm_lock_, C_mfsm_ss,
C_mfsm_invalid,

C_sfsm_state, C_sfsm_D, C_sfsm_grant, C_sfsm_rst, C_sfsm_write, C_sfsm_addressed,
C_sfsm_hlda_, C_sfsm_ms,

C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_,
C_efsm_rst,

C_wr, C_sizewrbe, C_clkA, C_sidle_del, C_mrqt_del, C_last_in_, C_lock_in_, C_ss,
C_last_out_, C_hold_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_wrdy,

C_rrdy, C_parity, C_source, C_data_in, C_iad_in)

(I_ad_in, {_be_in_, I_mrdy_in_, I_rale_in_, IL_male_in_, I_last_in_, I_srdy_in_,
I_lock_, I _cale_,I_hlda_, I_crqt_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in,

Rst, CIkA, CIkB, CIkD, Id, ChannelID, Pmm_failure, Piu_invalid, Ccr, Reset_error)

(I_cgnt_, I_mrdy_out_, I_bhold_, I_rale_out_, I_male_out_, I_last_out_, I_srdy_out_,
I_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB _parity)

rep =

? (grant busy mfsm_mabort mfsm_midle mfsm_mrequest mfsm_ma3 mfsm_ma2 mfsm_mal mfsm_ma0
mfsm_mdl mfsm_md0O mfsm_iad_en_m mfsm_m_cout_sell mfsm_m_cout_selQ mfsm_cm_en
mfsm_abort_le_en_ mfsm_mparity sfsm_iad_en_s sfsm_sidle sfsm_slock sfsm_sal sfsm_sa0
sfsm_sale sfsm_sd1 sfsm_sdO sfsm_sack sfsm_sabort sfsm_s_cout_sel0 sfsm_sparity
efsm_srdy_en dfsm_master dfsm_slave dfsm_cin_0_le dfsm_cin_]1_le dfsm_cin_3_le
dfsm_cin_4_le dfsm_cout_0_le dfsm_cout_1_le dfsm_cad_en_ dfsm_male_ dfsm_rale_
dfsm_mrdy_ last_in_ioE last_in_outQ lock_in_inE lock_in_outQ clkA_outQ
last_out_inS last_out_inR last_out_inE last_out_outQ sstatus_en_ sidle_del_outQ
mrqt_del_outQ mstatus_en_ dfsm_srdy write wrdy_inD wrdy_outQ rrdy_inD rrdy_outQ
wrdyA_outQ rrdyA_outQ i_srdy_en isrdy_inD isrdy_inE cout_0_le_del_out cin_2_le_out

cout_1_le mrdy_del_out iad_en_s_del_outQ iad_en c_pe_cnt addressed cin_2_le

cad_in_det c_parity_inS c_parity_inR c_parity_inE hida :time->bool)
(mfsm_ss mfsm_ms sfsm_ss cout_sel cad_in_dec source sizewrbe iad_preout cad_preout :time->wordn) .

(OR2_SPEC Rst mfsm_mal lock_in_inE) A

(DRELAT_SPEC I_lock_ Rst lock_in_inE CIkB C_lock_in_ lock_in_outQ) A

(Last_Logic Rst CIkD mfsm_md] mfsm_mabort last_in_inE) A

(DREFF_SPEC I_last_in_ last_in_inE Rst CIkB C_last_inA_C_last_in_ last_in_outQ) A
(DEFFn_SPEC mfsm_ss mfsm_abort_le_en_ CIkB C_ssA C_ss C_ss_out) A

(DFF_SPEC CIkD CIkA C_clkA C_cikAA clkA_outQ) A

{Hold_Logic CB_ms_in CIkD sfsm_sal last_out_in$ last_out_inR last_out_inE) A
(DSRELAT_SPEC GND last_out_inS last_out_inR last_out_inE CIkB C_last_out_ last_out_outQ) A
(TRIBUF_SPEC last_out_outQ hlda I last_out) A

(OR2_SPEC sfsm_sidle sfsm_sabort sstatus_en_) \

(DFF_SPEC sfsm_sidle CIkA C_sidle_del C_sidle_delA sidle_del_outQ) A

(DFF_SPEC mfsm_mrequest ClkA C_mrqt_del C_mrqt_delA mrgt_del_outQ) A
{Cout_Sel_Logic_SPEC sfsm_s_cout_sel0 mfsm _m_cout_sell mfsm_m_cout_sel0 sfsm_sdO sfsm_sd1 cout_sel) A
(NOT_SPEC mfsm_cm_en mstatus_en_) A

(DEFF_SPEC sfsm_sidle ClkD ClkA C_hold_ C_boldA_1_bold_) A

(Srdy_In_Logic_SPEC CB_ss_in dfsm_srdy) A

(Rdy_Logic_SPEC mfsm_md0 mfsm_md} CIkD write dfsm_srdy wrdy_inD rrdy_inD) A

111

(DLAT_SPEC wrdy_inD CIkB C_wrdy wrdy_outQ) A
(DLAT_SPEC rrdy_inD CIkB C_rrdy rrdy_outQ) A
(DLAT_SPEC wrdy_outQ ClkA C_wrdyA wrdyA_outQ) A
(DLAT_SPEC rrdy_outQ CIkA C_rrdyA rrdyA_outQ) A
(ISrdy_Out_Logic_SPEC wrdyA_outQ rrdyA_outQ mfsm_mabort I_cale_i_srdy_en isrdy_inD isrdy_inE) A
(TRIBUF_SPEC isrdy_inD isrdy_inE I_srdy_out_) A
(CBss_Out_Logic_SPEC sfsm_ss Pmm_failure Piu_invalid CB_ss_out) A
(DFF_SPEC dfsm_cout_0_le CIkA C_cout_0_le_del C_cout_0_le_delA cout_0_le_del_out) A
(DFF_SPEC dfsm_cin_0_le ClkA C_cin_2_le C_cin_2_leA cin_2_le_out) A
(Cout_1_Le_Logic_SPEC dfsm_master cout_0_le_del_out dfsm_cout_1_le cout_1_le) A
(DFF_SPEC dfsm_mrdy_ CIkA C_mrdy_del C_mrdy_delA_ mrdy_del_out) A
(NOT_SPEC I_hida_ hida) A
(TRIBUF_SPEC dfsm_male_ hida I_male_out_) A
(TRIBUF_SPEC dfsm_rale_ hida I_rale_out_) A
(TRIBUF_SPEC mrdy_del_out hlda I_mrdy_out_) A
(DEFF_SPEC sfsm_iad_en_s CIkD CIkA C_jad_en_s_del C_iad_en_s_delA iad_en_s_del_outQ) A
(Iad_En_Logic_SPEC mfsm_iad_en_m sfsm_iad_en_s iad_en_s_del_outQ iad_en) A
(CBms_Out_Logic_SPEC mfsm_ms Pmm_failure Piu_invalid CB_ms_out) A
(Pe_Cnt_Logic_SPEC CIkD sfsm_sparity mfsm_mparity CB_ss_in c_pe_cnt) A
(Grant_Logic_SPEC Id CB_rqt_in_ busy grant) A
(Addressed_Logic_SPEC Id C_source addressed) A
(D_Writes_Logic_SPEC dfsm_slave ChannellD C_source Disable_writes) A
(Parity_Decode_Logic_SPEC rep CB_ad_in cad_in_dec cad_in_det) A
(Parity_Signal_Inputs_SPEC Rst cad_in_det ClkD c_pe_cnt Reset_error
c_parity_inS c_parity_inR c_parity_inE) A
(DSRELAT_SPEC GND c_parity_inS c_parity iR c_parity_inE ClkB C_parity CB_parity) A
(CB_In_Latches_SPEC CIkA CIkB Rst cad_in_dec dfsm_cin_0_le dfsm_cin_1_le cin_2_le dfsm_cin_3_le
dfsm_cin_4_le source sizewrbe iad_preout
C_source C_data_in C_sizewrbe C_iad_out) A
(BE_Out_Logic_SPEC sizewrbe hida I_be_out) A
(TRIBUF_SPEC iad_preout iad_en I_ad_out) A
(Write_Logic_SPEC CIkA CIkB I_ad_in sizewrbe I_cale_ mfsm_cm_en C_wr write) A
(CB_Out_Logic_SPEC rep CIkA CIkB I_ad_in Cer dfsm_cout_0_le cout_1_le mfsm_mrequest cout_sel cad_preout
C_iad_in C_ala0 C_a3a2)A
(TRIBUF_SPEC cad_preout dfsm_cad_en_ CB_ad_out) A
(CMFSM_SPEC CIkA CIkB efsm_srdy_en CIkD grant Rst busy write
I_crqt_I_hold_ last_in_outQ lock_in_outQ CB_ss_in Piu_invalid
C_mfsm_state C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last_ C_mfsm_lock_ C_mfsm_ss C_mfsm_invalid
C_mfsm_stateA C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2
C_mfsm_mal C_mfsm_ma0 C_mfsm_mdl C_mfsm_md0 C_mfsm_iad_en_m C_mfsm_m_cout_sell
C_mfsm_m_cout_sel0 C_mfsm_ms C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en
C_mfsm_abort_le_en_ C_mfsm_mparity
mfsm_mabort mfsm_midle mfsm_mrequest mfsm_ma3 mfsm_ma2 mfsm_mal mfsm_ma0
mfsm_mdl mfsm_md0 mfsm_iad_en_m mfsm_m_cout_sell mfsm_m_cout_sel0 mfsm_ms
CB_rqt_out_ I_cgnt_ mfsm_cm_en mfsm_abort_le_en_ mfsm_mparity) A
(CSFSM_SPEC CIkA CIkB CIkD grant Rst write addressed I_hida_ CB_ms_in
C_sfsm_state C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed
C_sfsm_hlda_ C_sfsm_ms C_sfsm_stateA C_sfsm_ss C_sfsm_iad_en_s C_sfsm_sidle
C_sfsm_slock C_sfsm_sal C_sfsm_sa0 C_sfsm_sale C_sfsm_sdl C_sfsm_sd0 C_sfsm_sack
C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
sfsm_ss sfsm_iad_en_s sfsm_sidle sfsm_slock sfsm_sal sfsm_sa0 sfsm_sale
sfsm_sdl sfsm_sdO sfsm_sack sfsm_sabort sfsm_s_cout_sel0 sfsm_sparity) A
(CEFSM_SPEC CIkA CkB I_cale_I_last_in_I_male_in_I_rale_in_I srdy_in_ Rst

112

C_efsm_state C_efsm_cale_ C_efsm_last_ C_efsm _male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_efsm_stateA C_efsm_srdy_en efsm_srdy_en) A
(CDFSM_SPEC dfsm_srdy ClkD clkA_outQ write sizewrbe sfsm_sidle sidle_del_outQ sfsm_slock
sfsm_sal sfsm_sa0 sfsm_sale sfsm_sd1 sfsm_sdO sfsm_sack mfsm_midle mrqt_del_outQ
mfsm_ma3 mfsm_ma2 mfsm_mal mfsm_ma0 mfsm_md} mfsm_md01_cale_I_srdy_in_
dfsm_master dfsm_slave dfsm_cin_0_le dfsm_cin_1_le dfsm_cin_3_le dfsm_cin_4_le
dfsm_cout_0_le dfsm_cout_1_le dfsm_cad_en_ dfsm_male_ dfsm_rale_ dfsm_mrdy_)"

%

close_theory();;

113

B.5 SU_Cont Specification

%
File: s_block.ml
Author; (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the gate-level specification of the startup controller of
the FTEP PIU, an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piu/hol/lib/*]);;

system ‘rm s_block.th*;;

new_theory ‘s_block’;;

map new_parent [‘gates_def"; ‘latches_def";'ffs_def*;'counters_def*;'saux_def";‘aux_def*;‘array_def"; wordn_def"];;

let s_state_ty = “:(sfsm_ty#bool#bool#booli#bool#bool#boolitbool#bool#booltboolitbool#booli#bool#booli#tbool#bool#
bool#bool#wordn#wordn#bool#bool#
sfsm_ty#bool#booHbool#bool#bool#
bool#wordn#wordn#booli#bool#bool#bool#bool#tbool#bool#bool#bool)”;;
let s_state = “((S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_catA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)
As_state_ty)”;;

let s_env_ty = “:(bool#bool#bool#bool#bool#bool#boolkboolitbool)”’;;
let s_env = “((ClkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureO_, Failure]l)
As_env_ty)";;

let s_out_ty = *“:(wordo#bool#bool#bool#bool#bool#bool#boolébool#bool#bool)’;;

let s_out = “((S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist,
Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail)
As_out_ty)”s:

aq,
2

Input logic for S_soft_shot latch.

let Scnt_In_SPEC = new_definition
(‘Scnt_In_SPEC*,
“1 gerh gerl soft_shot_inD soft_cnt_inl. .
Scat_In_SPEC gerh gerl soft_shot_inD soft_cnt_inl. =
(! ttime . (soft_shot_inD t = ~gcrh t A geri t) A

114

(soft_cat_inL t = ~gerh t A ~gerl t))”
)

a@,
0

Input logic for S_soft_cnt counter.

let Scnt_Inl_SPEC = new_definition
(‘Sent_Inl_SPEC",
“I soft_shot_outQ soft_shot_del_outQ soft_cnt_inU .
Scot_In1_SPEC soft_shot_outQ soft_shot_del_outQ soft_cnt_inU =
(! ttime . (soft_cnt_inU t = soft_shot_outQ t A ~soft_shot_del_outQ t))”
)

o

Input logic for S_delay counter.

let Delay_In_SPEC = new_definition
(‘Delay_In_SPEC",
“{ scpustart delay reset_cnt delay_inR .
Delay_In_SPEC scpustart delay reset_cnt delay_inR =
(! t:time . (delay_inR t= scpustartt A (ELEMENT (delay t) (6)) V reset_cnt t))”
%

%,
70

Delay counter output multiplexers.

let Muxes_SPEC = new_definition
(‘Muxes_SPEC*,
“| (delay:time->wordn) test instart_inD delayl7 .
Muxes_SPEC delay test instart_inD delayl7 =
(It:time . (instart_inD t = (test t) => ELEMENT (delay t) (5} | ELEMENT (delay t) (16)) A
(delay17 t = (test t) => ELEMENT (delay t) (6) | ELEMENT (delay t) (17)))”
)i

o,
70

Generation logic for Disable_int output.

let Dis_Int_Out_SPEC = new_definition
(‘Dis_Int_Out_SPEC®,
“| instart normal delay disable_int_in disable_int_out .
Dis_Int_Out_SPEC instart normal delay disable_int_in disable_int_out =
(! ttime . (disable_int_out t = ~instart t A ~(normal t A (ELEMENT (delay t) (6)) A disable_int_in t)))”"
)i

o
70

Input logic for S_bad_cpu0, S_bad_cpul latches.

let Bad_Cpu_In_SPEC = new_definition
(‘Bad_Cpu_In_SPEC*,

115

*! normal operation cpuQ_fail cpul_fail begin
bad_cpu0_inS bad_cpuO_inR bad_cpuO_inE
bad_cpul_inS bad_cpul_inR bad_cpul_inE .
Bad_Cpu_In_SPEC normal operation cpu0_fail cpul_fail begin
bad_cpu0_inS bad_cpu0_inR bad_cpu0_inE
bad_cpul_inS bad_cpul_inR bad cpul_inE =
(! ttime . (bad_cpuO_inS t = begin t) A
(bad_cpu0_inR t = (normal t V operation t) A ~cpu0_fail t) A
(bad_cpuQ_inE t = begin t V (normal t \/ operation t) A ~cpuQ_fail t) A
(bad_cpul_inS t = begin t) A
(bad_cpul_inR t = (normal t VV operation t) A cpu0_fail t A ~cpul_fail t) A
(bad_cpul_inE t = begin t V (normal t V operation t) A cpu0_fail t A ~cpul _fail t))”
B

%
70

Generation logic for local signals cpu0_ok, cpul _ok.

let Cpu_Ok_SPEC = new_definition
(‘Cpu_Ok_SPEC’,
“1 soft_cnt cpuO_fail cpul _fail failureQ_ failurel_ cpu0_ok cpul_ok .
Cpu_Ok_SPEC soft_cat cpu0_fail cpul_fail failure0_ failurel_ cpu0_ok cpul_ok =
(! t:time . (cpuO_ok t = ((soft_cnt t) = WORDN 5) A cpu0_fail t A failure0_ ¢) A
(cpul_ok t = ((soft_cat t) = WORDN 5) A cpul_fail t A failurel_ 1))”
¥

[4
.4

Input logic for S_pmm_fail, S_cpu0_fail, S_cpul_fail, S_piu_fail latches.

let Fail_In_SPEC = new_definition
(‘Fail_In_SPEC*,
“1 begin pmm_fail piu_fail bypass cpu0_ok cpul_ok
pmm_fail_inS pmm_fail inR pmm_fail_inE cpuO_fail inS cpu0_fail _inR cpu0_fail inE
cpul_fail_inS cpul_fail_inR cpul_fail_inE piu_fail_inS piu_fail_inR piu_fail inE .
Fail_In_SPEC begin pmm_fail piu_fail bypass cpu0_ok cpul _ok
pmm_fail_inS pmm_fail_inR pmm_fail inE cpu0_fail_inS cpu0_fail_mR cpu0_fail inE
cpul_fail_inS cpul_fail_inR cpul_fail_inE piu_fail_in$ piu_fail_inR piu_fail inE =
(! ttime . (pmm_fail_inS t = begin t) A
(pmm_fail_inR t = pmm_fail t) A
(pmm_fail_inE t = begin t V pmm_fail t) A
(cpu0_fail_inS t = begin t) A
(cpu0_fail_inR t = bypass t V cpu0_ok t) A
(cpuO_fail_inE t = begin t V bypass t V cpu0_ok t) A
(cpul _fail_inS t = begin) A
(cpul_fail_inR t=bypass t Vcpul_ok) A
(cpul _fail_inE t = begin t V bypass t Vcpul_ok t) A
(piu_fail_inS t = begin) A
(piu_fail_inR t=bypass t V piu_fail t) A
(piu_fail_inE t = begin t V bypass t \V piu_fail t))”
)i

70

Startup-controller controller state machine.

116

let FSM_SPEC = new_definition
(‘FSM_SPEC",
“1 ¢cikA cIkB rst_in delay_in delayl7_in bothbad_in bypass_in
state rst delay6 delay17 bothbad bypass
stateA sn so srcp sdi srp src0 srcl spf scOf sc1f spmf sb sre sec srs scs
stateA_out sn_out so_out srcp_out sdi_out srp_out src0_out srcl_out spf_out
scOf_out sc1f_out spmf_out sb_out src_out sec_out srs_out scs_out .
BESM_SPEC clkA clkB rst_in delay_in delay17_in bothbad_in bypass_in
state rst delay6 delay17 bothbad bypass
stateA sn so srcp sdi srp src0 srcl spf sc0f sc1f spmf sb src sec srs scs
stateA_out sn_out so_out srcp_out sdi_out srp_out src0_out srcl_out spf_out
scOf_out sc1f_out spmf_out sb_out src_out sec_out srs_out scs_out =

It:time.

((clkA t) =>
((state (t+1) =state t) A
(rst (t+1) =15t) A
(delay6 (t+1) = delay6 t) A
(delay17 (t+1) = delayl7) A
(bothbad (t+1) = bothbad t) A
(bypass (t+1) = bypass) A
(stateA (t+1) =
((rst t) => SSTART |
((state t) = SSTART) => SRA |
((state t) = SRA) => ((delay6 t) => ((bypass t) => SO | SPF) ! SRA)I
((state t) = SPF) => SCOI |
((state t) = SCOI) => ((delay17 t) => SCOF | SCOI) |
((state t) = SCOF) => ST}
((state t) = ST) => SC1I
((state t) = SC1I) => ((delay17 t) => SCIF 1 8C1I) |
((state t) = SC1F) =>SS |
((state t)= SS) => ((bothbad t) => SSTOP | SCS) |
((state t) = SSTOP) => SSTOP |
((state t) = SCS) => ((delay6 t) => SN | SCS)1
((state t) = SN) => ((delay17 t) => SO | SN) 1SO) A
(sn (t+1) = (stateA (t+1) = SN)) A
(so (t+1) = (stateA (t+1) = SO)) A
(srcp (t+1) = ((~(stateA (t+1) = SO) A ~((state t) = SSTOP)) V ((state t) = SRA)) A
(sdi (t+1) = ((~(stateA (t+1) = SO) A ~((state t) = SSTOP)) V ((state t)=SRAMA
(stp (t+1) = ((stateA (t+1) = SSTART) V (stateA (t+1) = SRA) V (stateA (t+1) = SCOF) V
(stateA (t+1) = ST) V (stateA (t+1) = SCIF) V (stateA (t+1) = sS)v
(stateA (t+1) = SCS)) A
(s1c0 (1+1) = (~(stateA (t+1) = SPF) A\ ~(stateA (t+1) = SCOD) A
(stcl (t+1) = (~(stateA (t+1) = ST) A\ ~(stateA (t+1) = SCID)H A
(spf (t+1) = (((state t) = SRA) A (delay6 t) A ~(rst t))) A
(scOf (t+1) = (stateA (t+1) = SCOF)) A
(sc1f (t+1) = (stateA (t+1) = SCIF)) A
(spmf (t+1) = (stateA (t+1) =SO)) A
(sb (t+1) = (stateA (t+1) = SSTART)) A
(stc (t+1) = ((stateA (t+1) = SSTART) V (((state t) = SRA) A (delayé6 t)) V
(stateA (t+1) = SCOF) V (stateA (t+1) = ST) V (stateA (t+1) = SCIF) V

117

(stateA (t+1) = SS) V (((state t) = SCS) A (delayé t))) A
(sec (t+1) = ((~(stateA (t+1) = SSTOP) A ~(stateA (t+1) = SO)) V ((state t) = SN)) A
(sts (t+1) = (({(state t) = SPF) A ~(rst t)) V (((state t) = ST) A ~(rst O)))) A
(scs (t+1) = (stateA (t+1) = SCS))H A
((clkB t) =>
((state (t+1) = stateA t) A
(rst (t+1)=rst_in) A
(delay6 (t+1) = ELEMENT (delay_in t) (6)) A
(delay17 (t+1) = delayl7_in) A
(bothbad (t+1) = bothbad_in t) A
(bypass (t+1) = bypass_in t) A
(sn(t+1)=snt) A
(so (t+1)=sot) A
(srcp (t+1) = srcp) A
(sdi (t+1) =sdit) A
(stp (t+1) =sp) A
(stcO (t+1) =srcO) A
(srcl (t+l) =srcl)A
(spf (t+1) =spf) A
(scOf (t+1) =scOf) A
(sclf (t+1) =sclf) A
(spmf (t+1) =spmf t) A
(sb(t+1)=sbt) A
(src (t+1)=srct) A
(sec (t+1) =sec t) A
(srs (t+l) =ss) A
(scs (t+1) =scs)) A
((let a0 = (ALTER (stateA_out t) (0)
((stateA (t+1) = SRA) V (stateA (t+1) = SPF) V (stateA (t+1) = ST) V
(stateA (t+1) = SC1I) V (stateA (1+1) = SCS) V (stateA (t+1) =SN)V
(stateA (t+1) = SO)))
in
(let al = (ALTER a0 (1)
((stateA (t+1) = SPF) V (stateA (t+1) = SCOI) V (stateA (t+1) = SCOF) V
(stateA (t+1) = ST) V (stateA (t+1) = SSTOP) V (stateA (t+1) = SO)))
in
(let a2 = (ALTER al (2)
((stateA (t+1) = SCOF) V (stateA (t+1) = ST) V (stateA (t+1) = SCI[) V
(stateA (t+1) = SCIF) V (stateA (t+1) = SS} V (stateA (t+1) = SSTOP) V
(stateA (t+1) = SCS)))
in
(let a3 = (ALTER a2 (3)
((stateA (t+1) = SS) V (stateA (t+1) = SSTOP) V (stateA (t+1) =SCS) V
(stateA (t+1) = SN) V (stateA (t+1) = SO)))
in
(stateA_out t=a3)))) A
(sn_outt=sn(t+1) A
(so_outt=s0 (t+1) A
(srep_out t = srcp (t+1) A
(sdi_outt=sdi (t+1)) A
(stp_out t = stp (t+1)) \
(src0_out t = 510 (t+1)) A
(srcl_outt =srcl (t+1)) A
(spf_out t = spf (t+1)) A

118

(scOf_out t = scOf (t+1)) A\
(sc1f_out t = sclf (t+1)) A
(spmf_out t = spmf (t+1)) A
(sb_outt=sb (t+1)) A
(src_out t = stc (t+1)) A
(sec_out t = sec (t+1) A
(sts_out t = sts (t+1)) A
(scs_out t = scs (t+1)))

“%s

9,
70

Startup controller block.

let S_Block_SPEC = new_definition
(‘S_Block_SPEC",
“| (S_fsm_stateA S_fsm_state :(time->sfsm_ty))
(S_soft_cntA S_delayA S_soft_cnt S_delay :(time->wordn))
(S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_src0 S_fsm_srcl S_fsm_spf S_fsm_scOf
S_fsm_sclf S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs S_fsm_scs
S_soft_shot S_soft_shot_delA S_instart S_cpu_histA
S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass
S_soft_shot_del S_bad_cpu0 S_bad_cpul S_reset_cpuO S_reset_cpul S _pmm_fail S_cpuQ_fail S_cpul_fail
S_piu_fail S_cpu_hist :(time->bool))
(CIkA CIkB Rst Bypass Test Gerh Gerl FailureO_ Failurel_ :(time->bool))
(S_state :(time->wordn))
(Reset_cport Disable_int Reset_piu Reset_cpu0 Reset_cpul Cpu_hist Piu_fail Cpu0_fail Cpul _fail
Pmm_fail :(time->bool)) .
S_Block_SPEC (S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_stc0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, $_cpu0_fail, S_cpul_fail, S_cpu_hist, S _piu_fail)
(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureO_, Failurel)
(S_state, Reset_cport, Disable_int, Reset _piu, Reset_cpu0, Reset_cpul, Cpu_hist,
Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail) =
(It:time .
? fsm_delay17 fsm_bothbad
fsm_sn fsm_so fsm_sdi fsm_srcO fsm_srcl fsm_spf fsm_scOf fsm_sclf fsm_spmf fsm_sb
fsm_src fsm_sec fsm_srs fsm_scs NC
soft_shot_inD soft_shot_outQ soft_shot_del_outQ
soft_cnt_inL soft_cnt_inU soft_cnt_inR soft_cnt_outQ
delay_inL delay_inU delay_inR delay_outQ instart_inD instart_outQ
bad_cpuO_inS bad_cpu0_inR bad_cpuO_inE bad_cpu0_outQ reset_cpu0_inD
bad_cpul_inS bad_cpul_inR bad_cpul_inE bad_cpul_outQ reset_cpul_inD cpu_hist_inD
cpu0_ok cpul _ok
pmm_fail_inS pmm_fail_inR pmm_fail_inE cpu0_fail_inS cpu0_fail_inR cpu0_fail_inE
cpul_fail_inS cpul_fail_inR cpul_fail_inE piu_fail_inS piu_fail_inR piu_fail_inE.
(Scnt_In_SPEC Gerh Gerl soft_shot_inD soft_cnt_inL.) A
(DLAT_SPEC soft_shot_inD ClkA S_soft_shot soft_shot_outQ) A
(DFF_SPEC soft_shot_outQ ClkA S_soft_shot_del S_soft_shot_delA soft_shot_del_outQ) A
{Scnt_Inl_SPEC soft_shot_outQ soft_shot_del_outQ soft_cnt_inU) A
(UPRCNT_SPEC 2 (GNDN 2) soft_cnt_inL soft_cnt_inU soft_cnt_inR CIkA S_soft_cnt S_soft_cntA

119

soft_cnt_outQNC) A
(Delay_In_SPEC fsm_scs delay_outQ fsm_src delay_inR) A
(UPRCNT_SPEC 17 (GNDN 17) delay_inL delay_inU delay_inR ClkA S_delay S_delayA delay_outQ NC) A
(Muxes_SPEC delay_outQ Test instart_inD fsm_delayl7) A
(DLAT_SPEC instart_inD ClkA S_instart instart_outQ) A
(Dis_Int_Out_SPEC instart_outQ fsm_sn delay_outQ fsm_sdi Disable_int) A
(AND2_SPEC Cpu0_fail Cpul _fail fsm_bothbad) A
(Bad_Cpu_In_SPEC fsm_sn fsm_so Cpu0_fail Cpul_fail fsm_sb
bad_cpuO_inS bad_cpuO_inR bad_cpuO_inE
bad_cpul_inS bad_cpul_inR bad_cpul_inE) A
(DSRELAT_SPEC GND bad_cpu0_inS bad_cpuO_inR bad_cpu0_inE CIkB S_bad_cpu0 bad_cpu0_outQ) A
(DSRELAT_SPEC GND bad_cpul_inS bad_cpul_inR bad_cpul _inE CIkB S_bad_cpul bad_cpul_outQ) A
(AND2_SPEC bad_cpu0_outQ fsm_srcO reset_cpu0_inD) A
(AND2_SPEC bad_cpul_outQ fsm_src] reset_cpul_inD) A
(DLAT_SPEC reset_cpu0_inD CIkB S_reset_cpu0 Reset_cpu0) A
(DLAT_SPEC reset_cpul_inD CIkB S_reset_cpul Reset_cpul) A
(AND3_SPEC Reset_cpuO Reset_cpul Bypass cpu_hist_inD) A
(DFF_SPEC cpu_hist_inD CIkB S_cpu_histA S_cpu_hist Cpu_hist) A
(Fail_In_SPEC fsm_sb fsm_spmf fsm_spf Bypass cpu0_ok cpul_ok
pmm_fail_inS pmm_fail_inR pmm_fail_inE cpu0_fail_inS cpu0_fail_inR cpu0_fail_inE
cpul_fail_inS cpul_fail_inR cpul_fail inE piu_fail_inS piu_fail_inR piu_fail_inE) A
(DSRELAT_SPEC GND pmm_fail_inS pmm_fail_inR pmm_fail_inE ClkB S_pram_fail Pmm_fail) A
(DSRELAT_SPEC GND cpu0_fail_inS cpu0_fail_inR cpu0_fail_inE CIkB S_cpu0_fail Cpu0_fail) A
(DSRELAT_SPEC GND cpul_fail inS cpul_fail_inR cpul _fail_inE CIkB S_cpul_fail Cpul_fail) A
(DSRELAT_SPEC GND piu_fail_inS piu_fail_inR piu_fail_inE CIkB S_piu_fail Piu_fail) A
(Cpu_Ok_SPEC soft_cat_outQ) fsm_scOf fsm_sc1f FailureO_ Failurel_ cpu0_ok cpul_ok) A
(FSM_SPEC ClkA CLkB Rst delay_outQ fsm_delayl7 fsm_bothbad Bypass
S_fsm_state S_fsm_rst S_fsm_delay6 S_fsm_delay17 S_fsm_bothbad S_fsm_bypass
S_fsm_stateA S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_src0 S_fsm_srcl
S_fsm_spf S_fsm_scOf S_fsm_sclf S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs
S_fsm_scs
S_state fsm_sn fem_so Reset_cport fam_sdi Reset_piu fsm_srcO fsm_srcl fsm_spf
fsm_scOf fsm_sc1f fsm_spmf fsm_sb fsm_src fsm_sec fsm_srs fsm_scs))”
s

close_theory();;

120

Appendix C ML Source for the Phase-Level Specification of the PIU Ports.

This appendix contains the HOL models used in the phase-level specification for the PIU ports. They are
listed in the order: P_Port, M_Port, R_Port, C_Port, and SU_Cont.

C.1 P Port Specification

R

File: p_phase.ml

Author: (¢) D.A. Fura 1992

Date: 31 March 1992

This file contains the ml source for the phase-level specification of the P-Port of the FTEP BIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

%
set_search_path (search_path() @ {*/home/titan3/dfura/ftep/piu/hol/lib/‘]);;
system ‘rm p_phase.th®;;
new_theory ‘p_phase’;;
map new_parent [‘paux_de *.‘aux_def"; ‘array_def";‘wordn_def‘];;
let p_state_ty = “:(pfsm_ty#bool#bool#bool#wordn#wordn#bool#wordn#bool#wordn#wordn#bool#bool#

pfsm_ty#bool#bool#bool#bool#bool#bool#bool#bool#wordn#boo]#bool#bool#bool#bool#bool)";;
let p_state = “((P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hida_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_bold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale_)
:(pfsm_ty#bool#bool#bool#wordn#wordn#bool#wordn#bool#wordn#wordn#bool#bool#
pfsm_ty#bool#bool#bool#bool#bool#bool#boo]#bool#wordn#bool#boo1#bool#bool#bool#bool))";;

let p_env_ty = “:(bool#bool#bool#wordn#bool#bool#wordn#bool#bool#wordn#bool#bool#bool)";;
let p_env = “((CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_,L_wr,L_lock_, I ad_in, I_cgnt_, I_hold_, I_srdy_)

:(bool#bool#boo]#wordn#bool#bool#wordn#bool#bool#wmdn#bool#bool#bool))";;

let p_out_ty = “:(wordn#bool#wordn#wordn#wordn#bool#bool#bool#bool#bool#boo]#bool#bool)”;;
let p_out = “((L_ad_out, L_ready_, I_ad_data_out, I_ad_addr_out, I_be_, I_rale_, I_male_, [_crqt_, I_cale_,
I_mrdy_, I_last , I_hlda_, I_lock)
:(wordn#bool#wordn#wordn#wordn#bool#bool#bool#bool#bool#bool#bool#bool))";;

o
0

Next_state definition for Phase-A instruction.

let PH_A_inst_def = new_definition

121

(‘PH_A_inst’,
“1 (P_fsm_state P_fsm_stateA :pfsm_ty)

(P_fsm_astate P_fsm_dstate P_fsm_hlda_ P_destl P_wr P_loadA P_downA :bool)
(P_fsm_rst P_fsm_mrqt P_fsm_sack P_fsm_cgnt_P_fsm_crqt_ P_fsm_hold_ P_fsm_lock_ P_rqt P_load :bool)

(P_down P_lock_ P_lock_inh_ P_male_ P_rale_ :bool)

(CIkA CIkB RstL_ads_1_den_L_wrL_lock_1_cgnt_I _bold_I_srdy_:bool)(L_ad_inL_be_ 1_ad_in :wordn) .

PH_A_inst (P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hlda_, P_wr_data, P_addr, P_dest1, P_be_,

P_wr, P_be_n

— My

P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,

P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock ,

P_lock_inb_, P_male_, P_rale_)

(CIkA, CIkB, Rst, L_ad_in,L_ads_,L_den_, L _be_,

let new_P_fsm_stateA =
((P_fsm_rst) => PA |
((P_fsm_state = PH) => ((P_fsm_bold) => PA | PH) |
((P_fsm_state = PA) =>

L_wr, L_lock_, 1_ad_in, I_cgnt_, I_hold_, I_srdy_) =

((P_fsm_mrqt V (~P_fsm_crqt_ A ~P_fsm_cgnt_}) =>PDI|

((P_fsm_lock_ A\ ~P_fsm_hold_) =>PH | PA)) |
((P_fsm_state = PD) =>

(((P_fsm_sack AP_fsm_bold_) V (P_fsm_sack A ~P_fsm_hold_A ~P_fsm_lock_))=>PA |
((P_fsm_sack A ~P_fsm_hold_ A P_fsm_lock_) =>PH | PD)) | P_ILL)))) n

let new_P_fsm_astate = (new_P_fsm_stateA =PA) in
let new_P_fsm_dstate = (new_P_fsm_stateA =PD) in
let new_P_fsm_hida_ = ~(new_P_fsm_stateA = PH) in
let new_P_wr_data=L_ad_inin

let new_P_addr = ((~P_rqt) => (SUBARRAY L _ad_in (25,0)) | P_addr) in
let new_P_destl = ((~P_rqt) = (ELEMENT L_ad_in (31)) | P_destl) in

let new_P_be_= ((~P_rqt) =>L_be_IP_be_)in
let new_P_wr = ((~P_rqt) =>L_wr | P_wr) in
let new_P_be n_=L_be_in

let new_P_loadA = P_load in

let new_P_downA = P_down in

let new_P_sizeA =P_size in

let new_P_fsm_state = P_fsm_state in
let new_P_fsm_rst = P_fsm_rst in

let new_P_fsm_mrqt = P_fsm_mrqt in
let new_P_fsm_sack = P_fsm_sack in
let new_P_fsm_cgnt_=P_fsm_cgnt_in
let new_P_fsm_crqt_=P_fsm_crqt_in
let new_P_fsm_hold_=P_fsm_hold_ in
let new_P_fsm_lock_ = P_fsm_lock_ in
let new_P_rqt=P_rqt in

let new_P_size = P_size in

let new_P_load = P_load in

let new_P_down = P_down in

let new_P_lock_=P_lock_in

let new_P_lock_inh_=P_lock_inh_in
let new_P_male_ = P_male_ in

let new_P_rale_ = P_rale_ in

122

(new_P_fsm_stateA, new_P_fsm_astate, new_P_fsm_dstate, new_P_fsm_hlda_, new_P_wr_data, new_P_addr, new_P_destl,
new P_be_, new_P_wr, new_P_be_n_, new_P_sizeA, new_P_loadA, new_P_downA, new_P_fsm_state, new_P_fsm_rst,

— e) -— e ¥

pew_P_fsm_mrqt, new_P_fsm_sack, new_P_fsm_cgnt_, new_P_fsm_crqt_, new_P_fsm_bold_, new_P_fsm_lock_,

new_P_rqt, new_P_size, new_P_load, new_P_down, new_P_lock_, new_P_lock_inh_, new_P_male_, new_P_rale_)”

)i

70

Output definition for Phase-A instruction.

let PH_A_out_def = new_definition
(‘PH_A_out‘,
| (P_fsm_state P_fsm_stateA :pfsm_ty)
(P_fsm_astate P_fsm_dstate P_fsm_hida_ P_destl P_wr P_loadA P_downA :bool)
(P_fsm_rst P_fsm_mrqt P_fsm_sack P_fsm_cgnt_P_fsm_crqt_P_fsm_hold_ P_fsm_lock_ P_rgt P_load :bool)
(P_down P_lock_ P_lock_inh_ P_male_ P_rale_ :bool)
(P_wr_data P_addr P_be_P_be_n_ P_sizeA P_size :wordn)
(CIkA CIkB RstL_ads_L_den_L_wr L_lock_1_cgnt_I_bold_I_srdy_ :bool) (L_ad_in L_be_1_ad_in :wordn) .
PH_A_out (P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hlda_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale)
(CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_ L_be_,L_wr,L_lock_, I_ad_in, I cgnt_, I_hold_, I_srdy_) =
let new_P_fsm_stateA =
((P_fsm_rst)=>PA |
((P_fsm_state = PH) => ((P_fsm_hold_)=>PA| PH)!
((P_fsm_state = PA) =>
((P_fsm_mrqt V (~P_fsm_crqt_A ~P_fsm_cgnt_)) =>PD|
((P_fsm_lock_ A ~P_fsm_hold_)=>PH | PA)} |
((P_fsm_state = PD) =>
(((P_fsm_sack A P_fsm_hold_) V (P_fsm_sack A ~P_fsm_hold_A ~P_fsm_lock_))=>PA |
((P_fsm_sack A ~P_fsm_hold_AP_fsm_lock_)=> PHIPD))IP_ILL))))in
let new_P_fsm_astate = (new_P_fsm_stateA = PA) in
let new_P_fsm_dstate = (new_P_fsm_stateA = PD) in
let new_P_fsm_hlda_ = ~(new_P_fsm_stateA = PH) in
let new_P_wr_data=1_ad_inin
let new_P_addr = ((~P_rqt) => (SUBARRAY L _ad_in (25,0)) | P_addr) in
let new_P_destl = ((~P_rqt) => (ELEMENT L_ad_in (31)) | P_destl) in
let new_P_be_ = ((~P_rqt) =>L_be_IP_be_) in
let new_P_wr = ((~P_rqt) =>L_wr | P_wr) in
letnew_P_be n_=L_be_in
let pew_P_loadA = P_load ip
let new_P_downA = P_down in
let new_P_sizeA = P_size in
let new_P_fsm_state = P_fsm_state in
let new_P_fsm_rst = P_fsm_rst in
let new_P_fsm_mrqt = P_fsm_mrqt in
let new_P_fsm_sack = P_fsm_sack in
let new_P_fsm_cgnt_=P_fsm_cgnt_in
let new_P_fsm_crqt_=P_fsm_crqt_in
let new_P_fsm_hold_=P_fsm_hold_in
let new_P_fsm_lock_ = P_fsm_lock_in
let new_P_rqt = P_rqt in

123

let new_P_size =P_size in

let new_P_load = P_load in

let new_P_down = P_down in

let new_P_lock_ =P_lock_ in

let new_P_lock_inh_ = P_lock_inh_ in

let new_P_male =P_male_in

let new_P_rale_ =P _rale_in

let p_ale = (~L_ads_AL_den_)in

let p_sack = ((new_P_sizeA = ((new_P_downA) => WORDN 1 | WORDN 0)) A ~I_srdy_ A new_P_fsm_dstate) in

let L_ad_out = ((~pew_P_fsm_astate A new_P_fsm_hlda_ A ~(new_P_fsm_dstate A new_P_wr)) => [_ad_in | ARBN) in
let L_ready_ = (~(~I_srdy_ A new_P_fsm_dstate)) in

let 0d0 = ARBN in

let od1 = (MALTER 0d0 (31,27) new_P_be_) in

let 0d2 = (ALTER odl (26) F) in

let 0d3 = (MALTER o0d2 (25,24) (SUBARRAY new_P_addr (1,0))) in

let 0d4 = (MALTER o0d3 (23,0) (SUBARRAY new_P_addr (25,2))) in

let I_ad_addr_out = ((new_P_fsm_astate) => od4 | ARBN) in

let I_ad_data_out = ((new_P_fsm_dstate A new_P_wr) => new_P_wr_data | ARBN) in

let I_be_ = ((new_P_fsm_hlda_) => ((new_P_fsm_astate) => new_P_be_ | new_P_be_n_){ ARBN) in

let I_rale_ = ((new_P_fsm_hida_) =>

~(~new_P_destl A ((SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A new_P_fsm_astate Anew_P_rqt) | ARB) in
let I_male_ = ((new_P_fsm_hlda_)=>

~(~new_P_destl A (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) Anew_P_fsm_astate \ new_P_rqt) | ARB) in
let [_crqt_ = ~(new_P_destl A new_P_rqt) in

let I_cale_ = ~(~I_cgnt_ A new_P_fsm_astate AI_hold_) in

let I_mrdy_ = ((new_P_fsm_hlda_)=>F | ARB)in

let I_last_ = ((new_P_fsm_hlda_) => (new_P_sizeA = ((new_P_downA) => WORDN 1 | WORDN 0)) | ARB) in

let I_hlda_ = pew_P_fsm_hida_in

let I_lock_ = ~(~new_P_lock_Anew_P_lock_inh_)in

(L_ready_, I_last_, I_be_, I_mrdy_, I_ad_data_out, I_ad_addr_out, I_hlda_, I_lock_,I_cale_,I_male_, I_rale_,
I_crqt_, L_ad_out)”
%

gL
Y, 4

Next-state definition for Phase-B instruction.

let PH_B_inst_def = new_definition
(‘PH_B_inst',
“| (P_fsm_state P_fsm_stateA :pfsm_ty)
(P_fsm_astate P_fsm_dstate P_fsm_hlda_ P_destl P_wr P_loadA P_downA :bool)
(P_fsm_rst P_fsm_mrqt P_fsm_sack P_fsm_cgnt_P_fsm_crqt_ P_fsm_hold_ P_fsm_lock_ P_rqt P_load :bool)
(P_down P_lock_ P_lock_inh_ P_male_ P_rale_ :bool)
(CIkA CIkB Rst L_ads_ L _den_L_wr L_lock_1I_cgnt_I_hold_I_srdy_ :bool) (L_ad_in L_be_I_ad_in :wordn) .
PH_B_inst (P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hlda_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale_)
(CIKA, CIkB, Rst, L_ad_in, L_ads_, L _den_,L_be_, L_wr, L_lock_, I_ad_in, I_cgnt_, I_hold_, I_srdy_) =

let p_ale =(~L_ads_AL_den_})in

124

R

let p_sack = ((P_sizeA = (P_downA)=>WORDN 1 | WORDN 0)) A ~I_srdy_ A P_fsm_dstate) in
let new_P_rqt = ((p_ale A ~(p_sack VRst)) =>T |

((~p_ale A (p_sack V Rst)) =>F|

((~p_ale A ~(p_sack V Rst)) => P_1qt | ARB))) in
let new_P_load = ~new_P_rqtin
let new_P_down = (~I_srdy_ A P_fsm_dstate) in
let new_P_size = ((P_loadA) => (SUBARRAY L_ad_in (1,0)) |

((P_downA) => DECN 1 P_sizeA | P_sizeA)) in
let new_P_male_ = ((P_fsm_astate) =>
~(~P_destl A (~((SUBARRAY P_addr (25,24)) = (WORDN 3))) Anew_P_rqt) | P_male)in
let new_P_rale_ = ((P_fsm_astate) =>
~(~P_destl A ((SUBARRAY P_addr (25,24)) = (WORDN 3)) Anew_P_rqt) | P_rale_) in
let new_P_lock_ = ((Rst) =>T|
((P_fsm_dstate) => L_lock_ I P_lock_)) in
let new_P_lock_inh_= ((Rst) =>T|
((~new_P_male_V ~new_P_rale) =>L_lock_| P_lock_inh_)) in

let new_P_fsm_state = P_fsm_stateA in
let new_P_fsm_rst = Rst in
let new_P_fsm_mrqt = (~P_destl A new_P_rqt) in
let new_P_fsm_sack = p_sack in
let new_P_fsm_cgot_=1_cgnt_in
let new_P_fsm_crqt_ = ~(P_dest] A new_P_rqt) in
let new_P_fsm_hold_ = I_hold_ in
let new_P_fsm_lock_ = new_P_lock_ in
let new_P_fsm_stateA = P_fsm_stateA in
let new_P_fsm_astate = P_fsm_astate in
let new_P_fsm_dstate = P_fsm_dstate in
let new_P_fsm_hlda_=P_fsm_hida_in
let new_P_wr_data=P_wr_datain
let new_P_addr = P_addr in
let new_P_dest] = P_destl in
let new_P_be_=P_be_in
let new_P_wr=P_wrin
let new_P_be n_=P_be_n_in
let new_P_sizeA = P_sizeA in
let new_P_loadA = P_loadA in
let new_P_downA = P_downA in

(pew_P_fsm_state A, new_P_fsm_astate, new_P_fsm_dstate, new_P_fsm_hlda_, new_P_wr_data, pew_P_addr, new_P_destl,
new_P_be_, new_P_wr, new_P_be_n_, new_P_sizeA, new_P_loadA, new_P_downA, new_P_fsm_state, new_P_fsm_rst,

new_P_fsm_mrqt, new_P_fsm_sack, new_P_fsm_cgnt_, new_P_fsm_crqt_, new_P_fsm_hold_, new_P_fsm_lock_,
new_P_zqt, new_P_size, new_P_load, new_P_down, new_P_lock_, new_P_lock_inh_, pew_P_male_, new_P_rale_)”

s

Output definition for Phase-B instruction.

let PH_B_out_def = new_definition

(‘PH_B_out‘,
“| (P_fsm_state P_fsm_stateA :pfsm_ty)
(P_fsm_astate P_fsm_dstate P_fsm_hlda_P_destl P_wr P_load A P_downA :bool)
(P_fsm_rst P_fsm_mrqt P_fsm_sack P_fsm_cgnt_P_fsm_crqt_ P_fsm_hold_P_fsm_lock_ P_rqt P_load :bool)

125

(P_down P_lock_ P_lock_inh_ P_male_ P_rale_ :bool)
(CikA CIkB RstL_ads_L_den_L_wrL_lock_I_cgnt I hold_1_srdy_:bool) (L_ad_inL_be_I_ad_in :wordn).
PH_B_out (P_fsm_stateA, P_fsm_astate, P_fsm_dstate, P_fsm_hlda_, P_wr_data, P_addr, P_destl, P_be_,
P_wr, P_be_n_, P_sizeA, P_loadA, P_downA, P_fsm_state, P_fsm_rst, P_fsm_mrqt, P_fsm_sack,
P_fsm_cgnt_, P_fsm_crqt_, P_fsm_hold_, P_fsm_lock_, P_rqt, P_size, P_load, P_down, P_lock_,
P_lock_inh_, P_male_, P_rale_)
(CIkA, CIkB, Rst, L_ad_in, L_ads_,L_den_, L_be_, L_wr, L_lock_, I_ad_in,I_cgnt_, I_bold_, I_srdy_) =

letp_ale =(~L_ads_AL_den_)in
let p_sack = ((P_sizeA = ((P_downA) => WORDN 1 | WORDN 0)) A ~I_srdy_ A P_fsm_dstate) in
let new_P_rqt = ((p_ale A ~(p_sack V Rst)) => T'|

((~p_ale A (p_sack VRst)) =>F|

((~p_ale A ~(p_sack V Rst)) => P_rqt | ARB))) in
let new_P_load = ~pew_P_rqtin
let pew_P_down = (~I_srdy_ A P_fsm_dstate) in
let new_P_size = (P_loadA) => (SUBARRAY L_ad_in (1,0)) !

((P_downA) => DECN 1 P_sizeA | P_sizeA)) in
let new_P_male_ = ((P_fsm_astate) =>

~(~P_dest] A (~((SUBARRAY P_addr (25,24)) = (WORDN 3))) Anew_P_rqt) | P_male_) in
let new_P_rale_ = ((P_fsm_astate) =>
~(~P_destl A (SUBARRAY P_addr (25,24)) = (WORDN 3)) A new_P_rqt) | P_rale_) in
let new_P_lock_ = ((Rst)=>T|
((P_fsm_dstate) => L_lock_|P_lock)) in
let new_P_lock_inh_ = ((Rst) =>T|
((~new_P_male_ V ~new_P_rale_) =>L_lock_|P_lock_inh_})) in

let new_P_fsm_state = P_fsm_stateA in
let new_P_fsm_rst = Rstin
let new_P_fsm_mrqt = (~P_dest]l A new_P_rqt) in
let new_P_fsm_sack = p_sack in
let new_P_fsm_cgnt_=1_cgnt_ in
let new_P_fsm_crqt_ = ~(P_destl A new_P_rqt) in
let new_P_fsm_hold_ =1_hold_in
let new_P_fsm_lock_ = new_P_lock_in
let new_P_fsm_state A = P_fsm_stateA in
let new_P_fsm_astate = P_fsm_astate in
let new_P_fsm_dstate = P_fsm_dstate in
let new_P_fsm_hlda_ = P_fsm_hlda_in
let new_P_wr_data = P_wr_data in
let new_P_addr = P_addr in
let new_P_dest] = P_destl in
let new_P_be_=P_be_in
let new_P_wr=P_wrin
let new_P_be_n_=P_be n_in
let new_P_sizeA = P_sizeA in
let new_P_loadA = P_loadA in
let new_P_downA = P_downA in

let L_ad_out = ((~new_P_fsm_astate A new_P_fsm_hlda_ A ~(new_P_fsm_dstate A new_P_wr)) => [_ad_in | ARBN) in
let L_ready_ = (~{~I_srdy_ A new_P_fsm_dstate)) in

let 0d0 = ARBN in

let odl = MALTER 0d0 (31,27) new_P_be_in

let 0d2 = ALTER od1 (26) F in

126

let od3 = MALTER od2 (25,24) (SUBARRAY new_P_addr (1,0)) in

let od4 = MALTER od3 (23,0) (SUBARRAY new_P_addr (25,2)) in

let I_ad_addr_out = ((new_P_fsm_astate) => od4 | ARBN) in

let 1_ad_data_out = ((new_P_fsm_dstate \ new_P_wr) => new_P_wr_data | ARBN) in

let 1_be_ = ((new_P_fsm_hlda_) => ((new_P_fsm_astate) => new_P_be_| new_P_be_n_) | ARBN) in

let I_rale_ = ((new_P_fsm_hida_) =>

~(~new_P_destl A (SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A new_P_fsm_astate A new_P_rqt) | ARB) in
let _male_ = ((new_P_fsm_hlda_) =>

~(~new_P_destl A (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A new_P_fsm_astate Anew_P_rqt) | ARB) in
let I_crqt_ = ~(new_P_destl A new_P_rqt) in

let I_cale_ = ~(~I_cgnt_/ new_P_fsm_astate A I_bold_)in

let I_mrdy_ = ((new_P_fsm_hlda_) => F! ARB)in

let I_last_= ((new_P_fsm_hlda) => (new_P_sizeA = ((new_P_downA) => WORDN 1 | WORDN 0)) | ARB) in

let I_hlda_= new_P_fsm_hlda_in

let I_lock_ = ~(~new_P_lock_ A new_P_lock_inh_) in

(L_ready_, I_last_, I_be_, I_mrdy_, 1_ad_data_out, I_ad_addr_out, I_hida_, I lock_, 1_cale_,I_male_, I_rale_,
I_crqt_, L_ad_out)”
Y

close_theory();:

127

C.2 M Port Specification

%
File: m_phase.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the phase-level specification of the M-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piwhol/1ib/*]);;
system ‘rm m_phase.th*;;

new_theory ‘m_phase’;;

loadf ‘abstract';;

map new_parent [‘maux_def*;‘aux_def";'array_def";*wordn_def*];;

let m_state_ty = “:(mfsm_ty#bool#bool#bool#bool#boo#wordu#wordn¥wordn#bool#wordn#
mfsm_ty#bool#bool#bool¥bool¥bool#bool#bool#bool#
bool#bool#wordn#wordn#wordn#bool#bool#bool#wordn#wordn)”’;;
let m_state = “((M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
Am_state_ty)”;;

let m_env_ty = “:(bool#bool#bool#bool#bool#wordn¥bool#bool#wordn¥bool#wordn#boolibool)”;;
let m_env = “((ClkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I_last_, I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
Am_env_ty)":;

let m_out_ty = “:(wordo#bool#wordn#wordn#bool#bool#bool#bookibool)”;;

let m_out = “((I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_,
MB_parity)
Am_out_ty)';;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

%

Next-state definition for Phase-A instruction.

let PH_A_inst_def = new_definition

128

(‘PH_A_inst',
“| (M_fsm_stateA M_fsm_state :mfsm_ty)

(M_addrA M_beA M_countA M_rd_dataA M_addr M_be M_count M_rd_data M_detect :wordn)

(M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable M_rdyA
M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last_ M_fsm_mrdy_M_fsm_zero_cnt M_fsm_rst
M_se M_wr M_rdy M_wwdel M_parity :bool)

(I_ad_in I_be_ MB_data_in :wordn)

(CIXA CIkB Rst Disable_eeprom Disable_writes I_male_I_last_I_mrdy_ Edac_en_ Reset _parity :bool) .

PH_A_ipnst (M_fsm_state A, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_xdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M _parity, M_rd_data, M_detect)

(CIKA, CIKkB, Rst, Disable_eeprom, Disable_writes, _ad_in, I_male_, I_last_, 1_be_,
Lmrdy_, MB_data_in, Edac_en_, Reset_parity) =

let new_M_fsm_stateA =
((M_fsm_rst) => MI |
((M_fsm_state = MI) => ((~M_fsm_male_) =>MA IMD |
((M_fsm_state = MA) =>
((~M_fsm_mrdy_ A M_fsm_ww) => MW |
(~M_fsm_mrdy_ A (M_fsm_rd VM_fsm_bw)) => MR IMA) |
((M_fsm_state = MR) =>
(M_fsm_bw A M_fsm_zero_cnt) => MBW I
(OM_fsm_last_AM_fsm_rd AM_fsm_zero_cnt) => MAI
((~-M_fsm_last_ A M_fsm_rd AM_fsm_zero_cnt) => MRR IMR))) |
((M_fsm_state = MRR) =>MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ A M_fsm_zero_cnt) => MI |
((M_fsm_last_A M_fsm_zero_cnt) => MA I MW)) |
((M_fsm_state = MBW) => MW | M_ILL)))}))) in
let new_M_fsm_address = (new_M_fsm_stateA = MA) in
let new_M_fsm_read = (new_M_fsm_stateA = MR) in
let new_M_fsm_write = (new_M_fsm_stateA = MW) in
let new_M_fsm_byte_write = (new_M_fsm_stateA = MBW) in
let new_M_fsm_mem_enable = (~(new_M_fsm_stateA = MI)) in
let new_M_addrA = M_addr in
let new_M_beA = M_be in
let new_M_countA = M_count in
let new_M_rdyA =M_rdy in
let new_M_rd_dataA = M_rd_data in
let new_M_fsm_state = M_fsm_state in
let new_M_fsm_male_= M_fsm_male_in
let new_M_fsm_rd = M_fsm_rd in
let new_M_fsm_bw = M_fsm_bw in
let new_M_fsm_ww = M_fsm_ww in
let new_M_fsm_last_ = M_fsm_last_in
let new_M_fsm_mrdy_=M_fsm_mrdy_ in
let new_M_fsm_zero_cnt = M_fsm_zero_cat in
let new_M_fsm_rst = M_fsm_rst in
let new_M_se=M _sein
let new_M_wr=M_wrin
let new_M_addr = M_addr in
let new_M_be = M_be in

129

R

let new_M_count = M_count in

let new_M_rdy = M_rdy in

let new_M_wwdel = M_wwdel in
let new_M_parity = M_parity in
let new_M_rd_data = M_rd_data in
let new_M_detect = M_detect in

(new_M_fsm_stateA, new_M_fsm_address, new_M_fam_read, new_M_fsm_write, new_M_fsm_byte_write,
new_M_fsm_mem_enable, new_M_addrA, new_M_beA, new_M_countA, new_M_rdyA, new_M_rd_dataA,
new_M_fsm_state, new_M_fsm_male_, new_M_fsm_rd, new_M_fsm_bw, new_M_fsm_ww, new_M_fsm_last_,
new_M_fsm_mrdy_, new_M_fsm_zero_cat, new_M_fsm_rst, new_M_se, new_M_wr, new_M_addr, new_M_be,
new_M_count, pew_M_rdy, new_M_wwdel, new_M_parity, new_M_rd_data, new_M_detect)”

)

Output definition for Phase-A instruction.

let PH_A_out_def = new_definition
(‘PH_A_out',

“1 (M_fsm_stateA M_fsm_state :mfsm_ty)
(M_addrA M_beA M_countA M_rd_dataA M_addr M_be M_count M_rd_data M_detect :wordn)
(M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable M_rdyA
M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last_ M_fsm_mrdy_ M_fsm_zero_cnt M_fsm_rst
M_se M_wr M_rdy M_wwdel M_parity :bool)

_ad_in I_be_ MB_data_in :wordn)

(CIkA CIkB Rst Disable_eeprom Disable_writes I_male_ I_last_ I_mrdy_ Edac_en_ Reset_parity :bool)
(rep:*rep_ty) .

PH_A_out (M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)

(CIkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I_last_, I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
Tep =

let new_M_fsm_stateA =
((M_fsm_rst) => MI |
((M_fsm_state = MI) => ((~M_fsm_male_) =>MA IMD)I
((M_fsm_state = MA) =>
((~M_fsm_mrdy_ AM_fsm_ww) => MW |
((~M_fsm_mrdy_ A (M_fsm_rd VM_fsm_bw)) => MR I MA)) |
((M_fsm_state = MR) =>
((M_fsm_bw A M_fsm_zero_cnt) => MBW |
((M_fsm_last_ AM_fsm_rd A\ M_fsm_zero_cnt) => MA |
((~M_fsm_last_ A M_fsm_rd A M_fsm_zero_cnt) => MRR | MR))) |
((M_fsm_state = MRR) => MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ AM_fsm_zero_cnt) => Ml |
(M_fsm_last_ A M_fsm_zero_cnt) => MA | MW)) |
((M_fsm_state = MBW) => MW | M_ILL))))))) in
let new_M_fsm_address = (new_M_fsm_stateA = MA) in
let new_M_fsm_read = (new_M_fsm_stateA = MR) in

130

let new_M_fsm_write = (new_M_fsm_stateA = MW) in
let new_M_fsm_byte_write = (new_M_fsm_stateA = MBW) in
let new_M_fsm_mem_enable = (~(new_M_fsm_stateA = MD)) in
let new_M_addrA = M_addr in
let new_M_beA = M_be in
let new_M_countA = M_countin
let new_M_rdyA = M_rdy in
let new_M_rd_dataA = M_rd_data in
let new_M_fsm_state = M_fsm_state in
let pew_M_fsm_male_=M_fsm_male_in
let new_M_fsm_rd = M_fsm_rd in
let new_M_fsm_bw = M_fsm_bw in
let new_M_fsm_ww = M_fsm_ww in
let new_M_fsm_last = M_fsm_last_in
let new_M_fsm_mrdy_ =M_fsm_mrdy_ in
let new_M_fsm_zero_cnt = M_fsm_zero_cnt in
let new_M_fsm_rst = M_fsm_rst in
let new_M_se =M_se in
let new_M_wr = M_wr in
let new_M_addr = M_addr in
let new_M_be =M_be in
let new_M_count = M_count in
let new_M_rdy = M_rdy in
let new_M_wwdel = M_wwdel in
let new_M_parity = M_parity in
let new_M_rd_data = M_rd_data in
let new_M_detect = M_detect in
let m_rdy = ((new_M_fsm_write A (new_M_countA = (W ORDN 1)))
V (new_M_fsm_read A (new_M_countA = (WORDN 1)) A ~new_M_wr)) in
let m_srdy_ = ~((new_M_rdyA A ~new_M_wr) V (m_rdy N\ new_M_wr)) in
letmb_data_7_0=((ELEMENT new_M_beA (0))=> (SUBARRAY I_ad_in (7,0))! (SUBARRAY new_M_rd_dataA (7,0))) in
let mb_data_15_8 = (ELEMENT new_M_beA (1)) => (SUBARRAY I ad_in (15,8))| (SUBARRAY new_M_rd_dataA
(15.8))) in
let mb_data_23_16 = ((ELEMENT new_M_beA (2)) => (SUBARRAY I_ad_in (23,16)) | (SUBARRAY new_M_rd_dataA
(23,16))) n
let mb_data_31_24 = ((ELEMENT new_M_beA (3)) => (SUBARRAY I _ad_in (31,24))| (SUBARRAY new_M_rd_dataA
(31,24))) in
let mb_data = (MALTER (MALTER (MALTER (MALTER ARBN (7,0) mb_data_7_0)
(15,8) mb_data_15_8)
(23,16) mb_data_23_16)
(31,24) mb_data_31_24)) in
let 1_ad_out = ((~new_M_wr A new_M_fsm_mem_enable) =>new_M_rd_dataA | ARBN) in
let I_srdy_ = ((new_M_fsm_mem_enable) => m_srdy_ | ARB) in
let MB_addr = ((new_M_rdyA) => (INCN 18 new_M_addrA) | new_M_addrA) in
let MB_data_out = ((new_M_fsm_write) => (Ham_Enc rep mb_data) | ARBN) in
let MB_cs_eeprom_ = ~(new_M_fsm_mem_enable A ~new_M_se) in
let MB_cs_sram_ = ~(new_M_fsm_mem_enable A new_M_se) in
let MB_we_ = ~((new_M_se V ~new_M_fsm_mem_enable V ~Disable_eeprom)
A ~Disable_writes
A (new_M_fsm_byte_write VV new_M_fsm_write V new_M_wwdel)) in
let MB_oe_ = ~((~new_M_wr A new_M_fsm_address) V new_M_fsm_read) in
let MB_parity = new_M_parity in

(Lad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_, MB_parity)”

131

%

7o

Next-state definition for Phase-B instruction.

let PH_B_inst_def = new_definition
(‘PH_B_inst',
“| (M_fsm_state A M_fsm_state :mfsm_ty)
(M_addrA M_beA M_countA M_rd_dataA M_addr M_be M_count M_rd_data M_detect :wordn)
(M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable M_rdyA
M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last M_fsm_mrdy_M_fsm_zero_cat M_fsm_rst
M_se M_wr M_rdy M_wwdel M_parity :bool)
(I_ad_in I_be_ MB_data_in :wordn)
(CIkA CIkB Rst Disable_eeprom Disable_writes I_male_1_last_I_mrdy_ Edac_en_ Reset_parity :bool)
(tep:“rep_ty) .

PH_B_inst (M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_wr,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
(CIkA, CIkB, Rst, Disable_eeprom, Disable_writes, [_ad_in, I_male_, I last_, I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
rep =

let new_M_se = ((~]_male_) => (ELEMENT I_ad_in (23)) | M_se) in
let new_M_wr = ((~I_male_) => (ELEMENT I_ad_in (27)) | M_wr) in
let new_M_addr =
((~I_male_)=> (SUBARRAY I_ad_in (18,0))!
((M_rdyA) => (INCN 18 M_addrA) | M_addrA)) in
let new_M_count =
((M_fsm_address V M_fsm_byte_write) => ((new_M_se) => (WORDN 1) | (WORDN 2))
((M_fsm_write V M_fsm_read) => (DECN 1 M_countA) | M_countA)) in
let m_rdy = ((M_fsm_write A\ (new_M_count = (WORDN 0)))
V (M_fsm_read A (new_M_count = (WORDN 0)) A ~new_M_wr)) in
letm_srdy_ = ~((M_rdyA A ~new_M_wr) V (m_rdy A new_M_wr)) in
let new_M_be = ((~]_male_V ~m_srdy_) => (NOTN 3 I_be_) | M_be) in
let new_M_rdy = m_rdy in
let new_M_wwdel = (M_fsm_address A new_M_wr A (new_M_be = (WORDN 15})) in
let new_M_rd_data = ((M_fsm_read) => (Ham_Dec rep MB_data_in) | M_rd_data) in
let new_M_detect =
((M_fsm_read A ~new_M_wr) Vnew_M_wr V ~M_fsm_mem_enable) =>
((~Edac_en_) => (Ham_Detl rep MB_data_in) | (WORDN 0)) | M_detect) in
let m_error = (~m_srdy_ AM_fsm_mem_enable A (Ham_Det2 rep (new_M_detect, ~Edac_en_))) in
let new_M_parity =
((m_error A ~(Rst V Reset_parity)) => T |
((~m_error A (Rst V Reset_parity)) => F |
((~m_error A ~(Rst V Reset_parity)) => M_parity | ARB))) in
let new_M_fsm_state = M_fsm_stateA in
let new_M_fsin_male_=1_male_ in
let new_M_fsm_rd = (~new_M_wr A M_fsm_mem_enable) in
let new_M_fsm_bw = ((~(new_M_be = (WORDN 15))) A new_M_wr AM_fsm_mem_enable) in
let new_M_fsm_ww = ((new_M_be = (WORDN 15)) A new_M_wr A M_fsm_mem_enable) in
let npew_M_fsm_last_ = [_last_ in

132

let new_M_fsm_mrdy_=I_mrdy_in

let new_M_fsm_zero_cnt = (new_M_count = (WORDN 0)) in
let new_M_fsm_rst = Rst in

let new_M_fsm_stateA = M_fsm_stateA in

let new_M_fsm_address = M_fsm_address in

let new_M_fsm_read = M_fsm_read in

let new_M_fsm_write = M_fsm_write in

let pew_M_fsm_byte_write = M_fsm_byte_write in

let new_M_fsm_mem_enable = M_fsm_mem_enable in
let new_M_addrA = M_addrA in

let new_M_beA = M_beA in

let new_M_countA = M_countA in

let new_M_rdyA = M_rdyA in

let new_M_rd_dataA = M_rd_dataA in

(new_M_fsm_stateA, new_M_fsm_address, pew_M_fsm_read, new_M_fsm_write, new_M_fsm_byte_write,
pew_M_fsm_mem_enable, npew_M_addrA, new_M_beA, new_M_countA, new_M_rdyA, new_M _rd_dataA,
new_M_fsm_state, new_M_fsm_male_, new_M_fsm_rd, new_M_fsm_bw, new_M_fsm_ww, new_M_fsm_last_,
new_M_fsm_mrdy_, new_M_fsm_zero_cnt, new_M_fsm_rst, new_M_se, new_M_wr, new_M_addr, new_M_be,
pew_M_count, new_M_rdy, new_M_wwdel, new_M _parity, new_M_rd_data, new_M_detect)”

¥

0

Output definition for Phase-B instruction.

let PH_B_out_def = new_definition
(‘PH_B_out',
“! (M_fsm_stateA M_fsm_state :mfsm_ty)
(M_addrA M_beA M_countA M_rd_dataA M_addr M_be M_count M_rd_data M_detect :wordn)
(M_fsm_address M_fsm_read M_fsm_write M_fsm_byte_write M_fsm_mem_enable M_rdyA
M_fsm_male_ M_fsm_rd M_fsm_bw M_fsm_ww M_fsm_last_ M_fsm_mrdy_ M_fsm_zero_cot M_fsm_rst
M_se M_wr M_rdy M_wwdel M_parity :bool)
(I_ad_in I_be_ MB_data_in :wordn)
(ClkA CIkB Rst Disable_eeprom Disable_writes I_male_ I_last_I_mrdy_ Edac_en_ Reset_parity :bool)
(rep:*rep_ty) .
PH_B_out (M_fsm_stateA, M_fsm_address, M_fsm_read, M_fsm_write, M_fsm_byte_write, M_fsm_mem_enable,
M_addrA, M_beA, M_countA, M_rdyA, M_rd_dataA, M_fsm_state, M_fsm_male_, M_fsm_rd,
M_fsm_bw, M_fsm_ww, M_fsm_last_, M_fsm_mrdy_, M_fsm_zero_cnt, M_fsm_rst, M_se, M_w,
M_addr, M_be, M_count, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
(CIkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in,I_male_, I last ,I be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
rep =

let new_M_se = ((~]_male_) => (ELEMENT I_ad_in (23)) | M_se) in
let new_M_wr = ((~I_male_)=> (ELEMENT I_ad_in (27)) | M_wr) in
let new_M_addr =
((~I_male_) => (SUBARRAY I_ad_in (18,0))1
(M_rdyA) => (INCN 18 M_addrA) | M_addrA)) in
let new_M_count =
((M_fsm_address V M_fsm_byte_write) => ((new_M_se) => (WORDN 1) | (WORDN 2)) |
((M_fsm_write V M_fsm_read) => (DECN 1 M_countA) | M_countA)) in
let m_rdy = ((M_fsm_write A\ (new_M_count = (WORDN 0)))

133

V (M_fsm_read A (new_M_count = (WORDN 0)) A ~new_M_wr)) in
let m_srdy_ = ~((M_rdyA A ~new_M_wr) VV (m_rdy A new_M_wr)) in
let new_M_be = ((~I_male_V ~m_srdy_) => (NOTN 3 I_be_) | M_be) in
let new_M_rdy =m_rdy in
let new_M_wwdel = (M_fsm_address A new_M_wr A (new_M_be = (WORDN 15))) in
let new_M_rd_data = (M_fsm_read) => (Ham_Dec rep MB_data_in) | M_rd_data) in
let new_M_detect =
((M_fsm_read A ~new_M_wr) V new_M_wr V ~M_fsm_mem_enable) =>
((~Edac_en_) => (Ham_Det! rep MB_data_in) | (WORDN 0)) | M_detect) in
let m_error = (~m_srdy_ AM_fsm_mem_enable A (Ham_Det2 rep (new_M_detect, ~Edac_en_))) in
let new_M_parity =
((m_error A ~(Rst V Reset_parity)) => T |
((~m_error A (Rst VV Reset_parity)) => F |
((~m_error A ~(Rst \ Reset_parity)) => M_parity | ARB))) in
let new_M_fsm_state = M_fsm_stateA in
let new_M_fsm_male_ = I_male_in
let new_M_fsm_rd = (~new_M_wr A M_fsm_mem_eaable) in
let new_M_fsm_bw = ((~(new_M_be = (WORDN 15))) A new_M_wr A M_fsm_mem_enable) in
let new_M_fsm_ww = ((new_M_be = (WORDN 15)) A new_M_wr A M_fsm_mem_enable) in
let new_M_fsm_last_ = I_last_in
let new_M_fsm_mrdy_=1_mrdy_in
let new_M_fsm_zero_cnt = (new_M_count = (WORDN 0)) in
let new_M_fsm_rst = Rst in
let new_M_fsm_stateA = M_fsm_stateA in
let new_M_fsm_address = M_fsm_address in
let new_M_fsm_read = M_fsm_read in
let new_M_fsm_write = M_fsm_write in
let new_M_fsm_byte_write = M_fsm_byte_write in
let new_M_fsm_mem_enable = M_fsm_mem_enable in
let new_M_addrA = M_addrA in
let new_M_beA = M_beA in
let new_M_countA = M_countA in
let new_M_rdyA = M_rdyA in
let new_M_rd_datsA = M_rd_dataA in
let m_rdy = ((new_M_fsm_write A (new_M_countA = (WORDN 1)))
V (new_M_fsm_read A (new_M_countA = (WORDN 1)) A ~new_M_wr)) in
let m_srdy_ = ~({new_M_rdyA A ~pew_M_wr) V (m_rdy A new_M_wr)) in
letmb_data_7_0 = ((ELEMENT new_M_beA (0))=> (SUBARRAY I_ad_in (7,0)) | (SUBARRAY new_M_rd_dataA (7,0))) in
let mb_data_15 8=
((ELEMENT new_M_beA (1)) => (SUBARRAY I_ad_in (15,8)) | (SUBARRAY new_M_rd_dataA (15,8))) in
let mb_data_23_16 =
((ELEMENT new_M_beA (2)) => (SUBARRAY I_ad_in (23,16)) | (SUBARRAY new_M_rd_dataA (23,16))) in
let mb_data_31_24=
((ELEMENT new_M_beA (3)) => (SUBARRAY I_ad_in (31,24)) | (SUBARRAY new_M_rd_dataA (31,24))) in
let mb_data = (MALTER (MALTER (MALTER (MALTER ARBN (7,0) mb_data_7_0)
(15,8) mb_data_15_8)
(23,16) mb_data_23_16)
(31,24) mb_data_31_24)) in

let I_ad_out = ((~new_M_wr A new_M_fsm_mem_enable) => new_M_rd_dataA | ARBN) in
let I_srdy_ = (new_M_fsm_mem_enable) => m_srdy | ARB) in

let MB_addr = ((new_M_rdyA) => (INCN 18 new_M_addrA) | new_M_addrA) in

let MB_data_out = ((new_M_fsm_write) => (Ham_Enc rep mb_data) | ARBN) in

let MB_cs_eeprom_ = ~(new_M_fsm_mem_enable A ~new_M_se) in

134

let MB_cs_sram_ = ~(new. _M_fsm_mem_enable A new_M_se) in
let MB_we_ = ~((new_M_se V ~new_M_fsm _mem_enable V ~Disable_eeprom)
A ~Disable_writes
A (new_M_fsm_byte_write V new_M_fsm_write V new_M_wwdel)) in
let MB_oe_ = ~((~new_M_wr A new_M_fsm_address) V new_M_fsm_read) in
let MB_parity = new_M_parity in

(I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_, MB_parity)”
)

135

C.3 R Port Specification

-4
24

File:

Author:

Date:

r_phase.ml
{c) D.A. Fura 1992

31 March 1992

This file contains the ml source for the phase-level specification of the R-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

set_search_path (search_path() @ [*/home/titan3/dfura/ftep/piu/hol/ib/*});;

system ‘rm r_phase.th*;;

new_theory ‘r_phase;;

loadf ‘abstract;;

map new_parent [‘raux_def*; aux_def*; ‘array_def";'wordn_def"];;

let r_state_ty = “:(rfsm_ty#bool#bool#bool#bool#booltbool#bool#bool#bool#bool#bool#bool#twordnéwordn#

bool#bool#wordn#wordn#bool#bool#wordn#wordn#bool#bool#wordn#wordn#bool#bool#
wordu#bool#wordn#wordn#wordn#
rfsm_ty#bool#bool#bool#bool#bool#boobool#bool#bool#bool#boo#bool#boowordn#wordn#
bool#bool¥bool#wordn#wordn#bool#wordn#bool#bool#bool#wordn#wordn#bool#wordni#
bool#bool#bool#wordn#wordn#bool#wordn#bool#bool#bool#wordn#wordn#bool#bool#
wordn#wordn#wordn#boowordn#bool#wordn#boo Wwordn#bool);;

let 1_state = “((R_fsm_state A, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,

let r_env_|

R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg _selA, R_ctr0, R_ctrQ_ce, R_ctr0_cin, R_ctr0_outA, R_ctrl, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_c01_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg_sel, R_ctr0_in,
R_ctrO_mux_sel, R_ctr0_irden, R_ctrO_cry, R_ctrO_new, R_ctrO_out, R_ctrO_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctr]_irden, R_ctrl_cry, R_ctrl_pew, R_ctrl_out, R_ctrl_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_cer_rden, R_ger, R_ger_rden, R_st,
R_sr_rden)

Ar_state_ty)”s;

= ‘:(boo#bool#bool#wordn#bool¥bool#wordn#bool#booltboo Wwordn#wordn#bool#bool#

wordn#wordn#twordn#bool#bool¥wordn)”;;

let r_env = “((ClkA, CikB, Rst, I_ad_in, I_rale_, I_last_, I_be_, I_mrdy_, Disable_int, Disable_writes,

Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChaanelID, CB_parity, MB_parity, C_ss)

136

Pr_env_ty)’ss
let r_out_ty = “:(wordn#bool#bool#bool#bool#bool#wordn#wordn#bool#bool)";;
let r_out = “((I_ad_out, I_srdy_, Int0_, Intl, Int2, Int3_, Ccr, Led, Reset_error, Pmm_invalid)
Ar_out_ty)"s;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

aQ
.4

Next-state definition for Phase-A instruction.

let PH_A_inst_def = new_definition
(‘PH_A_inst’,
“| (rep:*rep_ty)

(R_fsm_state A R_fsm_state rfsm_ty)

(R_reg_selAR_ctr0 R_ctrO_outA R_ctr] R_ctr]_outA R_ctr2 R_ctr2_outA R_ct3 R_ctr3_outA R_icr_oldA
R_icrA R_busA_latch R_reg_sel R_ctrO_in R_ctr0_new R_ctr0_out R_ctrl_in R_ctrl_new R_ctrl_out
R_ctr2_in R_ctr2_new R_ctr2_out R_ctr3_in R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr
R_ccr R_ger R_sr :wordn)

(R_fsm_cntlatch R_fsm_srdy_ R_int0_en R_int0_disA R_int3_en R_int3_disA R_c01_cout R_c01_cout_delA
R_c23_cout R_c23_cout_delA R_cntlatch_delA R_srdy_delA_ R_ctr0_ce R_ctr0_cin R_ctrl_ce R_ctrl_cin
R_ctr2_ce R_ctr2_cin R_ctr3_ce R_ctr3_cin R_icr_loadA R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_ R_fsm_rst
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del
R_srdy_del_R_ctrO_mux_sel R_ctr0_irden R_ctr0_cry R_ctr0_orden R_ctrl_mux_sel R_ctrl_irden
R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R_ger_rden
R_sr_rden :bool)

(I_ad_in I_be_ Cpu_fail Reset_cpu S_state 1d ChannelID C_ss :wordn)

(ClkA CIkB RstI_rale_1 last_ I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail
CB_parity MB_parity :bool) .

PH_A_inst rep
(R_fsm_stateA, R_fsm_catlatch, R_fsm_srdy_, R_intO_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctr0_ce, R_ctrO_cin, R_ctrO_outA, R_ctrl, R_ctrl_ce, R_etrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_c01_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg_sel, R_ctr0_in,
R_ctrO_mux_sel, R_ctr0_irden, R_ctr0_cry, R_ctrO_new, R_ctr0_out, R_ctr0_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctrl_irden, R_ctrl_cry, R_ctrl_new, R_ctrl_out, R_ctrl_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_cer _rden, R_ger, R_ger_rden, R_sr,
R_sr_rden)
(CIkA, CIkB, Rst, I_ad_in, I_rale_, Ilast_, 1_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB_parity, C_ss) =

let new_R_fsm_stateA =
((R_fsm_rst) =>RI |
((R_fsm_state = RI) => ((~R_fsm_ale_) => RAIRDI
((R_fsm_state = RA) => ((~R_fsm_mrdy_) => RD IRA)!
((~R_fsm_last_) => RI{ RA)))) in

let new_R_fsm_cntlatch = ((R_fsm_state = R) A ~R_fsm_ale_) in

137

let new_R_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in
let new_R_cntlatch_delA = R_cntlatch_del in
let new_R_srdy_delA_ = R_srdy_del_ in
let new_R_reg_selA =R_reg_sel in
let r_reg_sel = ((~new_R_srdy_delA_) => (INCN 3 new_R_reg_selA) | new_R_reg_selA) in
let r_write = (~Disable_writes A R_wr A (new_R_fsm_stateA = RD)) in
let r_read = (~R_wr N\ (new_R_fsm_stateA = RA)) in
let r_cir_wr01 = (r_write A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9)))) in
let r_cir_wr23 = (1_write A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11)))) in
let new_R_ctr0 = ((R_ctrO_mux_sel) => R_ctr0_in | R_ctr0_new) in
let new_R_ctrO_ce = (ELEMENT R_ger (19)) in
let new_R_ctrO_cin=Tin
let new_R_ctr0_outA = R_ctrO_new in
let new_R_ctrl = ((R_ctrl_mux_sel) => R_ctri_in | R_ctrl_pew) in
let new_R_ctrl_ce=Tin
let new_R_ctrl_cin = R_ctr0_cry in
let new_R_ctrl_outA = R_ctrl_pew in
let new_R_ctr2 = ((R_ctr2_mux_sel) => R_ctr2_in | R_ctr2_new) in
let new_R_ctr2_ce = (ELEMENT R_gcr (23)) in
let new_R_ctr2_ cin=Tin
let new_R_ctr2_outA = R_ctr2_new in
let new_R_ctr3 = (R_ctr3_mux_sel) => R_ctr3_in | R_ctr3_new) in
let new_R_ctr3_ce=Tin
let new_R_ctr3_cin = R_ctr2_cry in
let new_R_ctr3_outA = R_ctr3_new in
let new_R_icr_loadA = R_icr_load in
let new_R_icr_oldA =
(((new_R_fsm_stateA = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => R_icr | R_icr_oldA) in
let new_R_icrA =
((~(r_reg_sel = (WORDN 1))) => Andn rep (R_icr_old, R_icr_mask) | Om rep (R_icr_old, R_icr_mask)) in
let new_R_int0_en = (((ELEMENT R_icr (0)) A (ELEMENT R_icr (8))) V
((ELEMENT R_icr (1)) A (ELEMENT R_icr (9))) V
((ELEMENT R_icr (2)) A (ELEMENT R_icr (10))) V
((ELEMENT R_icr (3)) A (ELEMENT R_icr (11))) V
((ELEMENT R_icr (4)) A (ELEMENT R_jcr (12))) V
((ELEMENT R_icr (5)) A (ELEMENT R_icr (13)) V
((ELEMENT R_icr (6)) A (ELEMENT R_icr (14))) V
((ELEMENT R_icr (7)) A (ELEMENT R_icr (15)))) in
let new_R_int0_disA = R_int0_dis in
let new_R_int3_en = (((ELEMENT R_icr (16)) A (ELEMENT R_icr (24))) V
((ELEMENT R _icr (17)) A(ELEMENT R_icr (25))) V
((ELEMENT R _icr (18)) A (ELEMENT R_icr (26))) V
((ELEMENT R_icr (19)) A (ELEMENT R_icr 27))) V
((ELEMENT R_icr (20)) A (ELEMENT R_icr (28))) V
((ELEMENT R_icr (21)) A (ELEMENT R_ier (29))) V
((ELEMENT R _icr (22)) A (ELEMENT R_icr (30))) V
((ELEMENT R_icr (23)) A (ELEMENT R_icr (31)))) in
let new_R_int3_disA = R_int3_dis in
let new_R_cO1_cout = R_ctr]_cry in
let new_R_c01_cout_delA = R_c01_cout_del in
let new_R_c23_cout =R_ctr3_cry in
let new_R_c23_cout_delA = R_c23_cout_del in
let new_R_busA_latch =
(((R_ctrO_irden) => R_ctr0_in |

138

((R_ctrO_orden) => R_ctrO_out |
((R_ctrl_irden) => R _ctrl_in |
((R_ctr]l_orden) => R_ctrl_out |
((R_ctr2_irden) =>R_ctr2_in |
((R_ctr2_orden) => R_ctu2_out!
((R_ctr3_irden) => R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => R _icr |
((R_ccr_rden) =>R_cer |
((R_ger_rden) =>R_ger |
((R_st_rden) => R_sr | ARBN))))))))) in

let new_R_fsm_state = R_fsm_state in

let new_R_fsm_ale_ = R_fsm_ale_in

let pew_R_fsm_mrdy_ = R_fsm_mrdy_ in

let new_R_fsm_last_ = R_fsm_last_in

let new_R_fsm_rst = R_fsm_rst in

let new_R_int0_dis = R_int0_dis in

let new_R_int3_dis = R_int3_dis in

let new_R_c01_cout_del = R_c01_cout_del in

let new_R_intl_en=R_intl_en in

let new_R_c23_cout_del = R_c23_cout_del in

let new_R_int2_en =R_int2_en in

let new_R_wr=R_wrin

let new_R_cntlatch_del = R_cntlatch_del in

let new_R_srdy_del_ = R_srdy_del_in

let new_R_reg_sel = R_reg_sel in

let new_R_ctrO_in = R_ctrQ_in in

let new_R_ctrO_mux_sel = R_ctrO_mux_sel in

let new_R_ctrQ_irden = R_ctrQ_irden in

let new_R_ctrO_cry = R_ctrO_cry in

let new_R_ctrO_pew = R_ctrO0_new in

let new_R_ctrO_out = R_ctrO_out in

let new_R_ctrO_orden = R_ctr0_orden in

let new_R_ctrl_in=R_ctrl_in in

let new_R_ctrl_mux_sel = R_ctrl_mux_sel in

let new_R_ctrl_irden = R_ctrl_irden in

let new_R_ctrl_cry=R_ctrl_cry in

let new_R_ctrl_new = R_ctrl_pew in

let new_R_ctrl_out= R_ctrl_outin

let new_R_ctrl_orden = R_ctrl_orden in

let pew_R_ctr2_in =R_ctr2_in in

let new_R_ctr2_mux_sel = R_ctr2_mux_sel in

let new_R_ctr2_irden = R_ctr2_irden in

let new_R_ctr2_cry = R_ctr2_cry in

let new_R_ctr2_new = R_ctr2_new in

let new_R_ctr2_out= R_ctr2_out in

let new_R_ctr2_orden = R_ctr2_orden in

let new_R_ctr3_in = R_ctr3_in in

let new_R_ctr3_mux_sel = R_ctr3_mux_sel in

let new_R_ctr3_irden = R_ctr3_irden in

let new_R_ctr3_cry = R_ctr3_cry in

let new_R_ctr3_new = R_ctr3_new in

let new_R_ctr3_out = R_ctr3_out in

let new_R_ctr3_orden = R_ctr3_orden in

139

let new_R_icr_load = R_icr_load in
let new_R_icr_old = R_icr_old in

let new_R_icr_mask = R_icr_mask in
let new_R_icr =R_icrin

let new_R_icr_rden = R_icr_rden in
let new_R_ccr =R _ccrin

let new_R_ccr_rden = R_ccr_rden in
let new_R_gcr=R_gerin

let new_R_gcr_rden = R_ger_rden in
let new_R_sr=R_srin

let new_R_st_rden =R_sr_rden in

(new_R_fsm_stateA, new_R_fsm_cntlatch, pew_R_fsm_srdy_, new_R_int0_en, new_R_int0_disA, pew_R_int3_en,
new_R_int3_disA, new_R_c01_cout, pew_R_c01_cout_delA, new_R_c23_cout, new_R_c23_cout_delA,
new_R_cntlatch_delA,
new_R_srdy_delA_, new_R_reg_selA, new_R_ctr0, new_R_ctrO_ce, new_R_ctr0_cin, new_R_ctrO_outA, new_R_ctrl,
new_R_ctrl_ce, new_R_ctrl_cin, new_R_ctr]l_outA, new_R_ctr2, new_R_ctr2_ce, new_R_ctr2_cin, new_R_ctr2_outA,
new_R_ctr3, new_R_ctr3_ce, new_R_ctr3_cin, new_R_ctr3_outA, new_R _icr_loadA, new_R_icr_oldA, new_R_icrA,
new_R_busA_latch, new_R_fsm_state, new_R_fsm_ale_, pew_R_fsm_mrdy_, new_R_fsm_last_, pew_R_fsm_rst,
new_R_int0_dis, new_R_int3_dis, new_R_c01_cout_del, new_R_intl_en, new_R_c23_cout_del, new_R_int2_en,
new_R_wr,
new_R_cntlatch_del, new_R_srdy_del_, new_R_reg_sel, pew_R_ctr0_in, new_R_ctr0_mux_sel, new_R_ctr0_irden,
new_R_ctr0_cry, new_R_ctrO_new, new_R_ctr0_out, new_R_ctrO_orden, new_R_ctri_in, new_R_ctrl_mux_sel,
new_R_ctrl_irden, new_R_ctrl_cry, new_R_ctr]_new, new_R_ctrl_out, new_R_ctrl_orden, new_R_ctr2_in,
pew_R_ctr2_mux_sel, new_R_ctr2_irden, new_R_ctr2_cry, new_R_ctr2_new, new_R_ctr2_out, new_R_ctr2_orden,
new_R_ctr3_in, new_R_ctr3_mux_sel, new_R_ctr3_irden, new_R_ctr3_cry, new_R_ctr3_new, new_R_ctr3_out,
new_R_ctr3_orden, new_R_icr_load, new_R_icr_old, new_R_icr_mask, pew_R_icr, new_R_icr_rden, new_R_ccr,
new_R_ccr_rden, new_R_gcr, new_R_gcr_rden, new_R_sr, new_R_sr_rden)”

)i

0

Output definition for Phase-A instruction.

let PH_A_out_def = new_definition
(‘PH_A_out’,
“! (rep:*rep_ty)

(R_fsm_state A R_fsm_state :rfsm_ty)

(R_reg_selA R_ctrO R_ctrO_outA R_ctrl R_ctrl_outA R_ctr2 R_ctr2_outA R_ctr3 R_ctr3_outA R_icr_oldA
R_icrA R_busA_latch R_reg_sel R_ctr0_in R_ctrO_new R_ctr0_out R_ctrl_in R_ctrl_new R_ctrl_out
R_ctr2_in R_ctr2_pew R_ctr2_out R_ctr3_in R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr
R_cer R_ger R_sr :wordn)

(R_fsm_cntlatch R_fsm_srdy_ R_int0_en R_int0_disA R_int3_en R_int3_disA R_c01_cout R_c01_cout_delA
R_c23_cout R_c23_cout_delA R_cntlatch_delA R_srdy_delA_R_ctrO_ce R_ctr0_cin R_ctrl_ce R_ctrl_cin
R_ctr2_ce R_ctr2_cin R_ctr3_ce R_ctr3_cin R_icr_loadA R_fsm_ale_R_fsm_rmrdy_ R_fsm_last_ R_fsm_rst
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del
R_srdy_del_ R_ctrO_mux_sel R_ctr0_irden R_ctrO_cry R_ctrO_orden R_ctrl _mux_sel R_ctrl_irden
R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_cecr_rden R_ger_rden
R_sr_rden :bool)

(I_ad_inI_be_ Cpu_fail Reset_cpu S_state Id ChannelID C_ss :wordn)

(CIKA CIkB Rst I_rale_I_last_I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail
CB_parity MB_parity :bool) .

PH_A_out rep

140

(R_fsm_stateA, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctrO_ce, R_ctrO_cin, R_ctrO_outA, R_ctrl, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_c01_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg_sel, R_ctr0_in,
R_ctrO_mux_sel, R_ctrO_irden, R_ctr0_cry, R_ctrO_new, R_ctr0_out, R_ctrO_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctrl_irden, R_ctrl_cry, R_ctrl_new, R_ctrl_out, R_ctrl_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_cer_rden, R_ger, R_ger_rden, R_st,
R_sr_rden)

(CIkA, CIkB, Rst, I_ad_in, I_rale_, I_last_, I_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB_parity, C_ss) =

let new_R_fsm_stateA =
((R_fsm_rst) =>RI|
((R_fsm_state = RI) => ((~R_fsm_ale_) =>RA{R]) |
((R_fsm_state = RA) => ((~R_fsm_mrdy_) =>RD IRA)|
((~R_fsm_last_) => RI | RA)))) in
let new_R_fsm_cntlatch = (R_fsm_state = RI)A ~R_fsm_ale_) in
let new_R_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in
let new_R_cntlatch_delA = R_cntlatch_del in
let new_R_srdy_delA_ = R_srdy_del_in
let new_R_reg_selA = R_reg_sel in
let r_reg_sel = ((~new_R_srdy_delA_) => (INCN 3 new_R_reg_selA) | new_R_reg_selA)in
let r_write = (~Disable_writes A R_wr N\ (new_R_fsm_stateA = RD)) in
let r_read = (~R_wr A (new_R_fsm_stateA = RA)) in
let r_cir_wr01 = (r_write A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9)))) in
let 1_cir_wr23 = (r_write A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11)))) in
let new_R_ctr0 = ((R_ctrO_mux_sel) => R_ctr0_in | R_ctr0_new) in
let new_R_ctr0_ce = (ELEMENT R_ger (19)) in
let new_R_ctrO_cin=T in
let new_R_ctrO_outA = R_ctrO_new in
let new_R_ctrl = (R_ctr]l_mux_sel) => R_ctrl_in | R_ctrl_new) in
let new_R_ctrl_ce=Tin
let new_R_ctrl_cin = R_ctrO_cry in
let new_R_ctr]l_outA = R_ctrl_pew in
let new_R_ctr2 = ((R_ctr2_mux_sel) => R_ctr2_in | R_ctr2_new) in
let new_R_ctr2_ce = (ELEMENT R_gcr (23)) in
letnew_R_ctr2 cin=Tin
let new_R_ctr2_outA = R_ctr2_new in
let new_R_ctr3 = (R_ctr3_mux_sel) => R_ctr3_in | R_ctr3_new) in
let new_R_ctr3_ce=Tin
let new_R_ctr3_cin = R_ctr2_cry in
let new_R_ctr3_outA = R_ctr3_new in
let new_R_icr_loadA = R_icr_load in
let new_R_icr_oldA =
(((new_R_fsm_stateA = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => R_icr | R_icr_oldA) in
let new_R_icrA =
((~(r_reg_sel = (WORDN 1))) => Andn rep (R_icr_old, R_icr_mask) | Orn rep (R_icr_old, R_icr_mask)) in
let new_R_intO_en = (ELEMENT R_icr (0)) A (ELEMENT R_icr (8))) V
((ELEMENT R_icr (1)) A (ELEMENT R_icr (9))) V

141

((ELEMENT R_icr (2)) A (ELEMENT R_icr (10))) V
((ELEMENT R _icr (3)) A (ELEMENT R_jcr (11)}) V
((ELEMENT R _icr (4)) A (ELEMENT R_icr (12))) V
((ELEMENT R_icr (5)) A (ELEMENT R _jcr (13))) V
((ELEMENT R_icr (6)) A (ELEMENT R_icr (19))) V
((ELEMENT R_icr (7)) A (ELEMENT R _icr (15)))) in
let new_R_int0_disA = R_int0_dis in
let new_R_int3_en = (((ELEMENT R_icr (16)) A (ELEMENT R_icr (24))) V
((ELEMENT R_icr (17)) A (ELEMENT R_icr (25))) V
((ELEMENT R_icr (18)) A (ELEMENT R_icr (26))) V
((ELEMENT R_icr (19)) A (ELEMENT R_icr (27))) V
((ELEMENT R_icr (20)) A (ELEMENT R _icr (28))) V
((ELEMENT R_icr (21)) A (ELEMENT R_icr (29))) V
((ELEMENT R_icr (22)) A (ELEMENT R _icr (30))) V
((ELEMENT R_icr (23)) A (ELEMENT R _icr (31)))) in
let new_R_int3_disA = R_int3_dis in
let new_R_c01_cout = R_ctrl_cryin
let new_R_c01_cout_delA = R_c01_cout_del in
let new_R_c23_cout =R_ctr3_cryin
let new_R_c23_cout_delA = R_c23_cout_del in
let new_R_busA_latch =
(((R_ctxO_irden) => R_ctrO_in |
((R_ctrO_orden) => R_ctr0_out |
((R_ctrl_irden) => R_ctr]l_in |
((R_ctrl _orden) => R_ctr]_out |
((R_ctr2_irden) => R_ctr2_in |
((R_ctr2_orden) => R_ctr2_out |
((R_ctr3_irden) => R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => R_icr |
((R_ccr_rden) => R_cer |
((R_ger_rden) => R_ger |
((R_sr_rden) => R_sr | ARBN)))))))))))) in
let new_R_fsm_state = R_fsm_state in
let new_R_fsm_ale_=R_fsm_ale_ in
let new_R_fsm_mrdy_ = R_fsm_mrdy_ in
let new_R_fsm_last_ = R_fsm_last_in
let new_R_fsm_rst =R_fsm_rst in
let new_R_int0_dis = R_int0_dis in
let new_R_int3_dis = R_int3_dis in
let new_R_c01_cout_del = R_c01_cout_del in
let new_R_intl_en =R_intl_enin
let new_R_c23_cout_del = R_c23_cout_del in
let new_R_int2_en=R_int2_enin
letnew_R_wr=R_wrin
let new_R_cntlatch_del = R_catlatch_del in
let new_R_srdy_del = R_srdy_del_in
let new_R_reg_sel =R_reg_sel in
let new_R_ctr0_in = R_ctr0_in in
let new_R_ctrO_mux_sel = R_ctrO_mux_sel in
let new_R_ctrO_irden = R_ctrO_irden in
let new_R_ctrO_cry = R_ctrO_cry in
let new_R_ctrO_new = R_ctrO_new in
let new_R_ctrO_out = R_ctrO_out in

142

let new_R_ctrO_orden = R_ctr0_orden in
Jet new_R_ctrl_in = R_ctrl_in in

let new_R_ctrl_mux_sel = R_ctrl_mux_sel in
let new_R_ctrl_irden = R_ctrl_irden in
let new_R_ctrl_cry=R_ctrl_cryin

let new_R_ctrl_new = R_ctr]l_new in
let new_R_ctrl_out=R_ctrl_outin

let new_R_ctrl_orden =R_ctrl_orden in
let new_R_ctr2_in = R_ctr2_in in

let new_R_ctr2_mux_sel = R_ctr2_mux_sel in
let new_R_ctr2_irden = R_ctr2_irden in
let new_R_ctr2_cry =R_ctr2_cry in

let new_R_ctr2_new = R_ctr2_new in
let new_R_ctr2_out = R_ctr2_out in

let new_R_ctr2_orden = R_ctr2_orden in
let new_R_ctr3_in=R_ctr3_inin

let new_R_ctr3_mux_sel = R_ctr3_mux_sel in
let new_R_ctr3_irden = R_ctr3_irden in
let new_R_ctr3_cry = R_ctr3_cry in

let new_R_ctr3_new = R_ctr3_new in
let new_R_ctr3_out = R_ctr3_out in

let new_R_ctr3_orden = R_ctr3_orden in
let new_R_icr_load = R_icr_load in

let new_R_icr_old = R_icr_old in

let new_R_icr_mask = R_jcr_mask in

let new_R_icr = R_icrin

let new_R_icr_rden = R_icr_rden in

let new_R_ccr=R_cecrin

let new_R_ccr_rden = R_ccr_rden in

let new_R_ger=R_gerin

let new_R_gcr_rden = R_ger_rden in

let new_R_sr=R_srin

let new_R_sr_rden = R_sr_rden in

let I_ad_out = ((~new_R_wr A ((new_R_fsm_stateA = RA)V (new_R_fsm_stateA = RD))) => new_R_busA_latch | ARBN)in
let I_srdy_ = (((new_R_fsm_stateA = RD) V ((new_R_fsm_stateA = RA))) => new_R_fsm_srdy_ [ARB) in

let Int0_ = ~(new_R_int0_en A ~pew_R_int0_disA A ~Disable_int) in

let Int1 = (new_R_c0l_cout A new_R_intl_en A ~Disable_int) in

let Int2 = (new_R_c23_cout A new_R_int2_en A ~Disable_int) in

let Int3_ = ~(new_R_int3_en A ~new_R_int3_disA A ~Disable_int) in

let Ccr = new_R_ccrin

let Led = (SUBARRAY new_R_gcr (3,0)) in

let Reset_error = (ELEMENT new_R_gcr (24)) in

let Pmm_invalid = (ELEMENT new_R_gcr (28)) in

(I_ad_out, I_srdy_, Int0_, Intl, Int2, Int3_, Cecr, Led, Reset_error, Pmm_invalid)”
)i

Next-state definition for Phase-B instruction.

let PH_B_inst_def = new_definition
(‘PH_B_inst’,

143

“I (rep:*rep_ty)
_fsm_stateA R_fsm_state :rfsm_ty)
(R_reg_selA R_ctrO R_ctrO_outA R_ctrl R_ctrl_outA R_ctr2 R_ctr2_outA R_ctr3 R_ctr3_outA R_icr_oldA
R_icrA R_busA_latch R_reg sel R_ctrO_in R_ctrO_new R_ctfO_out R_ctr]_in R_ctrl_new R_ctrl_out
R_ctr2_in R_ctr2_new R_ctr2_out R_ctr3_in R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr
R_ccr R_ger R_sr :wordn)
(R_fsm_cntlatch R_fsm_srdy_ R_int0_en R_int0_disA R_int3_en R_int3_disA R_c0l_cout R_c01_cout_delA
R_c23_cout R_c23_cout_delA R_cntlatch_delA R_srdy_delA_ R_ctrO_ce R_ctrO_cin R_ctrl _ce R_ctrl_cin
R_ctr2_ce R_ctr2_cin R_ctr3_ce R_ctr3_cin R_icr_loadA R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_ R_fsm_rst
R_int0_dis R_int3_dis R_c01_cout_del R_int!_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del
R_srdy_del_ R_ctrO_mux_sel R_ctrO_irden R_ctr0_cry R_ctr0_orden R_ctr]l_mux_sel R_ctr]l_irden
R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R_ger_rden
R_sr_xden :bool)
(I_ad_in I_be_ Cpu_fail Reset_cpu S_state Id ChannelD C_ss :wordn)
(CIkA CIkB Rst I_rale_I_last_I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail
CB_parity MB_parity :bool) .
PH_B_inst rep
(R_fsm_stateA, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctr0_ce, R_ctrO_cin, R_ctr0_outA, R_ctrl, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_cOl_cout_del, R_int]_en,
R_c23_cout_del, R_int2_en, R_wr, R_catlatch_del, R_srdy_del_, R_reg_sel, R_ctrO_in,
R_ctr0_mux_sel, R_ctrO_irden, R_ctrO_cry, R_ctrO_new, R_ctrO_out, R_ctrO_orden, R_ctri_in,
R_ctr]l_mux_sel, R_ctrl_irden, R_ctrl_cry, R_ctrl_new, R_ctrl_out, R_ctr]_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_cer, R_ccr_rden, R_ger, R_ger_rden, R_sr,
R_sr_rden)
(CIKA, CIkB, Rst, |_ad_in, I_rale_, I_last_, I_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB_parity, C_ss) =

let new_R_wr = ((~L_rale_) => (ELEMENT I_ad_in (27)) | R_wr) in
let new_R_srdy_del_=R_fsm_srdy_in
let new_R_reg sel =
((~L_rale_)=> (SUBARRAY I_ad_in (3,0)) |
((~R_srdy_delA_) => (INCN 3 R_reg_selA) | R_reg_selA)) in
let new_R_cntlatch_del = R_fsm_cntlatch in
letr_reg sel = ((~R_srdy_delA_) => (INCN 3 R_reg_selA) | R_reg_selA)in
let r_write = (~Disable_writes A new_R_wr A (R_fsm_stateA = RD)) in
let r_read = (~new_R_wr A (R_fsm_stateA = RA)) in
let r_cir_wrOl = (r_write A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9)))) in
let r_cir_wr23 = (r_write A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11)))) in
let new_R_cecr = ((r_write A (r_reg_sel = (WORDN 3))) =>[_ad_in | R_ccr) in
let new_R_ccr_rden = (r_read A (r_reg_sel = (WORDN 3))) in
let new_R_ger = ((r_write A (r_reg_sel = (WORDN 2))) =>1_ad_in | R_gcr) in
let new_R_gcr_rden = (r_read A (r_reg_sel = (WORDN 2))) in
let new_R_ctrO_in = ((r_write A (r_reg_sel = (WORDN 8))) =>[_ad_in | R_ctrO_in) in
let new_R_ctrO_mux_sel = (r_cir_wrOl V ((ELEMENT new_R_gcr (16)) A R_c01_cout)) in
let new_R_ctrQ_irden = (1r_read A (r_reg_sel = (WORDN 8))) in
let new_R_ctrO_new = ((R_ctrO_ce A R_ctrO_cin) => (INCN 31 R_ctrO) | R_ctr0) in
let new_R_ctrO_cry = (R_ctrO_ce A R_ctrO_cin A (ONES 31 R_ctr0)) in

144

let new_R_ctr0_out = ((R_fsm_catlatch) => R_ctr0_outA | R_ctr0_out) in
let new_R_ctrO_orden = (r_read A (r_reg_sel = (WORDN 12}))) in
let new_R_ctrl_in = ((r_write A (r_reg_sel = (WORDN 9})) => I_ad_in i R_ctrl_in)in
let new_R_ctr]l_mux_sel = (r_cir_wrO1 V (ELEMENT new_R_gcr (16)) AR_c01_cout)) in
let new_R_ctrl_irden = (r_read A (1_reg_sel = (WORDN 9))) in
let new_R_ctrl_pew = ((R_ctrl_ce AR_ctrl_cin) => (INCN 31 R_ctr]) IR ctrl)in
let new_R_ctrl_cry = (R_ctrl_ce AR_ctrl_cin A (ONES 31 R_ctrl))in
let new_R_ctrl_out = ((R_cntlatch_delA) => R_ctrl_outA | R_ctrl_out) in
let new_R_ctrl_orden = (r_read A (r_reg_sel = (WORDN 13))) in
let new_R_ctr2_in = ({r_write A (r_reg_sel = (WORDN 10))) => I_ad_in | R_ctr2_in) in
let new_R_ctr2_mux_sel = (r_cir_ wr23 V ((ELEMENT new_R_gcr (20)) A R_c23_cout)) in
let new_R_ctr2_irden = (r_read A (r_reg_sel = (WORDN 10))) in
let new_R_ctr2_new = ((R_ctr2_ce AR_ctr2_cin) => (INCN 31 R_ctr2) i R_ctr2) in
let new_R_ctr2_cry = (R_ctr2_ce AR_ctr2_cin A (ONES 31 R_ctr2)) in
let new_R_ctr2_out = ((R_fsm_cntlatch) => R_ctr2_outA | R_ctr2_out) in
let new_R_ctr2_orden = (r_read A (r_reg_sel = (WORDN 14))) in
let new_R_ctr3_in = ((r_write A (r_reg_sel = (WORDN 11))) => [_ad_in | R_ctr3_in) in
let new_R_ctr3_mux_sel = (r_cir_wr23 V (ELEMENT new_R_gcr (20)) AR_c23_cout)) in
let new_R_ctr3_irden = (r_read A (r_reg_sel = (WORDN 11))) in
let new_R_ctr3_new = ((R_ctr3_ce AR_ctr3_cin) => (INCN 31 R_ctr3) I R_ctr3) in
let new_R_ctr3_cry = (R_ctr3_ce AR _ctr3_cin A (ONES 31 R_ctr3)) in
let new_R_ctr3_out = ((R_cntlatch_delA) => R_ctr3_outA | R_ctr3_out) in
let new_R_ctr3_orden = (r_read A (r_reg_sel = (WORDN 15))) in
let new_R_icr_load = (r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))} in
let new_R_icr_old =
((r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => R_icr_oldA I R_icr_old) in
let new_R_icr_mask =
((r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel =(WORDN 1)))) => [_ad_in| R_icr_mask) in
let new_R_icr = ((R_icr_loadA) => R_icrA | R_icr) in
let new_R_icr_rden = ((R_fsm_stateA = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let sr28 = (ALTER ARBN (28) MB_parity) in
let sr28_25 = (MALTER 5128 (27,25) C_ss) in
let 5r28_24 = (ALTER sr28_25 (24) CB_parity) in
let s128_22 = (MALTER 5r28_24 (23,22) ChannelID) in
let sr28_16 = (MALTER 5r28_22 (21,16) Id) in
let sr28_12 = (MALTER sr28_16 (15,12) S_state) in
let sr28_9 = (ALTER sr28_12 (9) Pmm_fail) in
let sr28_8 = (ALTER 5r28_9 (8) Piu_fail) in
let sr28_2 = (MALTER 5128_8 (3,2) Reset_cpu) in
let sr28_0 = (MALTER sr28_2 (1,0) Cpu_fail) in
let new_R_sr = ((R_fsm_cntlatch) => sr28_0 | R_sr) in
let new_R_sr_rden = (r_read A (r_reg_sel = (WORDN 4))) in
let new_R_intQ_dis = R_int0_en in
let new_R_int3_dis = R_int3_en in
let new_R_cO1_cout_del = R_cO1_cout in
let new_R_c23_cout_del = R_c23_cout in
let new_R_int]_en=
((((ELEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT new_R_gcr (16)))))
A ~(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_gcr (17)) A R_cO1_cout_del))) =>TI
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT new_R_gcr (16)))))
A (~(ELEMENT new_R_ger (18))V ((ELEMENT new_R_ger (1) A R_c01_cout_del))) =>FI
{(~((ELEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT new_R_gcr (16)))))
A ~(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_gcr (17)) AR_cO1_cout_del))) => R_int]_en | ARB))) in
let new_R_int2_en =

145

((((ELEMENT new_R_ger (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT new_R_gcr (20)))))
N ~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_gcr (21)) AR_c23_cout_del))) => T |
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT new_R_gcr (20)))))
N (<(ELEMENT new_R_ger (22)) V (ELEMENT new_R_ger (21)) AR_c23_cout_del))) =>F |
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT new_R_gcr (20)))))
A ~(~(ELEMENT new_R_gcr (22)) V ((ELEMENT new_R_ger (21)) AR_c23_cout_del))) => R_int2_en | ARB))) in
let new_R_fsm_state = R_fsm_stateA in
let new_R_fsm_ale_ =1_rale_in
let new_R_fsm_mrdy_ = I_mrdy_in
let new_R_fsm_last_ = I_last_in
let new_R_fsm_rst = Rst in
let new_R_fsm_stateA = R_fsm_stateA in
let new_R_fsm_cntlatch = R_fsm_cntlatch in
let new_R_fsm_srdy_=R_fsm_srdy_ in
let new_R_int0_en = R_int0_en in
let new_R_int0_disA = R_int0_disA in
let new_R_int3_en =R_int3_en in
let new_R_int3_disA = R_int3_disA in
let new_R_c01_cout = R_c01_cout in
let new_R_cO1_cout_delA = R_c0l_cout_delA in
let new_R_c23_cout = R_c23_cout in
let new_R_c23_cout_delA = R_c23_cout_delA in
let new_R_cntlatch_delA = R_cnatlatch_delA in
let new_R_srdy_delA_ = R_srdy_delA_ in
let new_R_reg_selA =R _reg selA in
let new_R_ctrQO=R_ctrO in
let new_R_ctrO_ce=R_ctr0_ce in
Jet new_R_ctrO_cin = R_ctrQ_cin in
let new_R_ctr0_outA = R_ctrO_outA in
let new_R_ctr! = R_ctrl in
fet new_R_ctr]l_ce=R_ctr]_cein
let new_R_ctrl_cin = R_ctrl _cin in
let new_R_ctr]l_outA = R_ctr]l_outA in
let new_R_ctr2 =R_ctr2 in
let new_R_ctr2_ce=R_ctr2_cein
let new_R_ctr2_cin = R_ctr2_cin in
let new_R_ctr2 outA = R_ctr2_outA in
let new_R_ctr3=R_ct3 in
let new_R_ctr3_ce=R_ctri_cein
let new_R_ctr3_cin = R_ctr3_cin in
let new_R_ctr3_outA = R_ctr3_outA in
let new_R_icr_loadA = R_icr_loadA in
let new_R_icr_oldA = R_icr_oldA in
let new_R_icrA = R_icrA in
let new_R_busA_latch = R_busA_latch in

(new_R_fsm_stateA, new_R_fsm_cntlatch, new_R_fsm_srdy_, new_R_int0_en, new_R_int0_disA, new_R_int3_en,
new_R_int3_disA, new_R_c01_cout, new_R_c01_cout_delA, new_R_c23_cout, new_R_c23_cout_delA,
new_R_cntlatch_delA,
new_R_srdy_delA_, new_R_reg_selA, new_R_ctr0, new_R_ctrO_ce, new_R_ctrO_cin, new_R_ctrO_outA, new_R_ctrl,
new_R_ctrl_ce, new_R_ctr]l_cin, new_R_ctr]l_outA, new_R_ctr2, new_R_ctr2_ce, new_R_ctr2_cin, new_R_ctr2_outA,
new_R_ctr3, new_R_ctr3_ce, new_R_ctr3_cin, new_R_ctr3_outA, new_R_icr_loadA, new_R_icr_oldA, new_R_icrA, .
new_R_busA_latch, new_R_fsm_state, new_R_fsm_ale_, new_R_fsm_mrdy_, new_R_fsm_last_, new_R_fsm_rst,
new_R_int0_dis, new_R_int3_dis, new_R_c01_cout_del, new_R_int]l_en, new_R_c23_cout_del, new_R_int2_en,

146

new_R_wr,

new_R_cntlatch_del, new_R_srdy_del_, new_R_reg_sel, new_R_ctr0_in, new_R_ctrO_mux_sel, pew_R_ctr0_irden,
new_R_ctrO_cry, new_R_ctrO_new, new_R_ctr0_out, new_R_ctr0_orden, new_R_ctr 1_in, new_R_ctrl_mux_sel,
new_R_ctrl_irden, new_R_ctrl_cry, new_R_ctrl_new, new_R_ctrl_out, new_R_ctrl_orden, new_R_ctr2_in,
new_R_ctr2_mux_sel, new_R_ctr2_irden, new_R_ctr2_cry, new_R_ctr2_new, new_R_ctr2_out, new_R_ctr2_orden,
new_R_ctr3_in, new_R_ctr3_mux_sel, pew_R_ctr3_irden, new_R_ctr3_cry, new_R_ctr3_new, new_R_ctr3_out,
new_R_ctr3_orden, new_R_icr_load, new_R_icr_old, new_R_icr_mask, new_R_icr, new_R_icr_rden, new_R_ccr,
new_R_ccr_rden, new_R_gcr, new_R _ger_rden, new_R_sr, new_R_sr_rden)”

)

0

Output definition for Phase-B instruction.

let PH_B_out_def = new_definition
(‘PH_B_out’,
“| (rep:rep_ty)

(R_fsm_stateA R_fsm_state :rfsm_ty)

(R_reg_selA R_ctrO R_ctr0_outA R_ctrl R_ctr] _outA R_ctr2 R_ctr2_outA R_ctr3 R_ctr3_outA R_icr_oldA
R_icrA R_busA_latch R_reg_sel R_ctr0_in R_ctr0_new R_ctr0_out R_ctrl_in R_ctr]l_new R_ctr]_out
R_ctr2_in R_ctr2_new R_ctr2_out R_ctr3_in R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr
R_cer R_ger R_sr :wordn)

(R_fsm_ecntlatch R_fsm_srdy_ R_intO_en R_int0_disA R_int3_en R_int3_disA R_c0l_coutR_c0 1_cout_delA
R_c23_cout R_c23_cout_delA R_cntlatch_delA R_srdy_delA_R_ctrO_ce R_ctr0_cin R_ctrl_ce R_ctri_cin
R_ctr2_ce R_ctr2_cin R_ctr3_ce R_ctr3_cin R_icr_loadA R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_R_fsm_rst
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del
R_srdy_del_ R_ctrO_mux_sel R_ctr0_irden R_ctrO_cry R_ctrQ_orden R_ctr 1_mux_sel R_ctrl_irden
R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R _ger_rden
R_sr_rden :bool)

(I_ad_in I_be_ Cpu_fail Reset_cpu S_state 1d ChannelID C_ss :wordn)

(CIKA CIkB Rst I_rale_I_last_I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail
CB_parity MB_parity :bool) .

PH_B_out rep
(R_fsm_stateA, R_fsm_cntlatch, R_fsm_srdy_, R_int0_en, R_int0_disA, R_int3_en, R_int3_disA,
R_c01_cout, R_c01_cout_delA, R_c23_cout, R_c23_cout_delA, R_cntlatch_delA, R_srdy_delA_,
R_reg_selA, R_ctr0, R_ctr0_ce, R_ctrO_cin, R_ctrO_outA, R_ctrl, R_ctrl_ce, R_ctrl_cin,
R_ctrl_outA, R_ctr2, R_ctr2_ce, R_ctr2_cin, R_ctr2_outA, R_ctr3, R_ctr3_ce, R_ctr3_cin,
R_ctr3_outA, R_icr_loadA, R_icr_oldA, R_icrA, R_busA_latch, R_fsm_state, R_fsm_ale_,
R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_int0_dis, R_int3_dis, R_c01_cout_del, R_intl_en,
R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_, R_reg_sel, R_ctrO_in,
R_ctr0_mux_sel, R_ctr0_irden, R_ctr0_cry, R_ctr0_new, R_ctrO_out, R_ctrO_orden, R_ctrl_in,
R_ctrl_mux_sel, R_ctrl_irden, R_ctrl_cry, R_ctrl_new, R_ctrl_out, R_ctrl_orden, R_ctr2_in,
R_ctr2_mux_sel, R_ctr2_irden, R_ctr2_cry, R_ctr2_new, R_ctr2_out, R_ctr2_orden, R_ctr3_in,
R_ctr3_mux_sel, R_ctr3_irden, R_ctr3_cry, R_ctr3_new, R_ctr3_out, R_ctr3_orden, R_icr_load,
R_icr_old, R_icr_mask, R_icr, R_icr_rden, R_ccr, R_ccr_rden, R_ger, R_ger_rden, R_st,
R_sr_rden)
(CIkA, CIkB, Rst, I_ad_in, I_rale_, Ilast_, I_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB _parity, C_ss) =

let new_R_wr = ((~I_rale_) => (ELEMENT I_ad_in (27)) IR_wr) in
let new_R_srdy_del_=R_fsm_srdy_in
let new_R_reg_sel =

((~L_rale_) => (SUBARRAY I_ad_in (3,0)) |

147

((~R_srdy_delA_) => (INCN 3 R_reg_selA) | R_reg selA)) in

let new_R_cntlatch_del = R_fsm_cntlatch in
let r_reg_sel = ((~R_srdy_delA_) => (INCN 3 R_reg selA) | R_reg_selA) in
let r_write = (~Disable_writes A new_R_wr A (R_fsm_stateA = RD)) in
let r_read = (~new_R_wr N\ (R_fsm_stateA = RA)) in
let r_cir_wr01 = (r_write A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9)))) in
let r_cir_wr23 = (r_write A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))})) in
let new_R_cer = ((r_write A (r_reg_sel = (WORDN 3))) =>_ad_in I R_ccr) in
let new_R_ccr_rden = (r_read A (r_reg_sel = (WORDN 3))) in
let new_R_gor = ((r_write N\ (r_reg_sel = (WORDN 2))) =>I_ad_in | R_ger) in
let new_R_gcr_rden = (r_read A (r_reg_sel = (WORDN 2))) in
let new_R_ctrO_in = ((r_write A (r_reg_sel = (WORDN 8))) => I_ad_in | R_ctrO_in) in
let new_R_ctrO_mux_sel = (r_cir_wr01 V ((ELEMENT new_R_gcr (16)) A R_c01_cout)) in
let new_R_ctrO_irden = (r_read A (r_reg_sel = (WORDN 8))) in
let new_R_ctr0_pew = ((R_ctr0_ce A R_ctrO_cin) => (INCN 31 R_ctr0) | R_ctr0) in
let new_R_ctrQO_cry = (R_ctrO_ce A R_ctrO_cin A (ONES 31 R_ctr0)) in
let new_R_ctrO_out = ((R_fsm_cntlatch) => R_ctrO_outA | R_ctrO_out) in
let new_R_ctrO_orden = (r_read A (r_reg_sel = (WORDN 12))) in
let new_R_ctrl_in = ((r_write A (r_reg_sel = (WORDN 9))) => I_ad_in | R_ctrl_in) in
let new_R_ctrl_mux_sel = (r_cir_wr01 V ((ELEMENT new_R_gcr (16)) A R_c01_cout)) in
let new_R_ctr]_jirden = (r_read A (r_reg_sel = (WORDN 9))) in
let new_R_ctrl_pew = ((R_ctrl_ce AR_ctrl_cin) => (INCN 31 R_ctrl) { R_ctrl) in
let new_R_ctrl_cry = (R_ctrl_ce AR_ctrl_cin A(ONES 31 R_ctrl)) in
let new_R_ctrl_out = ((R_cntlatch_delA) => R_ctr]_outA | R_ctrl_out) in
let new_R_ctr]l_orden = (r_read A (r_reg_sel = (WORDN 13))) in
let new_R_ctr2_in = ((r_write A (r_reg_sel = (WORDN 10))) =>1_ad_in | R_ctr2_in) in
let new_R_ctr2_mux_sel = (r_cir_wr23 V ((ELEMENT new_R_gcr (20)) A R_c23_cout)) in
let new_R_ctr2_irden = (r_read A (r_reg_sel = (WORDN 10))) in
let new_R_ctr2_new = ((R_ctr2_ce A R_ctr2_cin) => (INCN 31 R_ctr2) | R_ctr2) in
let new_R_ctr2_cry = (R_ctr2_ce AR_ctr2_cin A (ONES 31 R_ctr2)) in
let new_R_ctr2_out = ((R_fsm_cntlatch) => R_ctr2_outA | R_ctr2_out) in
let new_R_ctr2_orden = (r_read A (r_reg_sel = (WORDN 14))) in
let new_R_ctr3_in = ((r_write A (r_reg_sel = (WORDN 11))) => I_ad_in | R_ctr3_in) in
let new_R_ctr3_mux_sel = (r_cir_wr23 V ((ELEMENT new_R_gcr (20)) A R_c23_cout)) in
let new_R_ctr3_irden = (r_read A (r_reg_sel = (WORDN 11))) in
let new_R_ctr3_new = ((R_ctr3_ce A R_ctr3_cin) => (INCN 31 R_ctr3) IR_ctr3) in
let new_R_ctr3_cry = (R_ctr3_ce A R_ctr3_cin A (ONES 31 R_ctr3)) in
let new_R_ctr3_out = ((R_catlatch_delA) => R_ctr3_outA | R_ctr3_out) in
let new_R_ctr3_orden = (r_read A (r_reg_sel = (WORDN 15))) in
let new_R_icr_load = (r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let new_R_icr_old =

((r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)})) => R_icr_oldA | R_icr_old) in
let new_R_icr_mask =

((r_write A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => I_ad_in | R_icr_mask) in
let new_R_icr = ((R_icr_loadA) => R_icrA | R_icr) in
let new_R_icr_rden = ((R_fsm_stateA = RA) A\ ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let 5128 = (ALTER ARBN (28) MB_parity) in
let s128_25 = (MALTER 5128 (27,25) C_ss) in
let s128_24 = (ALTER sr28_25 (24) CB_parity) in
let sr28_22 = (MALTER sr28_24 (23,22) ChannelID) in
let sr28_16 = (MALTER s128_22 (21,16) Id) in
let sr28_12 = (MALTER sr28_16 (15,12) S_state) in
let sr28_9 = (ALTER sr28_12 (9) Pmm_fail) in
let sr28_8 = (ALTER sr28_9 (8) Piu_fail) in

148

let sr28_2 = (MALTER sr28_8 (3,2) Reset_cpu) in
— let s128_0 = (MALTER sr28_2 (1,0) Cpu_fail) in
let new_R_sr = ((R_fsm_cntlatch) => sr28_0 | R_sr) in
let new_R_sr_rden = (r_read A (r_reg_sel = (WORDN 4))) in
let new_R_int0O_dis = R_int0_en in
let new_R_int3_dis = R_int3_en in
let new_R_c01_cout_del = R_c01_cout in
let new_R_c23_cout_del = R_c23_cout in
let new_R_intl_en =
(((BLEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT new_R_gcr (16)))))
A ~(~(ELEMENT new_R_gcr (18)) V (ELEMENT new_R_ger (17) A R_cOl_cout_del))) =>T |
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT new_R_gcr (16)))))
A (~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_ger (17)) AR_c01_cout_del))) =>F1i
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01 V (R_c01_cout A (ELEMENT pew_R_gcr (16)))))
A ~(~(ELEMENT new_R_gcr (18)) V (ELEMENT new_R_ger (17)) A R_c01_cout_del))) =>R_intl_en | ARB))) in
let new_R_int2_en=
(((ELEMENT new_R_gcr (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT pew_R_gcr (20)))))
A ~(~(ELEMENT new_R_ger (22)) V ((ELEMENT new_R_ger 1)) A R_c23_cout_del)})=>T|
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT new_R_gcr (20)))))
A (~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_ger (21)) A R_c23_cout_del))) => F |
((~((ELEMENT new_R_ger (22)) A (r_cir_wr23 V (R_c23_cout A (ELEMENT new_R_gcr (20)))))
A ~(~(ELEMENT new_R_gcr (22)) V ((ELEMENT new_R_ger (21)) AR_c23_cout_del))) => R_int2_en | ARB))) in
let new_R_fsm_state = R_fsm_stateA in
let new_R_fsm_ale_=1_rale_in
let new_R_fsm_mrdy_ = I_mrdy_ in
let new_R_fsm_last_=1_last_in
let new_R_fsm_rst = Rst in
—~— let new_R_fsm_stateA = R_fsm_stateA in
let new_R_fsm_cntlatch = R_fsm_cntlatch in
let new_R_fsm_srdy_ = R_fsm_srdy_in
let new_R_int0_en =R_int0_en in
let new_R_int0_disA = R_int0_disA in
let new_R_int3_en = R_int3_en in
let new_R_int3_disA = R_int3_disA in
let new_R_c01_cout = R_c01_cout in
let new_R_cO1_cout_delA = R_c01_cout_delA in
let new_R_c23_cout=R_c23_cout in
let new_R_c23_cout_delA = R_c23_cout_delA in
let new_R_cntlatch_delA = R_cntlatch_delA in
let new_R_srdy_delA_ = R_srdy_delA_in
let new_R_reg_selA =R_reg_selA in
let new_R_ctrO=R_ctrO in
let new_R_ctrO_ce=R_ctr0_ce in
let new_R_ctrO_cin = R_ctrO_cin in
let new_R_ctrQ_outA = R_ctrO_outA in
letnew_R_ctrl =R_ctrl in
let new_R_ctrl_ce=R_ctrl_ce in
let new_R_ctrl_cin = R_ctrl_cinin
let new_R_ctrl_outA = R_ctrl_outA in
letuew_R_ctr2=R_ctr2 in
let new_R_ctr2_ce = R_ctr2_ce in
let new_R_ctr2_cin = R_ctr2_cin in
let new_R_ctr2_outA = R_ctr2_outA in
let new_R_ctr3 =R_ctr3 in

149

let new_R_ctr3_ce =R_ctr3_ce in

let new_R_ctr3_cin = R_ctr3_cinin

let npew_R_ctr3_outA = R_ctr3_outA in
let new_R_icr_loadA = R_icr_loadA in
let new_R_icr_oldA =R_icr_oldA in

let new_R_icrA =R_icrA in

let new_R_busA_latch = R_busA_latch in

let I_ad_out = ((~new_R_wr A ((new_R_fsm_stateA = RA)V (new_R_fsm_stateA = RD)))=>new_R_busA_latch | ARBN) in
let I_srdy_ = (((new_R_fsm_stateA = RD) V ((new_R_fsm_stateA = RA))) => new_R_fsm_srdy_| ARB) in

let Int0_ = ~(new_R_int0_en A ~new_R_int0_disA A ~Disable_int) in

let Int1 = (new_R_c01_cout A new_R_intl_en A ~Disable_int) in

let Int2 = (new_R_c23_cout A new_R_int2_en A ~Disable_int) in

let Int3_ = ~(new_R_int3_en A ~new_R_int3_disA A ~Disable_int) in

let Ccr = new_R_cer in

let Led = (SUBARRAY new_R_ger (3,0)) in

let Reset_error = (ELEMENT new_R_gcr (24)) in

let Pmm_invalid = (ELEMENT new_R_gcr (28)) in

(I_ad_out, I_srdy_, Int0_, Int1, Int2, Int3_, Ccr, Led, Reset_error, Pmm_invalid)”
%

close_theory();;

150

C.4 C Port Specification

File: c_phase.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the phase-level specification of the C-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

%

set_search_path (search_path() @ [‘/home/titanS/dfumlfteplpiu/holllibl‘l);;
system ‘rm c_phase.th;;

new_theory ‘c_phase‘;;

loadf ‘abstract’;;

map new_parent [‘caux_def";‘aux_def";‘array_de *<‘wordn_def"];;

let MSTART = “WORDN 47;;
let MEND = “WORDN 5™;
let MRDY = “WORDN 6”;;
let MWAIT = “WORDN 7";;
let MABORT = “WORDN 0;;

let SACK = “WORDN 5”;;
let SRDY = “WORDN 6"';;
let SWAIT = “WORDN 7*;;
let SABORT = “WORDN 0™;;

let c_state_ty = “:(cmfsm_ty#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#boo]#bool#
wordn#bool#bool#bool#bool#bool#
csfsm_ty#wordn#bool#bool#bool#bool#bool#boo]#bool#bool#bool#bool#bool#bool#
cefsm_ty#bool#
bool#bool#bool#bool#wordn#bool#bool#bool#boo]#bool#bool#bool#bool#wordn#wordn#wordn#
cmfsm_ty#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool#wordn#bool#
csfsm_ty#bool#bool#bool#bool#bool#bool#wordn#
cefsm_ty#bool#bool#bool#bool#bool#bool#
bool#wordn#bool#bool#bool#bool#bool#wordn#bool#bool#bool#bool#bool#bool#bool#
bool#bool#wordn#wordn#wordn)”;;
let c_state = “((C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal,
C_mfsm_ma0,C_mfsm_mdl,C_mfsm _me.C_mfsm_iad_en_m.C_mfsm_m_cout_sell.C_mfsm_m_cout__selO,
C_mfsm_ms,C_mfsm_rqt_.C_mf__cgnt_,C_mfsm_cm_en,C__mfsm_abort_le en_,C_mfsm_mparity,

C_sfsm_stateA,C_sfsm_ss,C_sfsm_iad_en_s ,C_sfsm_sidle,C_sfsm_slock,C_sfsm_sal ,C_sfsm_sa0,

151

C_sfsm_sale,C_sfsm_sd1,C_sfsm_sd0,C_sfsm_sack,C_sfsm_sabort,C_sfsm_s_cout_sel0,C_sfsm_sparity,
C_efsm_stateA,C_efsm_srdy_en,
C_clkAA,C_sidle_delA,C_mrqt_delA,C_last_inA_,C_ssA,C_holdA_,C_cout_0_le_delA,
C_cin_2_leA,C_mrdy_delA_,C_iad_en_s_delA,C_wrdyA,C_mrdyA,C_iad_out,C_ala0,C_a3a2,
C_mfsm_state,C_mfsm_srdy_en,C_mfsm_D,C_mfsm_grant,C_mfsm_rst,C_mfsm_busy,C_mfsm_write,
C_mfsm_crqt_,C_mfsm_hold_,C_mfsm_last_,C_mfsm_lock ,C_mfsm_ss,C_mfsm_invalid,
C_sfsm_state,C_sfsm_D,C_sfsm_grant,C_sfsm_rst,C_sfsm_write,C_sfsm_addressed,C_sfsm_hlda_,C_sfsm_ms,
C_efsm_state,C_efsm_cale_,C_efsm_last_,C_efsm_male_,C_efsm_rale ,C_efsm_srdy_,C_efsm_rst,
C_wr,C_sizewrbe,C_clkA,C_sidle_del,C_mrqt_del,C_last_in_,C_lock_in_,C_ss,C_last_out_,

C_hold_,C_cout_0_le_del,C_cin_2_le,C_mrdy_del_,C_iad_en_s_del,C_wrdy,

C_rrdy,C_parity,C_source,C_data_in,C_iad_in)
Ac_state_ty)”;;

let c_env_ty = “:(wordn#wordn#bool#bool#bool¥bool#bool¥bool#bool#bool#tbool#
wordn#wordp#wordn#wordn#bool#bool#bool#boolwordn#wordn#bool#bool#wordnitbool)”;;
let c_env =*((I_ad_in, I_be_in_, I_mrdy_in_, I_rale_in_, I_male_in_, I_last_in_, I_srdy_in_,
I_lock_, I cale_, I hlda_, I_crqt_,
CB_nqt_in_, CB_ad_in, CB_ms_in, CB_ss_in,
Rst, CIkA, CIkB, CikD, Id, ChannellD, Pmm_failure, Piu_invalid, Ccr,
Reset_error)
Ac_env_ty)”s:

let c_out_ty = “:(boolfbool#bool#bool#bool#bool#bool#wordn#wordni
bool#wordn#wordn#wordn#wordn#boolitbool)”;;
let c_out = “((I_cgnt_, I_mrdy_out_, [_hold_, I_rale_out_, I_male_out_, I_last out_,I_srdy_out_,
I_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)
Ac_out_ty)";;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

%

Next-state definition for Phase-A instruction.

let PH_A_inst_def = new_definition
(‘PH_A_inst',
“I (rep:Arep_ty)
(C_mfsm_stateA C_mfsm_state :cmfsm_ty)
(C_sfsm_stateA C_sfsm_state :csfsm_ty)
(C_efsm_stateA C_efsm_state :cefsm_ty)
(C_mfsm_ms C_sfsm_ss C_ssA C_iad_out C_ala0 C_a3a2 C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss
C_source C_data_in C_jad_in :wordn)
(C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2 C_mfsm_mal
C_mfsm_ma0 C_mfsm_md] C_mfsm_md0 C_mfsm_iad_eo_m C_mfsm m_cout_sell C_mfsm_m_cout_sel0
C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en C_mfsm_abort_le_en_ C_mfsm_mparity
C_sfsm_iad_en_s C_sfsm_sidle C_sfsm_slock C_sfsm_sal C_sfsm_sa0
C_sfsm_sale C_sfsm_sd1 C_sfsm_sd0 C_sfsm_sack C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
C_efsm_srdy_en
C_clkAA C_sidle_delA C_mrqt_delA C_last_inA_ C_holdA_ C_cout_0_le_delA
C_cin_2_leA C_mrdy_delA_C_iad_en_s_delA C_wrdyA C_rrdyA
C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last_ C_mfsm_lock_ C_mfsm_invalid
C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed C_sfsm_hlda_

152

C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_sidle_del C_mrqt_del C_last_in_ C_lock_in_ C_last_out_

C_hold_ C_cout_0_le_del C_cin_2_le C_mrdy_del_ C_iad_en_s_del C_wrdy

C_rrdy C_parity :bool)

(I_mrdy_in_I_rale_in_I_male_in_1 last_in_I_srdy_in_I_lock_ I_cale_I_hida_I crqt_

Rst ClkA CIkB ClkD Pmm_failure Piu_invalid Reset_error :bool)

(I_ad_in I_be_in_ CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID Cecr :wordn)

(I_cgnt_I_mrdy_out_I_hold_I_rale_out_I_male_out_I last_out_ 1_srdy_out_ CB_rqt_out_

Disable_writes CB_parity :bool) .

PH_A_iost rep

(C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal, C_mfsm_ma0, C_mfsm_mdl, C_mfsm_md0, C_mfsm_iad_en_m, C_mfsm_m_cout_sell,
C_mfsm_m_cout_sel0, C_mfsm_ms, C_mfsm_rqt_, C_mfsm_cgnt_, C_mfsm_cm_en, C_mfsm_abort_le_en_,
C_mfsm_mparity, C_sfsm_stateA, C_sfsm_ss, C_sfsm_iad_en_s, C_sfsm_sidle, C_sfsm_slock,
C_sfsm_sal, C_sfsm_sa0, C_sfsm_sale, C_sfsm_sd1, C_sfsm_sd0, C_sfsm_sack, C_sfsm_sabort,
C_sfsm_s_cout_sel0, C_sfsm_sparity, C_efsm_stateA, C_efsm_srdy_en, C_clkAA, C_sidle_delA,
C_mrqt_delA, C_last_inA_, C_ssA, C_holdA_, C_cout_0_le_delA, C_cin_2_leA,
C_mrdy_delA_, C_iad_en_s_delA, C_wrdyA, C_rrdyA, C_iad_out, C_ala0, C_a3a2, C_mfsm_state,
C_mfsm_srdy_en, C_mfsm_D, C_mfsm_grant, C_mfsm_rst, C_mfsm_busy, C_mfsm_write, C_mfsm_crqt_,
C_mfsm_hold_, C_mfsm_last_, C_mfsm_lock_, C_mfsm_ss, C_mfsm_invalid, C_sfsm_state, C_sfsm_D,
C_sfsm_grant, C_sfsm_rst, C_sfsm_write, C_sfsm_addressed, C_sfsm_hlda_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_,
C_efsm_rst, C_wr, C_sizewrbe, C_clkA, C_sidle_del, C_mrqt_del, C_last_in_, C_lock_in_,
C_ss, C_last_out_, C_hold_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_wrdy,

C_nrdy, C_parity, C_source, C_data_in, C_iad_in)
(I_ad_in, I_be_in_, I_mrdy_in_, [_rale_in_, I_male_in_, I_last_in_, I_srdy_in_, I lock_,

I_cale_, I_hida_, I_crqt_, CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, Rst, CIkA, CIkB,
CIkD, Id, ChannellD, Pmm_failure, Piu_invalid, Ccr, Reset_error) =

let new_C_mfsm_stateA =
((C_mfsm_rst) => CMI |
((C_mfsm_state = CMI) => (C_mfsm_D A ~C_mfsm_crqt_ A ~C_mfsm_busy A ~C_mfsm_invalid) => CMR | CMI |
((C_mfsm_state = CMR) => (C_mfsm_D A C_mfsm_grant A C_mfsm_hold_) => CMA31CMR |
((C_mfsm_state = CMA3) => ((C_mfsm_D) => CMA1 ICMA3)|
((C_mfsm_state = CMAl)=>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) =>CMAO|
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAL |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2|
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAO |
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) =>CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2 |
((C_mfsm_state = CMD1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) =>CMDO |
(C_mfsm_D A (C_mfsm_ss = “SABORT)) => CMABT | CMD1 |
((C_mfsm_state = CMDO) =>
(C_mfsm_D A (C_mfsm_ss = ~SRDY) A C_mfsm_last_) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_mfsm_last) => CMW !
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT I CMDO |
((C_mfsm_state = CMW) =>
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT |
(C_mfsm_D A (C_mfsm_ss = ASACK) A C_mfsm_lock_) => CMI |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_mfsm_lock_ A ~C_mfsm_crqt_) => CMA3 ICMW |

153

((~C_mfsm_last_) => CMI | CMABT))))))))) in

let new_C_mfsm_mabort = (new_C_mfsm_stateA = CMABT) in —
let new_C_mfsm_midle = (new_C_mfsm_stateA = CMI) in
let new_C_mfsm_mrequest = (new_C_mfsm_stateA = CMR) in
let new_C_mfsm_ma3 = (new_C_mfsm_stateA = CMA3) in
let new_C_mfsm_ma2 = (new_C_mfsm_stateA = CMA2) in
let new_C_mfsm_mal = (new_C_mfsm_stateA = CMAl) in
let new_C_mfsm_ma0 = (new_C_mfsm_stateA = CMAO) in
let new_C_mfsm_mdl = (new_C_mfsm_stateA = CMD1) in
let npew_C_mfsm_md0 = (new_C_mfsm_stateA = CMDO) in
let new_C_mfsm_iad_en_m = (((new_C_mfsm_stateA = CMD1) A ~C_mfsm_write A C_mfsm_srdy_en)
V ((new_C_mfsm_stateA = CMDO) A ~C_mfsm_write A C_mfsm_srdy_en)
V ((new_C_mfsm_stateA = CMW) A (C_mfsm_state = CMDO) A ~C_mfsm_write
A C_mfsm_stdy_en)) in
let new_C_mfsm_m_cout_sell = (new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMA2)) n
let new_C_mfsm_m_cout_sel0 = ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMAI)
V (new_C_mfsm_stateA = CMD1)) in
let ms2 = (ALTER ARBN (2) ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMAL)V
(new_C_mfsm_stateA = CMAO) V (new_C_mfsm_stateA = CMA2) V
(new_C_mfsm_stateA = CMD1) V (new_C_mfsm_stateA = CMDO) V
(new_C_mfsm_stateA = CMW) V (new_C_mfsm_stateA = CMABT))) in
let ms1 = (ALTER ms2 (1) ((new_C_mfsm_stateA = CMA1) V (new_C_mfsm_stateA = CMAO) V
(new_C_mfsm_stateA = CMA2) V (new_C_mfsm_stateA = CMD1) V
((new_C_mfsm_stateA = CMDO) A C_mfsm_last_) V (new_C_mfsm_stateA = CMW)V
(new_C_mfsm_stateA = CMABT))) in
let msO = (ALTER ms1 (0) (((new_C_mfsm_stateA = CMDO) A ~C_mfsm_last_) V
((new_C_mfsm_stateA = CMW) A C_mfsm_lock_) V (new_C_mfsm_stateA = CMABT))) in ~
let new_C_mfsm_ms = ms0 in
let new_C_mfsm_rqt_ = ~(~(new_C_mfsm_stateA = CMI)) in
let new_C_mfsm_cgnt_ = ~(new_C_mfsm_stateA = CMA3) in
let new_C_mfsm_cm_en = ((~(new_C_mfsm_stateA = CMI)) A (~(new_C_mfsm_stateA = CMR))) in
let new_C_mfsm_abort_le_en_ = ~((new_C_mfsm_stateA = CMABT) V (new_C_mfsm_stateA = CMI)) in
let new_C_mfsm_mparity = ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMAl)
V (new_C_mfsm_stateA = CMAO) V (new_C_mfsm_stateA = CMA2)
V (new_C_mfsm_stateA = CMD1) V (new_C_mfsm_stateA = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAQ)
V (C_mfsm_state = CMA2) V (C_mfsm_state = CMD1)) in
let new_C_sfsm_stateA =
((C_sfsm_rst) => CSI |
(C_sfsm_state = CSI) => ((C_sfsm_D A (C_sfsm_ms = AMSTART)
A ~C_sfsm_grant A\ C_sfsm_addressed) => CSA1 ICSI) |
(C_sfsm_state = CSL) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~C_sfsm_grant A\ C_sfsm_addressed) => CSA1 |
(C_sfsm_D A (C_sfsm_ms = AMSTART) A ~C_sfsm_grant A ~C_sfsm_addressed) => CSI |
(C_sfsm_D A (C_sfsm_ms = \MABORT)) => CSABT ICSL) |
(C_sfsm_state = CSA1) =>
((C_sfsm_D A (C_sfsm_ms = "MRDY)) => CSAO|
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSA1) |
(C_sfsm_state = CSAQ) =>
((C_sfsm_D A (C_sfsm_ms = "MRDY) A ~C_sfsm_hlda_) => CSALE |
(C_sfsm_D A (C_sfsm_ms = AMRDY) A C_sfsm_hida_) => CSAOW |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSA0) | ~

154

(C_sfsm_state = CSAOW) =>

((C_sfsm_D A (C_sfsm_ms = "MRDY) A ~C_sfsm_hlda_) => CSALE |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>

((C_sfsm_D A C_sfsm_write A (C_sfsm_ms = AMRDY)) => CSD1 |

(C_sfsm_D A ~C_sfsm_write A (C_sfsm_ms = AMRDY)) => CSRR |

(C_sfsm_D A (C_sfsm_ms = \MABORT)) => CSABT | CSALE) |
(C_sfsm_state = CSRR) =>

((C_sfsm_D A ~(C_sfsm_ms = ‘MABORT)) => CSD1 |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSRR) |
(C_sfsm_state = CSD1) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSDO |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT [CSD1) |
(C_sfsm_state = CSDO) =>

((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |

(C_sfsm_D A (C_sfsm_ms = "‘MRDY)) =>CSD1 |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSDO) |
(C_sfsm_state = CSACK) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSL |

(C_sfsm_D A (C_sfsm_ms = AMWAIT)) => CSI |

(C_sfsm_D A (C_sfsm_ms = "‘MABORT)) => CSABT | CSACK) |

(C_sfsm_D)=> CSI1CSABT) in

let ss2 = (ALTER ARBN (2) ((~(new_C_sfsm_stateA = CSI)) A (~(new_C_sfsm_stateA = CSABT)))) in
let ss] = (ALTER ss2 (1) ((~(new_C_sfsm_stateA = CSI)) A (~(new_C_sfsm_stateA = CSACK))
A (~(new_C_sfsm_stateA = CSABT)))) in
let 550 = (ALTER ss1 (0) ((new_C_sfsm_stateA = CSAOW) V
((new_C_sfsm_stateA = CSALE) A ~C_sfsm_write) V
(new_C_sfsm_stateA = CSACK))) in
let new_C_sfsm_ss = ss0 in
let new_C_sfsm_iad_en_s = (((new_C_sfsm_stateA = CSALE) A (~(C_sfsm_state = CSALE)))
V ((new_C_sfsm_stateA = CSALE) A C_sfsm_write)
V ((new_C_sfsm_stateA = CSD1) A C_sfsm_write A (~(C_sfsm_state = CSRR)))
V ((new_C_sfsm_stateA = CSDO) A C_sfsm_write)
V ((new_C_sfsm_stateA = CSACK) A\ C_sfsm_write)) in
let new_C_sfsm_sidle = (new_C_sfsm_stateA = CSI) in
let new_C_sfsm_slock = (new_C_sfsm_stateA = CSL) in
let new_C_sfsm_sal = (new_C_sfsm_stateA = CSAl) in
let new_C_sfsm_sa0 = (new_C_sfsm_stateA = CSAO) in
let new_C_sfsm_sale = (new_C_sfsm_stateA = CSALE) in
let new_C_sfsm_sd]l = (new_C_sfsm_stateA = CSD1) in
let new_C_sfsm_sd0 = (new_C_sfsm_stateA = CSDO) in
let new_C_sfsm_sack = (new_C_sfsm_stateA = CSACK) in
let new_C_sfsm_sabort = (new_C_sfsm_stateA = CSABT) in
let new_C_sfsm_s_cout_sel0 = (new_C_sfsm_stateA = CSD1) in
let new_C_sfsm_sparity = ((~(new_C_sfsm_stateA = CSI)) \ (~(new_C_sfsm_stateA = CSACK))
N (~(new_C_sfsm_stateA = CSABT))) in
let new_C_efsm_stateA =
((C_efsm_rst) => CEI |
(C_efsm_state = CEI) => ((~C_efsm_cale_) => CEE | CEI) |
((~C_efsm_last_A ~C_efsm_stdy_) V ~C_efsm_male_V ~C_efsm_rale_) => CEl | CEE) in
let new_C_efsm_srdy_en = ((new_C_efsm_stateA = CEE) V (C_efsm_state = CEE)) in
let cout_sel0 = (ALTER ARBN (0) ((new_C_sfsm_sd1 \V new_C_sfsm_sd0) =>
new_C_sfsm_s_cout_sel0 | new_C_mfsm_m_cout_sel0)) in

155

let cout_sell = (ALTER cout_sel0 (1) ((new_C_sfsm_sd1 V new_C_sfsm_sd0) =>F | pew_C_mfsm_m_cout_sell)) in
let c_cout_sel = cout_sell in
let c_busy = (~((SUBARRAY CB_rqt_in_ (3,1)) = (WORDN 7)) in
let c_grant = ((((SUBARRAY 1d (1,0)) = (WORDN 0)) A ~(ELEMENT CB, _rqt_in_ (0)))
V (((SUBARRAY Id (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0)) A (ELEMENT CB _rqt_in_ (1))
V (((SUBARRAY Id (1,0)) = (WORDN 2)) A ~(ELEMENT CB_xqt_in_ (0)) A (ELEMENT CB _rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_sqt_in_ (0)) A (ELEMENT CB_xqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)) A (ELEMENT CB_rqt_in_ (3)))) in
let c_write = ((new_C_mfsm_cm_en) => C_wr | (ELEMENT C_sizewrbe (5))) in
let new_C_clkAA = C_clkA in
let new_C_sidle_delA = C_sidle_del in
let new_C_mrqt_delA = C_mrqt_del in
let c_dfsm_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = (new_C_mfsm_ma3 V new_C_mfsm_ma2 V new_C_mfsm_mal V
new_C_mfsm_ma0 V new_C_mfsm_md] V new_C_mfsm_md0) in
let c_dfsm_slave = (~new_C_sfsm_sidle A ~new_C_sfsm_slock) in
let c_dfsm_cin_0_le = (CIkD A ((new_C_mfsm_mdO A c_dfsm_srdy A ~c_write) V
(new_C_sfsm_sa0) V (new_C_sfsm_sd0 A c_write))) in
let c_dfsm_cin_1_le = (CIkD A ((new_C_mfsm_md1 A c_dfsm_srdy A ~c_write) V
(new_C_sfsm_sal) V (new_C_sfsm_sdl A c_write))) in
let c_dfsm_cin_3_le = (CIkD A (new_C_sfsm_sidle V new_C_sfsm_slock)) in
let c_dfsm_cin_4_le = (new_C_clkAA A new_C_sfsm_sa0) in
let c_dfsm_cout_0_le = ((I_cale_) V (I_srdy_in_ A ~c_write)
V (new_C_mfsm_ma0 A c_dfsm_srdy A c_write A CIkD)
V (new_C_mfsm_md0 A c_write A c_dfsm_srdy A CkD)) in
let c_dfsm_cout_I_ie = (new_C_clkAA Anew_C_sfsm_sd1) in
let c_dfsm_cad_en = ~((new_C_mfsm_ma3) V (new_C_mfsm_mal) V (new_C_mfsm_ma0)
V (new_C_mfsm_ma2) V (c_write A (new_C_mfsm_md] V new_C_mfsm_md0))
V (~c_write A (new_C_sfsm_sd1 V new_C_sfsm_sd0))) in
let c_dfsm_i_male_ = ~(new_C_sfsm_sale A (~((SUBARRAY C_sizewrbe (1,0)) = (WORDN 3))) A new_C_clkAA) in
let c_dfsm_i_rale_ = ~(new_C_sfsm_sale A (SUBARRAY C_sizewrbe (1,0)) = (WORDN 3)) Apnew_C_clkAA)in
let c_dfsm_i_mrdy_ = ~((~c_write A CIkD A (new_C_sfsm_sale V pew_C_sfsm_sdl))
V (~c_write A new_C_clkAA A new_C_sfsm_sack)
V (c_write A CIkD A new_C_sfsm_sd0)) in
let new_C_last_inA_ =1 last_in_in
let new_C_ssA = CB_ss_in in
let new_C_holdA_ = ((ClkD) => C_hold_ | C_holdA_) in
let new_C_cout_0O_le_delA = C_cout_0_le_del in
let new_C_cin_2_leA =C_cin_2_le in
let new_C_mrdy_delA_=C_mrdy_del_in
let new_C_iad_en_s_delA = (CIkD) => C_iad_en_s_del | C_iad_en_s_delA) n
let new_C_wrdyA = C_wrdy in
let new_C_rrdyA = C_rrdy in
let new_C_iad_out = ((new_C_cin_2_leA) =>C_data_in | C_iad_out) in
letnew_C_ala0 =
(((c_dfsm_master A new_C_cout_0_le_delA) V (~c_dfsm_master A c_dfsm_cout_1_le)) => C_iad_in | C_ala0) in
let new_C_a3a2 = ((new_C_mfsm_mrequest) => Ccr | C_a3a2) in
let new_C_mfsm_state = C_mfsm_state in
let new_C_mfsm_srdy_en = C_mfsm_srdy_en in
let new_C_mfsm_D = C_mfsm_D in
let new_C_mfsm_grant = C_mfsm_grant in
let new_C_mfsm_rst = C_mfsm_rst in
let new_C_mfsm_busy = C_mfsm_busy in

156

let new_C_mfsm_write = C_mfsm_write in
let new_C_mfsm_crqt_ = C_mfsm_crqt_ in
let new_C_mfsm_hold_ = C_mfsm_hold_ in
let new_C_mfsm_last_ = C_mfsm_last_in
let new_C_mfsm_lock_ = C_mfsm_lock_in
let new_C_mfsm_ss = C_mfsm_ss in

let new_C_mfsm_invalid = C_mfsm_invalid in
let new_C_sfsm_state = C_sfsm_state in

let new_C_sfsm_D = C_sfsm_D in

let new_C_sfsm_grant = C_sfsm_grant in
let new_C_sfsm_rst = C_sfsm_rst in

let new_C_sfsm_write = C_sfsm_write in
let new_C_sfsm_addressed = C_sfsm_addressed in
let new_C_sfsm_hida_= C_sfsm_hlda_ in
let new_C_sfsm_ms = C_sfsm_ms in

let new_C_efsm_state = C_efsm_state in

let new_C_efsm_cale_ = C_efsm_cale_ in
let new_C_efsm_last_ = C_efsm_last_ in

let new_C_efsm_male_ = C_efsm_male_in
let new_C_efsm_rale_ = C_efsm_rale_in
let new_C_efsm_srdy_ = C_efsm_srdy_ in
let new_C_efsm_rst = C_efsm_gstin

let new_C_wr=C_wrin

let new_C_sizewrbe = C_sizewrbe in

let new_C_clkA = C_clkA in

let new_C_sidle_del = C_sidle_del in

let new_C_mrqt_del = C_mrqt_del in

let new_C_last_in_= C_last_in_in

let new_C_lock_in_=C_lock_in_in

let new_C_ss=C_ss in

let new_C_last_out_ = C_last_out_in

let new_C_hold_ = C_hold_ in

let new_C_cout_0_le_del = C_cout_0_le_del in
let new_C_cin_2 le=C_cin_2 lein

let new_C_mrdy_del_=C_mrdy_del_in

let new_C_jad_en_s_del = C_iad_en_s_del in
let new_C_wrdy = C_wrdy in

let new_C_rrdy = C_rrdy in

let new_C_parity = C_parity in

let new_C_source = C_source in

let new_C_data_in = C_data_in in

let new_C_iad_in = C_iad_in in

(new_C_mfsm_stateA, new_C_mfsm_mabort, pew_C_mfsm_midle, new_C_mfsm_mrequest, pew_C_mfsm_ma3,
new_C_mfsm_ma2, new_C_mfsm_mal, new_C_mfsm_ma0, pew_C_mfsm_md], new_C_mfsm_md0,
pew_C_mfsm_iad_en_m,
new_C_mfsm_m_cout_sel], new_C_mfsm_m_cout_sel0, new_C_mfsm_ms, pew_C_mfsm_gqt_, new_C_mfsm_cgnt_,
pew_C_mfsm_cm_en, new_C_mfsm_abort_le_en_, pew_C_mfsm_mparity, new_C_sfsm_stateA, new_C_sfsm_ss,
new_C_sfsm_iad_en_s, new_C_sfsm_sidle, new_C_sfsm_slock, new_C_sfsm_sal, pew_C_sfsm_sa0,
new_C_sfsm_sale, new_C_sfsm_sd1, new_C_sfsm_sd0, pew_C_sfsm_sack, new_C_sfsm_sabort,
new_C_sfsm_s_cout_sel0, new_C_sfsm_sparity, pew_C_efsm_stateA, new_C_efsm_srdy_en, new_C_clkAA,
new_C_sidle_delA, new_C_mrqt_delA, new_C_last_inA_, pew_C_ssA, new_C_boldA_,
new_C_cout_0_le_delA, new_C_cin_2_leA, new_C_mrdy_delA_, new_C_iad_en_s_delA, pew_C_wrdyA, new_C_rrdyA,

new_C_iad_out, new_C_ala0, new_C_a3a2, new_C_mfsm_state, pew_C_mfsm_srdy_en, new_C_mfsm_D,

157

new_C_mfsm_grant, new_C_mfsm_rst, new_C_mfsm_busy, new_C_mfsm_write, new_C_mfsm_crqt_,
new_C_mfsm_hold_, new_C_mfsm_last_, new_C_mfsm_lock_, new_C_mfsm_ss, new_C_mfsm_invalid,
new_C_sfsm_state, new_C_sfsm_D, new_C_sfsm_grant, new_C_sfsm_rst, new_C_sfsm_write,
new_C_sfsm_addressed, new_C_sfsm_hlda_, new_C_sfsm_ms, new_C_efsm_state, new_C_efsm_cale_,
new_C_efsm_last , new_C_efsm_male_, new_C_efsm_rale_, new_C_efsm_srdy_, new_C_efsm_rst, new_C_wr,
new_C_sizewrbe, new_C_clkA, new_C_sidle_del, new_C_mrqt_del, new_C_last_in_, new_C_lock_in_,
new_C_ss, new_C_last_out_, new_C_hold_, new_C_cout_0_le_del, new_C_cin_2_le, new_C_mrdy_del ,

new_C_iad_en_s_del, new_C_wrdy, new_C_rrdy, new_C_parity, new_C_source, new_C_data_in, new_C_iad_in)”
)i

%

Output definition for Phase-A instruction.

let PH_A_out_def = new_definition
(‘PH_A_out’,
“I (rep:*rep_ty)
(C_mfsm_stateA C_mfsm_state :cmfsm_ty)
(C_sfsm_stateA C_sfsm_state :csfsm_ty)
(C_efsm_stateA C_efsm_state :cefsm_ty)
(C_mfsm_ms C_sfsm_ss C_ssA C_iad_out C_ala0 C_a3a2 C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss
C_source C_data_in C_iad_in :wordn)
(C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2 C_mfsm_mal
C_mfsm_ma0 C_mfsm_md] C_mfsm_md0 C_mfsm_iad_en_m C_mfsm_m_cout_sell C_mfsm_m_cout_sel0
C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en C_mfsm_abort_le_en_ C_mfsm_mparity
C_sfsm_iad_en_s C_sfsm_sidle C_sfsm_slock C_sfsm_sal C_sfsm_sa0
C_sfsm_sale C_sfsm_sdl C_sfsm_sdO C_sfsm_sack C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
C_efsm_srdy_en
C_clkAA C_sidle_delA C_mrqt_delA C_last_inA_ C_holdA_ C_cout_0_le_delA
C_cin_2_leA C_mrdy_delA_ C_iad_en_s_delA C_wrdyA C_mrdyA
C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last_ C_mfsm_lock_ C_mfsm_invalid
C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_sidle_del C_mrqt_del C_last_in_ C_lock_in_ C_last_out_

C_bold_ C_cout_0_le_del C_cin_2_le C_mrdy_del_ C_iad_en_s_del C_wrdy

C_rrdy C_parity :bool)

(I_mrdy_in_1 rale_in_I_male_in_1I last_in_I_srdy_in_I_lock_I_cale_I_hida_I_crqt_

Rst ClkA CIkB CIkD Pmm_failure Piu_invalid Reset_error :bool)

(I_ad_inI_be_in_ CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannellD Ccr :wordn)

(I_cgnt_I_mrdy_out_I_hold_I_rale_out_I_male_out_I_last_out_I_srdy_out_ CB_rqt_out_

Disable_writes CB_parity :bool) .

PH_A_out rep

(C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal, C_mfsm_ma0, C_mfsm_mdl, C_mfsm_md0, C_mfsm_iad_en_m, C_mfsm_m_cout_sell,
C_mfsm_m_cout_sel0, C_mfsm_ms, C_mfsm_rqt_, C_mfsm_cgnt , C_mfsm_cm_en, C_mfsm_abort_le_en_,
C_mfsm_mparity, C_sfsm_stateA, C_sfsm_ss, C_sfsm_iad_en_s, C_sfsm_sidle, C_sfsm_slock,
C_sfsm_sal, C_sfsm_sa0, C_sfsm_sale, C_sfsm_sd1, C_sfsm_sd0, C_sfsm_sack, C_sfsm_sabort,
C_sfsm_s_cout_sel0, C_sfsm_sparity, C_efsm_stateA, C_efsm_srdy_en, C_clkAA, C_sidle_delA,
C_mrqt_delA, C_tast_inA_, C_ssA, C_holdA_, C_cout_0_le_delA, C_cin_2_leA,

C_mrdy_delA_, C_iad_en_s_delA, C_wrdyA, C_rrdyA, C_iad_out, C_ala0, C_a3a2, C_mfsm_state,
C_mfsm_srdy_en, C_mfsm_D, C_mfsm_grant, C_mfsm_rst, C_mfsm_busy, C_mfsm_write, C_mfsm_crqt_,
C_mfsm_hold_, C_mfsm_last_, C_mfsm_lock_, C_mfsm_ss, C_mfsm_invalid, C_sfsm_state, C_sfsm_D,

C_sfsm_grant, C_sfsm_rst, C_sfsm_write, C_sfsm_addressed, C_sfsm_hlda_, C_sfsm_ms,

158

C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_,
C_efsm_rst, C_wr, C_sizewrbe, C_clkA, C_sidle_del, C_mrqt_del, C_last_in_, C_lock_in_,

C_ss, C_last_out_, C_hold_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del , C_iad_en_s_del, C_wrdy,
C_rrdy, C_parity, C_source, C_data_in, C_iad_in)

(I_ad_in, I_be_in_,]_mrdy in_, rale_in_, I_male_in_, I_last_in_, I_srdy_in_, I_lock_,

I_cale_, I_hlda_, I_erqt_, CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, Rst, CIkA, CIkB,
ClkD, Id, ChannelID, Pmm_failure, Piu_invalid, Cer, Reset_error) =

let new_C_mfsm_stateA =

((C_mfsm_rst) => CMI|
((C_mfsm_state = CMI) => (C_mfsm_D A ~C_mfsm_crqt_ A ~C_mfsm_busy A ~C_mfsm_invalid) => CMR | CMI 1
((C_mfsm_state = CMR) => (C_mfsm_D A C_mfsm_grant A C_mfsm_hold_) => CMA3 ICMRI
((C_mfsm_state = CMA3) => (C_mfsm_D) => CMAI1 ICMA3) |
((C_mfsm_state = CMA1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMAOI
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAL |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAO!
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMD11
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2|
((C_mfsm_state = CMD1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMDO |
(C_mfsm_D A (C_mfsm_ss = SABORT)) => CMABT ICMD11
((C_mfsm_state = CMDO) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY) A C_mfsm_last_) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = /SRDY) A ~C_mfsm_last_) => CMW |
(C_mfsm_D A (C_mfsm_ss = "SABORT)) => CMABT ICMDO!
((C_mfsm_state = CMW) =>
(C_mfsm_D A (C_mfsm_ss = \SABORT)) => CMABT |
(C_mfsm_D A (C_mfsm_ss = SACK) A C_mfsm_lock_)=>CMI |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_mfsm_lock_ A ~C_mfsm_crqt_) => CMA3 I|CMW |
((~C_mfsm_last_) => CMI 1 CMABT))))))))))) in

let new_C_mfsm_mabort = (new_C_mfsm_stateA = CMABT) in

let new_C_mfsm_midle = (new_C_mfsm_stateA = CMI) in

let new_C_mfsm_mrequest = (new_C_mfsm_stateA = CMR) in

let new_C_mfsm_ma3 = (new_C_mfsm_stateA = CMA3) in

let new_C_mfsm_ma2 = (new_C_mfsm_stateA = CMA2) in

let new_C_mfsm_mal = (new_C_mfsm_stateA = CMAL1) in

let new_C_mfsm_ma0 = (new_C_mfsm_stateA = CMAO) in

let new_C_mfsm_mdl = (new_C_mfsm_stateA = CMD1) in

let new_C_mfsm_md0 = (new_C_mfsm_stateA = CMDO) in

let new_C_mfsm_jad_en_m = (((new_C_mfsm_stateA = CMD1) A ~C_mfsm_write \ C_mfsm_srdy_en)

V ((new_C_mfsm_stateA = CMDO) A ~C_mfsm_write AC_mfsm_srdy_en)
V ((new_C_mfsm_stateA = CMW) A\ (C_mfsm_state = CMDO) A ~C_mfsm_write A C_mfsm_-

srdy_en)) in

let new_C_mfsm_m_cout_sell = ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMA2)) in

let new_C_mfsm_m_cout_sel0 = ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMAI) V (new_C_mfsm_-
stateA = CMD1)) in

let ms2 = (ALTER ARBN (2) ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMA1)V

(new_C_mfsm_stateA = CMAO)V (new_C_mfsm_stateA = CMA2) V
(new_C_mfsm_stateA = CMD1)V (new_C_mfsm_stateA = CMDO) V

159

(new_C_mfsm_stateA = CMW) V (new_C_mfsm_stateA = CMABT))) in
let ms1 = (ALTER ms2 (1) ((new_C_mfsm_stateA = CMA1) V (new_C_mfsm_stateA = CMAQ) V
(new_C_mfsm_stateA = CMA2) V (new_C_mfsm_stateA = CMD1) V
((new_C_mfsm_stateA = CMDO) A C_mfsm_last_) V (new_C_mfsm_stateA = CMW) V
(new_C_mfsm_stateA = CMABT))) in
let ms0 = (ALTER ms1 (0) (((new_C_mfsm_stateA = CMDO) A ~C_mfsm_last_) V
((new_C_mfsm_stateA = CMW)AC_mfsm_lock_) V (new_C_mfsm_stateA = CMABT))) in
let new_C_mfsm_ms = ms0 in
let new_C_mfsm_rqt_ = ~(~(new_C_mfsm_stateA = CMI)) in
let new_C_mfsm_cgnt_ = ~(new_C_mfsm_stateA = CMA3) in
let new_C_mfsm_cm_en = ((~(new_C_mfsm_stateA = CMI)) A (~(new_C_mfsm_stateA = CMR))) in
let new_C_mfsm_abort_le_en_ = ~((new_C_mfsm_stateA = CMABT) V (new_C_mfsm_stateA = CMI)) in
let new_C_mfsm_mparity = ((new_C_mfsm_stateA = CMA3) V (new_C_mfsm_stateA = CMAl)
V (new_C_mfsm_stateA = CMAO) V (new_C_mfsm_stateA = CMA2)
V (new_C_mfsm_stateA = CMD1) V (new_C_mfsm_stateA = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAOQ)
V (C_mfsm_state = CMA2) V (C_mfsm_state = CMD1)) in

let new_C_sfsm_stateA =
((C_sfsm_rst) => CSI |
(C_sfsm_state = CSI) => ((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~C_sfsm_grant
AC_sfsm_addressed) => CSA1 | CSI) |
(C_sfsm_state = CSL) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~C_sfsm_grant A C_sfsm_addressed) => CSAl |
(C_sfsm_D A (C_sfsm_ms = AMSTART) A ~C_sfsm_grant A ~C_sfsm_addressed) => CSI |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT ICSL) |
(C_sfsm_state = CSAl) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSAO |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT I CSA1) |
(C_sfsm_state = CSAQ) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY) A ~C_sfsm_hlda_) => CSALE |
(C_sfsm_D A (C_sfsm_ms = AMRDY) A C_sfsm_hlda_) => CSAOW |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSAQ) |
(C_sfsm_state = CSAOW) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY) A ~C_sfsm_hida_) => CSALE |
(C_sfsm_D A (C_sfsm_ms = \MABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>
((C_sfsm_D A C_sfsm_write A (C_sfsm_ms = "MRDY)) => CSD1 |
(C_sfsm_D A ~C_sfsm_write A (C_sfsm_ms = AMRDY)) => CSRR |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSALE) |
(C_sfsm_state = CSRR) =>
((C_sfsm_D A ~(C_sfsm_ms = "MABORT)) => CSD1 |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSRR) |
(C_sfsm_state = CSD1) =>
((C_sfsm_D A (C_sfsm_ms = "MRDY)) => CSDO |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT ICSD1) |
(C_sfsm_state = CSDO) =>
((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |
(C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSD1 |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT I CSD0) |
(C_sfsm_state = CSACK) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSL |
(C_sfsm_D A (C_sfsm_ms = MWAIT)) => CSI |
(C_sfsm_D A (C_sfsm_ms = \MABORT)) => CSABT | CSACK) |

160

(C_sfsm_D) => CSII| CSABT) in

let 552 = (ALTER ARBN (2) ((~(new_C_sfsm_stateA = CSI) A (~(new_C_sfsm_stateA = CSABT)))) in
let ss1 = (ALTER ss2 (1) ((~(new_C_sfsm_stateA = CSI)) A (~(new_C_sfsm_stateA = CSACK))
A (~(new_C_sfsm_stateA = CSABT)))) in
let ss0 = (ALTER ssl (0) ((new_C_sfsm_stateA = CSAOW)V
((new_C_sfsm_stateA = CSALE) A ~C_sfsm_write) V
(new_C_sfsm_stateA = CSACK))) in
let new_C_sfsm_ss =550 in
let new_C_sfsm_iad_en_s = (((new_C_sfsm_stateA = CSALE) A (~(C_sfsm_state = CSALE)))
V ((new_C_sfsm_stateA = CSALE) A C_sfsm_write)
V ((new_C_sfsm_stateA = CSD1) A C_sfsm_write A (~(C_sfsm_state = CSRR)))
V ((new_C_sfsm_stateA = CSDO) A C_sfsm_write)
V ((new_C_sfsm_stateA = CSACK) A C_sfsm_write)) in
let new_C_sfsm_sidle = (new_C_sfsm_stateA = CS])in
let new_C_sfsm_slock = (new_C_sfsm_stateA = CSL) in
let new_C_sfsm_sal = (new_C_sfsm_stateA = CSAl)in
let new_C_sfsm_sa0 = (new_C_sfsm_stateA = CSAQ) in
let new_C_sfsm_sale = (new_C_sfsm_stateA = CSALE) in
let new_C_sfsm_sdl = (new_C_sfsm_stateA = CSDD)in
let pew_C_sfsm_sd0 = (new_C_sfsm_stateA = CSDO) in
let new_C_sfsm_sack = (new_C_sfsm_stateA = CSACK) in
let new_C_sfsm_sabort = (new_C_sfsm_stateA = CSABT) in
let new_C_sfsm_s_cout_sel0 = (new_C_sfsm_stateA = CSD1)in
let new_C_sfsm_sparity = ((~(new_C_sfsm_stateA = CSD) A\ (~(new_C_sfsm_stateA = CSACK))
A (~(new_C_sfsm_stateA = CSABT))) in
let new_C_efsm_stateA =
((C_efsm_rst) => CEI |l
(C_efsm_state = CEI) => ((~C_efsm_cale_) => CEE | CED) |
((~C_efsm_last_ A ~C_efsm_srdy_) V ~C_efsm_male_ V ~C_efsm_rale_) => CEI I CEE) in
let new_C_efsm_srdy_en = ((new_C_efsm_stateA = CEE) V (C_efsm_state = CEE)) in
let cout_sel0 = (ALTER ARBN (0) ((new_C_sfsm_sd1 \/ new_C_sfsm_sd0) =>
new_C_sfsm_s_cout_sel0 | pew_C_mfsm_m_cout_sel0)) in
let cout_sel10 = (ALTER cout_sel0 (1) ((new_C_sfsm_sd1 V new_C_sfsm_sd0) => F | new_C_mfsm_m_cout_sell)) in
let c_cout_sel = cout_sel10 in
let c_busy = (~((SUBARRAY CB_rqt_in_(3,1)) = (WORDN 7))) in
Jet c_grant = ((((SUBARRAY Id (1,0)) = (W ORDN 0)) A ~(ELEMENT CB_rqt_in_ (0)))
V (((SUBARRAY 1d (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0)) A (ELEMENT CB_zqt_in_(1)))
V (((SUBARRAY Id (1,0)) = (WORDN 2)) A ~(ELEMENT CB _rqt_in_ (0)) A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_sqt_in_ (0)) A (ELEMENT CB_rqt_in_ (1))
A(ELEMENT CB_rqt_in_(2))A (ELEMENT CB_xqt_in_(3)))) in
let c_write = ((new_C_mfsm_cm_en) =>C_wr| (ELEMENT C_sizewrbe (5))) in
let new_C_clkAA = C_clkA in
let new_C_sidle_delA = C_sidle_del in
let new_C_mrqt_delA = C_mrqt_del in
let c_dfsm_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = (new_C_mfsm_ma3 V new_C_mfsm_ma2 V new_C_mfsm_mal vV
new_C_mfsm_ma0 V new_C_mfsm_mdl V new_C_mfsm_md0) in
let c_dfsm_slave = (~new_C_sfsm_sidle A ~pew_C_sfsm_slock) in
let c_dfsm_cin_0_le = (CIkD A\ ((new_C_mfsm_mdO A c_dfsm_srdy A ~c_write) V
(new_C_sfsm_sa0) V (new_C_sfsm_sdO A c_write))) in
let c_dfsm_cin_1_le = (CIkD A ((new_C_mfsm_md]l Ac_dfsm_srdy A ~c_write) V

161

(new_C_sfsm_sal) V (new_C_sfsm_sdl A c_write))) in
let c_dfsm_cin_3_le = (ClkD A (new_C_sfsm_sidle V new_C_sfsm_slock)) in
let c_dfsm_cin_4_le = (new_C_clkAA Anew_C_sfsm_sa0) in
let c_dfsm_cout_0_le = ((I_cale_) V (I_srdy_in_ A ~c_write)
V (new_C_mfsm_ma0 A c_dfsm_srdy A c_write A CIkD)
V (new_C_mfsm_md0 A c_write A c_dfsm_srdy A CIkD)) in
let c_dfsm_cout_1_Je = (new_C_clkAA Anew_C_sfsm_sdl) in
let c_dfsm_cad_en = ~((new_C_mfsm_ma3) V (new_C_mfsm_mal)V (new_C_mfsm_ma0)
V (new_C_mfsm_ma2) V (c_write A (new_C_mfsm_md1 V pew_C_mfsm_md0))
V (~c_write A (new_C_sfsm_sd1 V new_C_sfsm_sd0))) in
let c_dfsm_i_male_ = ~(new_C_sfsm_sale A (~((SUBARRAY C_sizewrbe (1,0)) = (WORDN 3))) A new_C_clkAA) in
let c_dfsm_i_rale_ = ~(new_C_sfsm_sale A ((SUBARRAY C_sizewrbe (1,0)) = (WORDN 3)) Anew_C_clkAA) in
let c_dfsm_i_mrdy_ = ~({~c_write A CIkD N\ (new_C_sfsm_sale \V new_C_sfsm_sd1))
V (~c_write Anew_C_clkAA A new_C_sfsm_sack)
V (c_write A CIkD A new_C_sfsm_sd0)) in
let new_C_last_inA_=1I_last_in_in
let new_C_ssA =CB_ss_in in
let new_C_holdA_ = ((ClkD) => C_hold_ | C_holdA_) in
let new_C_cout_0_le_delA = C_cout_0_le_del in
let new_C_cin_2_leA=C_cin_2 lein
let new_C_mrdy_delA_ = C_mrdy_del_in
let new_C_ijad_en_s_delA = ((ClkD) => C_iad_en_s_del | C_iad_en_s_delA) in
let new_C_wrdyA = C_wrdy in
let new_C_rrdyA = C_rrdy in
let new_C_iad_out = ((new_C_cin_2_leA) => C_data_in | C_iad_out) in
let new_C_ala0 =
(((c_dfsm_master A new_C_cout_0_le_delA) V (~c_dfsm_master A c_dfsm_cout_1_le)) => C_iad_in ! C_ala0) in
let new_C_a3a2 = ((new_C_mfsm_mrequest) => Ccr | C_a3a2) in
let new_C_mfsm_state = C_mfsm_state in
let new_C_mfsm_srdy_en = C_mfsm_srdy_en in
let new_C_mfsm_D =C_mfsm_D in
let new_C_mfsm_grant = C_mfsm_grant in
let new_C_mfsm_rst = C_mfsm_rstin
let new_C_mfsm_busy = C_mfsm_busy in
let pew_C_mfsm_write = C_mfsm_write in
let new_C_mfsm_crqt_ = C_mfsm_crqt_ in
let new_C_mfsm_hold_ = C_mfsm_hold_ in
let new_C_mfsm_last = C_mfsm_Jast_in
fet new_C_mfsm_lock_ = C_mfsm_lock_ in
let new_C_mfsm_ss = C_mfsm_ss in
let new_C_mfsm_invalid = C_mfsm_invalid in
let new_C_sfsm_state = C_sfsm_state in
let new_C_sfsm_D=C_sfsm_Din
let new_C_sfsm_grant = C_sfsm_grant in
let new_C_sfsm_rst = C_sfsm_sst in
et new_C_sfsm_write = C_sfsm_write in
let new_C_sfsm_addressed = C_sfsm_addressed in
let new_C_sfsm_hlda_ = C_sfsm_hlda_ in
let new_C_sfsm_ms = C_sfsm_ms in
let new_C_efsm_state = C_efsm_state in
let new_C_efsm_cale_ = C_efsm_cale_ in
let new_C_efsm_last_ = C_efsm_Jast_in
let new_C_efsm_male_ = C_efsm_male_ in
let new_C_efsm_rale_ = C_efsm_rale_ in

162

let new_C_efsm_srdy_= C_efsm_srdy_ in
let new_C_efsm_rst = C_efsm_rstin

let pnew_C_wr=C_wrin

let new_C_sizewrbe = C_sizewrbe in

let new_C_clkA = C_clkA in

let new_C_sidle_del = C_sidle_del in

let new_C_mrqt_del = C_mrqt_del in

let new_C_last_in_ = C_last_in_in

jet new_C_lock_in_=C_lock_in_in

let new_C_ss =C_ss in

let new_C_last_out_ = C_last_out_in

let pew_C_hold_=C_bold_in

let new_C_cout_0_le_del = C_cout_0_le_del in
let pew_C_cin_2 le=C_cin_2_lein

let new_C_mrdy_del_=C_mrdy_del_in
let new_C_iad_en_s_del = C_iad_en_s_del in
let new_C_wrdy = C_wrdy in

let new_C_rrdy = C_rrdy in

let new_C_parity = C_parity in

let new_C_source = C_source in

let new_C_data_in = C_data_in in

let new_C_iad_in = C_iad_in in

let I_cgnt_ = new_C_mfsm_cgnt_in
let I_mrdy_out_= ((~I_hida_)=> new_C_mrdy_delA_! ARB)in
let I_bold_ = new_C_holdA_in
let I_rale_out_ = ((~I_hida_) =>c_dfsm_i_rale_!| ARB) in
let I_male_out_ = ((~]_hlda_) =>c_dfsm_i_male_| ARB)in
let I_last_out_ = ((~I_hlda_) => new_C_last_out_| ARB) in
let I_srdy_out_=
((~I_cale_V new_C_efsm_srdy_en) => ~(new_C_wrdyA Vnew_C_rrdyA V new_C_mfsm_mabort) | ARB) in
let I_be_out_ = ((~I_hlda_) => (SUBARRAY new_C_sizewrbe (9,6)) | ARBN) in
let I_ad out=
((new_C_iad_en_s_delA V new_C_mfsm_iad_en_mV pew_C_sfsm_iad_en_s) => new_C_jad_out | ARBN) in
let CB_rqt_out_= new_C_mfsm_rqt_in
let cbms10 = (MALTER ARBN (1,0) (SUBARRAY new_C_mfsm_ms (1,0))) in
let cbms210 = (ALTER cbms10 (2) (ELEMENT pew_C_mfsm_ms (2)) A ~Pmm_failure A ~Piu_invalid)) in
let CB_ms_out = ((~new_C_mfsm_cm_en) => cbms210 | ARBN) in
let cbss10 = (MALTER ARBN (1,0) (SUBARRAY new_C_sfsm_ss (1,0))) in
let cbss210 = (ALTER cbms10 (2) (ELEMENT new_C_sfsm_ss (2)) A ~Pmm_failure A ~Piu_invalid)) in
let CB_ss_out = ((~new_C_sfsm_sidle A ~new_C_sfsm_sabort) => cbss210 | ARBN) in
let CB_ad_out = ((c_dfsm_cad_en) =>
{(c_cout_sel = (WORDN 0)) => Par_Enc rep ((SUBARRAY new_C_ala0 (150))) |
((c_cout_sel = (WORDN 1)) => Par_Enc rep ((SUBARRAY new_C_ala0 (31,16))) |
((c_cout_sel = (WORDN 2)) => Par_Enc rep ((SUBARRAY new_C_a3a2 (150)1
Par_Enc rep ((SUBARRAY new_C_a3a2 (31,16)))))) |
ARBN)in
let C_ss_out = new_C_ss in
let Disable_writes = (c_dfsm_slave A ~((ChannellD = (WORDN 0)) A (ELEMENT new_C_source (6)})
A ~((ChannelID = (WORDN 1)) A (ELEMENT new_C_source (7)))
A ~((ChannelID = (WORDN 2)) A (ELEMENT new_C_source 3N
A ~((ChannelID = (WORDN 3)) A (ELEMENT new_C_source 9))) in
let CB_parity = new_C_parity in

163

(I_cgnt_, I_mrdy_out_, I_hold_, I_rale_out_, I_male_out_, I_last_out_, I_srdy_out_, I_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)”
%

[
70

Next-state definition for Phase-B instruction.

let PH_B_inst_def = new_definition
(‘PH_B_inst*,
“1 (rep:*rep_ty)
(C_mfsm_state A C_mfsm_state :cmfsm_ty)
(C_sfsm_stateA C_sfsm_state :csfsm_ty)
(C_efsm_stateA C_efsm_state :cefsm_ty)
(C_mfsm_ms C_sfsm_ss C_ssA C_iad_out C_ala0 C_a3a2 C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss
C_source C_data_in C_iad_in :wordn)
(C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2 C_mfsm_mal
C_mfsm_ma0 C_mfsm_md1 C_mfsm_md0 C_mfsm_iad_en_m C_mfsm_m_cout_sell C_mfsm_m_cout_sel0
C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en C_mfsm_abort_le_en_C _mfsm_mparity
C_sfsm_iad_en_s C_sfsm_sidle C_sfsm_slock C_sfsm_sal C_sfsm_sa0
C_sfsm_sale C_sfsm_sd] C_sfsm_sd0 C_sfsm_sack C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
C_efsm_srdy_en
C_clkAA C_sidle_delA C_mrqt_delA C_last_inA_ C_holdA_ C_cout_0_le_delA
C_cin_2_leA C_mrdy_delA_ C_iad_en_s_delA C_wrdyA C_rrdyA
C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last C_mfsm_lock_ C_mfsm_invalid
C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_sidle_del C_mrqt_del C_last_in_ C_lock_in_ C_last_out_
C_hold_ C_cout_0_le_del C_cin_2_le C_mrdy_del_ C_iad_en_s_del C_wrdy
C_rrdy C_parity :bool)
(I_mrdy_in_ I_rale_in_I_male_in_I_last_in_1_srdy_in_JI_lock_I cale_ I hlda_I crqt_
Rst ClkA ClkB ClkD Pmm_failure Piu_invalid Reset_error :bool)
(I_ad_in I_be_in_ CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID Ccr :wordn)
(I_cgnt_I_mrdy_out_I_hold_I_rale_out_I_male_out_I_last_out_I_srdy_out_CB_rqt_out_
Disable_writes CB_parity :bool) .
PH_B_inst rep
(C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal, C_mfsm_ma0, C_mfsm_md], C_mfsm_md0, C_mfsm_ijad_en_m, C_mfsm_m_cout_sell,
C_mfsm_m_cout_sel0, C_mfsm_ms, C_mfsm_rqt_, C_mfsm_cgnt_, C_mfsm_cm_en, C_mfsm_abort_le_en_,
C_mfsm_mparity, C_sfsm_stateA, C_sfsm_ss, C_sfsm_iad_en_s, C_sfsm_sidle, C_sfsm_slock,
C_sfsm_sal, C_sfsm_sa0, C_sfsm_sale, C_sfsm_sd1, C_sfsm_sd0, C_sfsm_sack, C_sfsm_sabort,
C_sfsm_s_cout_sel0, C_sfsm_sparity, C_efsm_stateA, C_efsm_srdy_en, C_clkAA, C_sidle_delA,
C_mrqt_delA, C_last_inA_, C_ssA, C_holdA_, C_cout_0_le_delA, C_cin_2_leA,
C_mrdy_delA_, C_iad_en_s_delA, C_wrdyA, C_trdyA, C_iad_out, C_ala0, C_a3a2, C_mfsm_state,
C_mfsm_srdy_en, C_mfsm_D, C_mfsm_grant, C_mfsm_rst, C_mfsm_busy, C_mfsm_write, C_mfsm_crqt_,
C_mfsm_hold_, C_mfsm_last_, C_mfsm_lock_, C_mfsm_ss, C_mfsm_invalid, C_sfsm_state, C_sfsm_D,
C_sfsm_grant, C_sfsm_rst, C_sfsm_write, C_sfsm_addressed, C_sfsm_hlda_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_,
C_efsm_rst, C_wr, C_sizewrbe, C_clkA, C_sidle_del, C_mrqt_del, C_last_in_, C_lock_in_,
C_ss, C_last_out_, C_hold_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_wrdy,
C_rrdy, C_parity, C_source, C_data_in, C_iad_in)
(I_ad_in, I_be_in_, I_mrdy_in_, I_rale_in_, I_male_in_, I_last_in_, I_srdy_in_, I_lock_,
I_cale_, I_hlda_, I_crqt_, CB_xqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, Rst, ClkA, CIkB,

164

CIkD, Id, ChannelID, Pmm_failure, Piu_invalid, Cer, Reset_error) =

let new_C_wr = ((~[_cale_) => (ELEMENT I_ad_in (27)) | C_wr) in
let new_C_sizewrbe = ((Rst) => ARBN |
((C_sfsm_sa0 A C_clkAA) => (SUBARRAY C_data_in (31,22)) | C_sizewrbe)) in
let c_write = ((C_mfsm_cm_en) => new_C_wr | (ELEMENT new_C_sizewrbe (5))) in
let cout_sel0 = (ALTER ARBN (0) ((C_sfsm_sdl V C_sfsm_sd0) =>
C_sfsm_s_cout_sel0 | C_mfsm_m_cout_sel0)) in
let cout_sel10 = (ALTER cout_sel0 (1) ((C_sfsm_sd1 V C_sfsm_sd0) => F 1 C_mfsm_m_cout_sell)) in
let c_cout_sel = cout_sel10 in
let c_busy = (~((SUBARRAY CB_rqt_in_(3.1)) = (WORDN 7))) in
let c_grant = ((SUBARRAY Id (1,0)) = (WORDN 0)) A ~(ELEMENT CB_rqt_in_(0)))
V (((SUBARRAY 1d (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_xqt_in_ (1))}
V ((SUBARRAY Id (1,0)) = (WORDN 2)) A ~(ELEMENT CB_rqt_in_(0))
A (ELEMENT CB_1qt_in_ (1))
A (ELEMENT CB_zqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_rqt_in_(0))
A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2))
A (ELEMENT CB_zqt_in_ (3)))) in
let c_dfsm_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = (C_mfsm_ma3 V C_mfsm_ma2 V C_mfsm_mal V C_mfsm_ma0V C_mfsm_md} V C_mfsm_md0) in
let c_dfsm_slave = (~C_sfsm_sidle A ~C_sfsm_slock) in
let c_dfsm_cin_0_le = (CIkD A ((C_mfsm_mdO A c_dfsm_srdy A ~c_write) V (C_sfsm_sa0)
V (C_sfsm_sd0 A c_write))) in
let c_dfsm_cin_1_le = (CIkD N\ ((C_mfsm_mdl A c_dfsm_srdy A ~c_write) V (C_sfsm_sal)
V (C_sfsm_sd1 A c_write))) in
let c_dfsm_cin_3_le = (CIkD A (C_sfsm_sidle V C_sfsm_slock)) in
let c_dfsm_cin_4_le = (C_clkAA A C_sfsm_sa0) in
let c_dfsm_cout_0_le = ((I_cale) V (I_srdy_in_A ~C_Wwrite)
V (C_mfsm_ma0 A c_dfsm_srdy A c_write A CIkD)
V (C_mfsm_mdO N c_write A c_dfsm_srdy A CIkD)) in
let c_dfsm_cout_1_le = (C_clkAA A C_sfsm_sd1) in
let ¢_dfsm_cad_en = ~(C_mfsm_ma3) V (C_mfsm_mal) V (C_mfsm_ma0) V (C_mfsm_ma2) V
(c_write N\ (C_mfsm_md1 V C_mfsm_md0)) V (~c_write A (C_sfsm_sdl V C_sfsm_sd0))) in
let c_dfsm_i_male_ = ~(C_sfsm_sale A (~((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3))) AC_clkAA)in
let c_dfsm_i_rale_ = ~(C_sfsm_sale A (SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3)) AC_clkAA) in
let c_dfsm_i_mrdy_ = ~((~c_write ACIkD A (C_sfsm_sale VC_sfsm_sd1)) V
(~c_write A C_clkAA A C_sfsm_sack) V {c_write A CIkD A C_sfsm_sd0)) in
let new_C_clkA = CIkD in
let new_C_sidle_del = C_sfsm_sidle in
let new_C_mrqt_del = C_mfsm_mrequest in
let new_C_last_in_ = ((Rst) =>F i
((C_mfsm_mabort V C_mfsm_md1 A CIkD) => C_last_inA_ | C_last_in_})) in
let new_C_lock_in_ = ((Rst) => F | ((C_mfsm_mal) => I_lock_ | C_lock_in_)) in
let new_C_ss = ((C_mfsm_abort_le_en_) =>C_ssA|l C_ss)in
let mend = (CB_ms_in = AMEND) in
let mabort = (CB_ms_in = AMABORT) in
let new_C_last_out_=
((C_sfsm_sal A ~(CIkD A (mend V mabort))) => T!
((~C_sfsm_sal A (CIkD A (mend V mabort))) => Fi
((~C_sfsm_sal A ~(CIkD A (mend V mabort))) => C_last_out_| ARB))) in
let new_C_hold_ = C_sfsm_sidle in

165

let new_C_cout_0_le_del = c_dfsm_cout_0_le in
let new_C_cin_2_le = c_dfsm_cin_0_le in
let new_C_mrdy_del_=c_dfsm_i_mrdy_in
let new_C_iad_en_s_del = C_sfsin_iad_en_s in
let new_C_wrdy = (c_dfsm_srdy A c_write A C_mfsm_md1 A ClkD) in
let new_C_rrdy = (c_dfsm_srdy A ~c_write A C_mfsm_md0 A CikD) in
let c_pe = (Par_Det rep CB_ad_in) in
let c_pe_cnt = (CIkD A ((~(C_mfsm_mparity = C_sfsm_sparity)) V (SUBARRAY CB_ss_in (1,0)) = (WORDN 0)))) in
let new_C_parity =

((CkDAc_peAc_pe cnt) NI _cale)=>TI

((~(ClkD Ac_pe Ac_pe_cnt) A ~I_cale_)=>FI

((~(CIkD Ac_pe Ac_pe_cnt) Al_cale_) => C_parity | ARB))) in
let new_C_source = ((Rst) => (WORDN 0) |

((c_dfsm_cin_3_le) => Par_Dec rep (CB_ad_in) | C_source)) in
let data_in31_16 = (MALTER ARBN (31,16) ((Rst) => (WORDN 0} |
((c_dfsm_cin_1_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (31,16))))) in
let data_in31_0 = (MALTER data_in31_16 (15,0) ((Rst) => (WORDN 0) }
((c_dfsm_cin_0_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (15,0))))) in

let new_C_data_in = data_in31_0in
let new_C_iad_in = ((c_dfsm_cout_O_le) =>I_ad_in | C_jad_in) in
let new_C_mfsm_state = C_mfsm_stateA in
let new_C_mfsm_srdy_en = C_efsm_srdy_en in
let new_C_mfsm_D =CIkD in
let new_C_mfsm_grant = c_grant in
let new_C_mfsm_rst = Rst in
let new_C_mfsm_busy = c_busy in
let new_C_mfsm_write = ¢_write in
let new_C_mfsm_crqt_=1_crqt_in
let new_C_mfsm_hold_ = C_holdA_in
let new_C_mfsm_last_ = new_C_last_in_in
let new_C_mfsm_lock_ =new_C_lock_in_in
let new_C_mfsm_ss = CB_ss_in in
let new_C_mfsm_invalid = Piu_invalid in
let new_C_sfsm_state = C_sfsm_state in
let new_C_sfsm_D =CIkD in
let new_C_sfsm_grant = c_grantin
let new_C_sfsm_rst = Rstin
let new_C_sfsm_write = c_write in
let new_C_sfsm_addressed = (Id = (SUBARRAY new_C_source (15,10))) in
let new_C_sfsm_hida_=I_hlda_in
let new_C_sfsm_ms =CB_ms_in in
let new_C_efsm_state = C_efsm_state in
let new_C_efsm_cale_ =1 _cale_in
let new_C_efsm_last_ =1_last_in_in
let new_C_efsm_male_ = I_male_in_in
let new_C_efsm_rale_ =1 rale_in_in
let new_C_efsm_srdy_ = I_srdy_in_in
let new_C_efsm_rst = Rst in
let new_C_mfsm_stateA = C_mfsm_stateA in
let new_C_mfsm_mabort = C_mfsm_mabort in
let new_C_mfsm_midle = C_mfsm_midle in
let new_C_mfsm_mrequest = C_mfsm_mrequest in

166

let new_C_mfsm_ma3 = C_mfsm_ma3 in

let new_C_mfsm_ma2 = C_mfsm_ma?2 in

let new_C_mfsm_mal = C_mfsm_mal in

let new_C_mfsm_ma0 = C_mfsm_ma0 in

let new_C_mfsm_mdl = C_mfsm_mdl in

let new_C_mfsm_md0 = C_mfsm_md0 in

let new_C_mfsm_iad_en_m = C_mfsm_jad_en_m in
let new_C_mfsm_m_cout_sell = C_mfsm_m_cout_sell in
let new_C_mfsm_m_cout_sel0 = C_mfsm_m_cout_sel0 in
let new_C_mfsm_ms = C_mfsm_ms in

let new_C_mfsm_rqt_ = C_mfsm_rqt_in

let new_C_mfsm_cgnt_ = C_mfsm_cgnt_ in

let new_C_mfsm_cm_en = C_mfsm_cm_en in

let new_C_mfsm_abort_le_en_ = C_mfsm_abort_le_en_ in
let new_C_mfsm_mparity = C_mfsm_mparity in

let new_C_sfsm_stateA = C_sfsm_stateA in

let new_C_sfsm_ss = C_sfsm_ss ip

let new_C_sfsm_iad_en_s = C_sfsm_iad_en_s in

let new_C_sfsm_sidle = C_sfsm_sidle in

let new_C_sfsm_slock = C_sfsm_slock in

let new_C_sfsm_sal = C_sfsm_sal in

let new_C_sfsm_sa0 = C_sfsm_sa0 in

let new_C_sfsm_sale = C_sfsm_sale in

let new_C_sfsm_sdl = C_sfsm_sdl in

let new_C_sfsm_sd0 = C_sfsm_sd0 in

let new_C_sfsm_sack = C_sfsm_sack in

let new_C_sfsm_sabort = C_sfsm_sabort in

let new_C_sfsm_s_cout_sel0 = C_sfsm_s_cout_sel0 in
let new_C_sfsm_sparity = C_sfsm_sparity in

let new_C_efsm_stateA = C_efsm_stateA in

let new_C_efsm_srdy_en = C_efsm_srdy_en in

let new_C_clkAA = C_clkAA in

let new_C_sidle_delA = C_sidle_delA in

let new_C_mrqt_delA = C_mrqt_delA in

let new_C_last_inA_ = C_last_inA_in

let new_C_ssA =C_ssA in

let new_C_holdA_ = C_holdA_in

let new_C_cout_0_le_delA = C_cout_0_le_delA in
let new_C _cin_2 leA =C_cin_2_leA in

let new_C_mrdy_delA_ = C_mrdy_delA_in

let new_C_iad_en_s_delA = C_iad_en_s_delA in

let new_C_wrdyA = C_wrdyA in

let new_C_rrdyA = C_rrdyA in

fet new_C_iad_out = C_iad_out in

let new_C_ala0=C_ala0in

let new_C_a3a2 = C_a3a2in

(new_C_mfsm_stateA, new_C_mfsm_mabort, pew_C_mfsm_midle, new_C_mfsm_mrequest, new_C_mfsm_ma3,
new_C_mfsm_ma2, new_C_mfsm_mal, new_C_mfsm_ma0, new_C_mfsm_mdl, new_C_mfsm_md0,
new_C_mfsm_iad_en_m,
new_C_mfsm_m_cout_sell, pew_C_mfsm_m_cout_sel0, new_C_mfsm_ms, new_C_mfsm_rqt_, new_C_mfsm_cgut_,
new_C_mfsm_cm_en, new_C_mfsm_abort_le_en_, new_C _mfsm_mparity, new_C_sfsm_stateA, new_C_sfsm_ss,
new_C_sfsm_jad_en_s, new_C_sfsm_sidle, new_C_sfsm_slock, pew_C_sfsm_sal, new_C_sfsm_sa0,
new_C_sfsm_sale, new_C_sfsm_sdl, new_C_sfsm_sd0, new_C_sfsm_sack, new_C_sfsm_sabort,

167

pew_C_sfsm_s_cout_sel0, new_C_sfsm_sparity, new_C_efsm_stateA, pnew_C_efsm_srdy_en, new_C_clkAA,
new_C_sidle_delA, new_C_mrqt_delA, new_C_last_inA_, new_C_ssA, new_C_holdA_,
new_C_cout_0_le_delA, new_C_cin_2_leA, new_C_mrdy_delA_, pew_C_iad_en_s_delA, new_C_wrdyA, new_C_rrdyA,
new_C_iad_out, new_C_ala0, new_C_a3a2, new_C_mfsm_state, new_C_mfsm_srdy_en, new_C_mfsm_D,
new_C_mfsm_grant, new_C_mfsm_rst, new_C_mfsm_busy, new_C_mfsm_write, new_C_mfsm_crqt_,
new_C_mfsm_hold_, new_C_mfsm_last_, pew_C_mfsm _lock_, new_C_mfsm_ss, new_C_mfsm_invalid,
new_C_sfsm_state, new_C_sfsm_D, new_C_sfsm_grant, new_C_sfsm_rst, pew_C_sfsm_write,
new_C_sfsm_addressed, new_C_sfsm_hlda_, new_C_sfsm_ms, new_C_efsm_state, new_C_efsm_cale_,
new_C_efsm_last_, new_C_efsm_male_, new_C_efsm_rale_, new_C_efsm_srdy_, new_C_efsm_rst, new_C_wr,
new_C_sizewrbe, new_C_clkA, new_C_sidle_del, new_C_mrqt_del, new_C_last_in_, new_C_lock_in_,
new_C_ss, new_C_last_out_, new_C_hold_, new_C_cout_0_le_del, new_C_cin_2_le, new_C_mrdy_del_,
new_C_iad_en_s_del, new_C_wrdy, new_C_rrdy, new_C_parity, new_C_source, pnew_C_data_in, new_C_iad_in)”
%

0

Output definition for Phase-B instruction.

let PH_B_out_def = new_definition
(‘PH_B_out,
“1 (rep:Arep_ty)
(C_mfsm_stateA C_mfsm_state :cmfsm_ty)
(C_sfsm_stateA C_sfsm_state :csfsm_ty)
(C_efsm_stateA C_efsm_state :cefsm_ty)
(C_mfsm_ms C_sfsm_ss C_ssA C_iad_out C_ala0 C_a3a2 C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss
C_source C_data_in C_iad_in :wordn)
(C_mfsm_mabort C_mfsm_midle C_mfsm_mrequest C_mfsm_ma3 C_mfsm_ma2 C_mfsm_mal
C_mfsm_ma0 C_mfsm_md1 C_mfsm_md0 C_mfsm_iad_en_m C_mfsm _m_cout_sell C_mfsm_m_cout_sel0
C_mfsm_rqt_ C_mfsm_cgnt_ C_mfsm_cm_en C_mfsm_abort_le_en_C _mfsm_mparity
C_sfsm_iad_en_s C_sfsm_sidle C_sfsm_slock C_sfsm_sal C_sfsm_sa0
C_sfsm_sale C_sfsm_sd1 C_sfsm_sd0 C_sfsm_sack C_sfsm_sabort C_sfsm_s_cout_sel0 C_sfsm_sparity
C_efsm_srdy_en
C_clkAA C_sidle_delA C_mrqt_delA C_last_inA_ C_holdA_ C_cout_0_le_delA
C_cin_2_leA C_mrdy_delA_ C_iad_en_s_delA C_wrdyA C_rrdyA
C_mfsm_srdy_en C_mfsm_D C_mfsm_grant C_mfsm_rst C_mfsm_busy C_mfsm_write
C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_last_ C_mfsm_lock_ C_mfsm_invalid
C_sfsm_D C_sfsm_grant C_sfsm_rst C_sfsm_write C_sfsm_addressed C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_sidle_del C_mrqt_del C_last_in_ C_lock_in_ C_last_out_
C_hold_ C_cout_0_le_del C_cin_2_le C_mrdy_del_ C_iad_en_s_del C_wrdy
C_rrdy C_parity :bool)
(I_mrdy_in_1_rale_in_I_male_in_1I_last_in_I_srdy_in_1 lock I _cale_ I_hida_I_crqt_
Rst ClkA CIkB CIkD Pmm_failure Piu_invalid Reset_error :bool)
(I_ad_in I_be_in_CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_inId ChannelID Ccr :wordn)
(I_cgnt_ I_mrdy_out_I_hold_I_rale_out_I_male_out_ I_last_out_ I_srdy_out_CB_rqt_out_
Disable_writes CB_parity :bool) .
PH_B_out rep
(C_mfsm_stateA, C_mfsm_mabort, C_mfsm_midle, C_mfsm_mrequest, C_mfsm_ma3, C_mfsm_ma2,
C_mfsm_mal, C_mfsm_ma0, C_mfsm_mdl, C_mfsm_md0, C_mfsm_iad_en_m, C_mfsm_m_cout_sell,
C_mfsm_m_cout_sel0, C_mfsm_ms, C_mfsm_rqt_, C_mfsm_cgnt_, C_mfsm_cm_en, C_mfsm_abort_le_en_,
C_mfsm_mparity, C_sfsm_stateA, C_sfsm_ss, C_sfsm_iad_en_s, C_sfsm_sidle, C_sfsm_slock,
C_sfsm_sal, C_sfsm_sa0, C_sfsm_sale, C_sfsm_sd1, C_sfsm_sd0, C_sfsm_sack, C_sfsm_sabort,
C_sfsm_s_cout_sel0, C_sfsm_sparity, C_efsm_stateA, C_efsm_srdy_en, C_clkAA, C_sidle_delA,
C_mrqt_delA, C_last_inA_, C_ssA, C_holdA_, C_cout_0_le_delA, C_cin_2_leA,

168

C_mrdy_delA_, C_iad_en_s_delA, C_wrdyA, C_mrdyA, C_iad_out, C_ala0, C_a3a2, C_mfsm_state,
C_mfsm_srdy_en, C_mfsm_D, C_mfsm_grant, C _mfsm_rst, C_mfsm_busy, C_mfsm_write, C_mfsm_crqt_,
C_mfsm_hold_, C_mfsm_last_, C_mfsm_lock_, C_mfsm_ss, C_mfsm_invalid, C_sfsm_state, C_sfsm_D,
C_sfsm_grant, C_sfsm_rst, C_sfsm_write, C_sfsm_addressed, C_sfsm_hida_, C_sfsm_ms,

C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_,

C_efsm_rst, C_wr, C_sizewrbe, C_clkA, C_sidle_del, C_mrqt_del, C_last_in_, C_lock_in_,

C_ss, C_last_out_, C_hold_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_wrdy,
C_rrdy, C_parity, C_source, C_data_in, C_iad_in)

(I_ad_in, I_be_in_, I_mrdy_in_, I_rale_in_, I_male_in_, 1_last_in_, I_srdy_in_, I lock_,

I_cale_, I_hida_, I_crqt_, CB_rqt_in_, CB_ad_in, CB_ms _in, CB_ss_in, Rst, CIkA, CIkB,
CIkD, Id, ChanneliD, Pmm_failure, Piu_invalid, Ccr, Reset_error) =

let new_C_wr = ((~I_cale_) => (ELEMENT I_ad_in (27)) | C_wr) in
let new_C_sizewrbe = ((Rst) => ARBN |
((C_sfsm_sa0 A C_clkAA) => (SUBARRAY C_data_in (31,22)) | C_sizewrbe)) in
let ¢_write = ((C_mfsm_cm_en) => new_C_wr | (ELEMENT new_C_sizewrbe (5))) in
let cout_sel0 = (ALTER ARBN (0) ((C_sfsm_sd1 V C_sfsm_sd0) =>
C_sfsm_s_cout_sel0 | C_mfsm_m_cout_sel0)) in
let cout_sel10 = (ALTER cout_sel0 (1) ((C_sfsm_sd1 V C_sfsm_sd0) => F | C_mfsm_m_cout_sell)) in
let c_cout_sel = cout_sell10 in
let c_busy = (~((SUBARRAY CB_rqt_in_ (3,1)) = (WORDN 7))) in
let c_grant = ((((SUBARRAY 1d (1,0)) = (WORDN 0)) A ~(ELEMENT CB_rqt_in_(0)))
V ((SUBARRAY Id (1,0)) = (WORDN 1)) A ~(ELEMENT CB_1qt_in_(0))
A (ELEMENT CB_rqt_in_ (1))
V ((SUBARRAY 1d (1,0)) = (WORDN 2)) A ~(ELEMENT CB_1qt_in_ (0))
A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_(2)))
V ((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_xqt_in_ (0))
A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2))
A (ELEMENT CB_rqt_in_(3)))) in
let c_dfsm_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = (C_mfsm_ma3 V C_mfsm_ma2 V C_mfsm_mal V C_mfsm_ma0 V C_mfsm_md1 V C_mfsm_md0) in
let c_dfsm_slave = (~C_sfsm_sidle A ~C_sfsm_slock) in
let c_dfsm_cin_0_le = (ClkD A ((C_mfsm_md0 A c_dfsm_srdy A ~c_write) V (C_sfsm_sa0)
V (C_sfsm_sdO A c_write))) in
let c_dfsm_cin_1_le = (CIkD A ((C_mfsm_mdl A c_dfsm_srdy A ~c_write) V (C_sfsm_sal)
V (C_sfsm_sd1 A c_write))) in
let c_dfsm_cin_3_le = (CIkD A (C_sfsm_sidle V C_sfsm_slock)) in
let c_dfsm_cin_4_le = (C_clkAA A C_sfsm_sa0) in
let c_dfsm_cout_0_le = ((I_cale_) V (I_srdy_in_ A ~c_write)
V (C_mfsm_ma0 A c_dfsm_srdy A c_write A CIkD)

V (C_mfsm_mdO0 A c_write Ac_dfsm_srdy A CkD)) in

let c_dfsm_cout_1_le = (C_clkAA A C_sfsm_sd1) in
let c_dfsm_cad_en = ~((C_mfsm_ma3) V (C_mfsm_mal)V (C_mfsm_ma0) V (C_mfsm_ma2) V

(c_write A (C_mfsm_md1 V C_mfsm_md0)) V (~c_write A(C_sfsm_sd1 V C_sfsm_sd0))) in
let c_dfsm_i_male_ = ~(C_sfsm_sale A (~((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3))) A C_clkAA) in
let c_dfsm_i_rale_ = ~(C_sfsm_sale A (SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3)) A C_clkAA) n
let c_dfsm_i_mrdy_ = ~((~c_write A CIkD A (C_sfsm_sale V C_sfsm_sd1)) V

(~c_write A C_clkAA A C_sfsm_sack) V (c_write A CIkD A C_sfsm_sd0)) in
let new_C_clkA = CIkD in
let new_C_sidle_del = C_sfsm_sidle in
let new_C_mrqt_del = C_mfsm_mrequest in

169

let npew_C_last_in_ = ((Rst)=>F|
((C_mfsm_mabort VC_mfsm_mdl A CIkD) => C_last_inA_ | C_last_in_))in

let new_C_lock_in_ = ((Rst) => F | ((C_mfsm_mal) => [_lock_ | C_lock_in_))in
let new_C_ss = ((C_mfsm_abort_le_en_)=>C_ssA | C_ss) in
let mend = (CB_ms_in = AMEND) in
let mabort = (CB_ms_in = AMABORT) in
let new_C_last_out_=

((C_sfsm_sal A ~(CIkD A (mend V mabort}))) => T

((~C_sfsm_sal A (ClkD A (mend V mabort))) => F |

((~C_sfsm_sal A ~(ClkD A (mend V mabort))) => C_last_out_1| ARB))) in
let new_C_hold_ = C_sfsm_sidle in
let new_C_cout_0_le_del = c_dfsm_cout_0_le in
let new_C_cin_2_le = ¢_dfsm_cin_0_le in
let new_C_mrdy_del_ = c_dfsm_i_mrdy_ in
let new_C_jad_en_s_del = C_sfsm_iad_en_s in
let new_C_wrdy = (c_dfsm_srdy A ¢_write A C_mfsm_md1 A CIkD) in
let new_C_rrdy = (c_dfsm_srdy A ~c_write A C_mfsm_mdO A CIkD) in
let ¢_pe = (Par_Det rep CB_ad_in) in
let c_pe_cnt = (CIkD A ((~(C_mfsm_mparity = C_sfsm_sparity)) V (SUBARRAY CB_ss_in (1,0)) = (WORDN 0)))} in
let new_C_parity =

(((CIkD Ac_peAc_pe_cnt)A\l_cale)=>TI

((H(CKkD Ac_peAc_pe_cat)A~I_cale)=>F|

((~(CIkD A c_pe A c_pe_cnt) AI_cale_) => C_parity | ARB))) in
let new_C_source = ((Rst) => (WORDN 0) |

((c_dfsm_cin_3_le) => Par_Dec rep (CB_ad_in) | C_source)) in
let data_in31_16 = (MALTER ARBN (31,16) ((Rst) => (WORDN 0) |
((c_dfsm_cin_1_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (31,16))))) in
let data_in31_0 = (MALTER data_in31_16 (15,0) ((Rst) => (WORDN 0) |
{(c_dfsm_cin_0_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (15,0))))) in

let new_C_data_in = data_in31_0O in
let new_C_jad_in = ((c_dfsm_cout_0_le) =>I_ad_in | C_iad_in)in
let new_C_mfsm_state = C_mfsm_stateA in
let new_C_mfsm_srdy_en = C_efsm_srdy_en in
let new_C_mfsm_D = CIkD in
let new_C_mfsm_grant = c_grant in
let new_C_mfsm_rst = Rst in
let new_C_mfsm_busy = c_busy in
let new_C_mfsm_write = c_write in
let new_C_mfsm_crqt_=1_crqt_in
let new_C_mfsm_hold_ = C_holdA_ in
let new_C_mfsm_last_ = new_C_last_in_ in
let new_C_mfsm_lock_ = new_C_lock_in_ in
let new_C_mfsm_ss = CB_ss_in in
let new_C_mfsm_invalid = Piu_invalid in
let new_C_sfsm_state = C_sfsm_state in
let new_C_sfsm_D = CIkD in
let new_C_sfsm_grant = c_grant in
let new_C_sfsm_rst = Rstin
let new_C_sfsm_write = ¢c_write in
let new_C_sfsm_addressed = (Id = (SUBARRAY new_C_source (15,10))) in
let new_C_sfsm_hlda_=I_hlda_in
let new_C_sfsm_ms = CB_ms_in in

170

let new_C_efsm_state = C_efsm_state in

let new_C_efsm_cale_=1_cale_in

let new_C_efsm_last_ =1_last_in_in

let new_C_efsm_male_ =1 _male_in_in

let new_C_efsm_rale_=1_rale_in_in

let new_C_efsm_srdy_=1_srdy_in_ in

let new_C_efsm_rst = Rst in

let new_C_mfsm_stateA = C_mfsm_stateA in

let new_C_mfsm_mabort = C_mfsm_mabort in

let new_C_mfsm_midle = C_mfsm_midle in

let new_C_mfsm_mrequest = C_mfsm_mrequest in
let new_C_mfsm_ma3 = C_mfsm_ma3 in

let new_C_mfsm_ma2 = C_mfsm_ma2 in

let new_C_mfsm_mal = C_mfsm_mal in

let new_C_mfsm_ma0 = C_mfsm_ma0 in

let new_C_mfsm_mdl = C_mfsm_md] in

let new_C_mfsm_mdO = C_mfsm_md0 in

let new_C_mfsm_jad_en_m = C_mfsm_iad_en_m in
let new_C_mfsm_m_cout_sell = C_mfsm_m_cout_sell in
let new_C_mfsm_m_cout_sel0 = C_mfsm_m_cout_selO in
let new_C_mfsm_ms = C_mfsm_ms in

let new_C_mfsm_rqt_= C_mfsm_rqt_in

let new_C_mfsm_cgnt_ = C_mfsm_cgnt_in

let new_C_mfsm_cm_en = C_mfsm_cm_en in

let new_C_mfsm_abort_le_en_= C_mfsm_abort_le_en_ in
let new_C_mfsm_mparity = C_mfsm_mparity in
let new_C_sfsm_stateA = C_sfsm_stateA in

let new_C_sfsm_ss = C_sfsm_ss in

let new_C_sfsm_iad_en_s = C_sfsm_iad_en_s in
let new_C_sfsm_sidle = C_sfsm_sidle in

let new_C_sfsm_slock = C_sfsm_slock in

let new_C_sfsm_sal = C_sfsm_sal in

let new_C_sfsm_sa0 = C_sfsm_sa0 in

let new_C_sfsm_sale = C_sfsm_sale in

let new_C_sfsm_sdl = C_sfsm_sdl in

let new_C_sfsm_sdO = C_sfsm_sd0 in

let new_C_sfsm_sack = C_sfsm_sack in

let new_C_sfsm_sabort = C_sfsm_sabort in

let new_C_sfsm_s_cout_sel0 = C_sfsm_s_cout_sel0 in
let new_C_sfsm_sparity = C_sfsm_sparity in

let new_C_efsm_stateA = C_efsm_stateA in

let new_C_efsm_srdy_en = C_efsm_srdy_en in

let new_C_clkAA =C_clkAA in

let new_C_sidle_delA = C_sidle_delA in

let new_C_mrqt_delA = C_mrqt_delA in

let new_C_last_inA_=C_last_inA_in

let new_C_ssA =C_ssA in

let new_C_holdA_=C_holdA_in

let new_C_cout_0_le_delA = C_cout_0_le_delA in
letnew_C_cin_2 leA=C_cin_2 leAin

let new_C_mrdy_delA_ = C_mrdy_delA_in

let new_C_iad_en_s_delA = C_iad_en_s_delA in
let new_C_wrdyA = C_wrdyA in

let new_C_rrdyA = C_rrdyA in

171

let new_C_jad_out = C_iad_out in
let new_C_ala0=C_ala0in
let new_C_a3a2 =C_a3al in

let I_cgnt_ = new_C_mfsm_cgnt_in
let I_mrdy_out_ = ((~]_hida_) => new_C_mrdy_delA_| ARB) in
let I_hold_ = new_C_boldA_ in
let I_rale_out_ = ((~I_hlda_) => c_dfsm_j_rale_| ARB) in
let I_male_out_ = ((~]_hlda_) => c¢_dfsm_i_male_| ARB) in
let I_last_out_ = ((~]_hlda_) => new_C_last_out_| ARB) in
let I_srdy_out_ =
((~I_cale_V new_C_efsm_srdy_en) => ~(new_C_wrdyA V new_C_rrdyA V new_C_mfsm_mabort) | ARB) in
let I_be_out_ = ({(~I_hlda_) => (SUBARRAY new_C_sizewrbe (9,6)) | ARBN) in
let I_ad_out =
((new_C_tad_en_s_delA V new_C_mfsm_iad_en_m V new_C_sfsm_iad_en_s) => new_C_iad_out [ARBN) in
let CB_rqt_out_ = new_C_mfsm_rqt_ in
let cbms10 = (MALTER ARBN (1,0) (SUBARRAY new_C_mfsm_ms (1,0))) in
let cbms210 = (ALTER cbms10 (2) ((ELEMENT pew_C_mfsm_ms (2)) A ~Pmm_failure A ~Piu_invalid)) in
let CB_ms_out = ((~new_C_mfsm_cm_en) => cbms2101 ARBN) in
let cbss10 = (MALTER ARBN (1,0) (SUBARRAY new_C_sfsm_ss (1,0))) in
let cbss210 = (ALTER cbms10 (2) (ELEMENT new_C_sfsm_ss (2)) A ~Pmm_failure A ~Piu_invalid)) in
et CB_ss_out = ((~new_C_sfsm_sidle A ~new_C_sfsm_sabort) => cbss210 | ARBN) in
let CB_ad_out = ((c_dfsm_cad_en) =>
{(c_cout_sel = (WORDN 0)) => Par_Enc rep ((SUBARRAY new_C_ala0 (15,0))) |
((c_cout_sel = (WORDN 1)) => Par_Enc rep ((SUBARRAY new_C_ala0 (31,16))) |
((c_cout_sel = (WORDN 2)) => Par_Enc rep ((SUBARRAY new_C_a3a2 (15,0))) |
Par_Eunc rep ((SUBARRAY new_C_a3a2 (31,16)))))) |
ARBN) in
let C_ss_out = new_C_ss in
let Disable_writes = (c_dfsm_slave A ~((ChannelID = (WORDN 0)) A (ELEMENT new_C_source (6)))
A ~((ChannelID = (WORDN 1)) A (ELEMENT new_C_source (7)})
A ~((ChannelID = (WORDN 2)) A (ELEMENT new_C_source (8)))
A ~((ChannelID = (WORDN 3)) A (ELEMENT new_C_source (9)))) in
let CB_parity = new_C_parity in

(I_cgnt_, I_mrdy_out_, I_bold_, I_rale_out_, I_male_out_, I_last_out_,I_srdy_out_,I_ad_out, I_be_out_,
CB_rgqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)”
»

close_theory();;

172

C.5 SU_Cont Specification

File: s_phase.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the phase-level specification of the P-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

%

set_search_path (search_path() @ [* home/titan3/dfura/ftep/piwhol/lib/*]);;
system ‘rm s_block.th*;;

new_theory ‘s_block’;;

map new_parent [‘saux_def*;‘aux_def"; ‘array_def*;‘wordn_def'];;

let s_state_ty = “:(sfsm_ty#bool#bool#bool#bool#bool#bool#bool#boo]#bool#bool#bool#boo}#bool#bool#bool#bool#
bool#bool#wordn#wordn#boolibool#
sfsm_ty#bool#bool#boolitbool#bool#
boolwordn#wordn#bool#bool#bool#bool#boolbool#bool#bool#bool)”;;
let s_state = “((S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_sts,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)
As_state_ty)”s;

lets_env_ty= “:(booHbool#bool#bool#bool¥bool#bookboolbool);
let s_env = “((CIkA, ClkB, Rst, Bypass, Test, Gerh, Gerl, Failure0_, Failurel)
As_env_ty)’s;

let s_out_ty = “:(wordn#boo]#bool#bool#boo]#bool#bool#bool#bool#bool#bool)";;

let s_out = “((S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist,
Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail)
As_out_ty)"s;

70

Next-state definition for Phase-A instruction.

let PH_A_inst_def = new_definition
(‘PH_A_inst*,

173

“1 (S_fsm_stateA S_fsm_state sfsm_ty)
(S_soft_cntA S_delayA S_soft_cnt S_delay :wordn)
(S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_src0 S_fsm_srcl S_fsm_spf S_fsm_scOf
S_fsm_sclf S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs S_fsm_scs S_soft_shot S_soft_shot_delA
S_instart S_cpu_histA S_fsm_rst S_fsm_delay6 S_fsm_delay17 S_fsm_bothbad S_fsm_bypass
S_soft_shot_del S_bad_cpu0 S_bad_cpul S_reset_cpuO S_reset_cpul S _pmm_fail S_cpu0_fail S_cpul_fail
S_cpu_hist S_piu_fail :bool)
(CIkA CIkB Rst Bypass Test Gerh Garl FailureO_ Failurel _ :bool) .

PH_A_inst (S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fam_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)

(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, Failure0_, Failurel) =

let new_S_fsm_stateA =
((S_fsm_rst) => SSTART |
((S_fsm_state = SSTART) => SRA !
((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) I
((S_fsm_state = SPF) => SCOI |
((S_fsm_state = SCOI) => ((S_fsm_delay17) => SCOF | SCOI) |
((S_fsm_state = SCOF) => ST |
((S_fsm_state = ST) => SC1I |
((S_fsm_state = SC1I) => ((S_fsm_delay17) => SC1F | SCI]) |
((S_fsm_state = SC1F) => SS |
((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS) |
((S_fsm_state = SSTOP) => SSTOP |
((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |
((S_fsm_state = SN) => ((S_fsm_delayl7) => SO ISN) |
((S_fsm_state = SO) => SO | S_ILL)N)MN))))) in
let new_S_fsm_sn = (new_S_fsm_stateA = SN) in
let new_S_fsm_so = (new_S_fsm_stateA = SO) in
let new_S_fsm_srcp = (((~(new_S_fsm_stateA = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let new_S_fsm_sdi = (((~(new_S_fsm_stateA = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA))in
let new_S_fsm_srp = ((new_S_fsm_stateA = SSTART) V (new_S_fsm_stateA = SRA)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SC1F) V (new_S_fsm_stateA = SS)
V (pew_S_fsm_stateA = SCS)) in
let new_S_fsm_srcO = ((~(new_S_fsm_stateA = SPF)) A\ (~(new_S_fsm_stateA = SCOI))) in
let new_S_fsm_srcl = ((~(new_S_fsm_stateA = ST)) A (~(new_S_fsm_stateA = SC11))) in
let new_S_fsm_spf = ((S_fsm_state = SRA) A S_fsm_delay6 A ~S_fsm_rst) in
let new_S_fsm_scOf = (new_S_fsm_stateA = SCOF) in
let new_S_fsm_sc1f = (new_S_fsm_stateA = SC1F) in
let new_S_fsm_spmf = (new_S_fsm_stateA = SO) in
let pew_S_fsm_sb = (new_S_fsm_stateA = SSTART) in
let new_S_fsm_src = ((new_S_fsm_stateA = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SC1F) V (new_S_fsm_stateA = SS)
V ((S_fsm_state = SCS) A S_fsm_delay6)) in
let new_S_fsm_sec = (((~(new_S_fsm_stateA = SSTOP)) A (~(new_S_fsm_stateA = 80))) V (S_fsm_state = SN)) in
let new_S_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST) A ~S_fsm_rst)) in
let new_S_fsm_scs = (new_S_fsm_stateA = SCS) in
let new_S_soft_shot = (~Gerh A Gerl) in

174

let new_S_soft_shot_delA = S_soft_shot_del in
let new_S_soft_cntA = ((new_S_fsm_srs) => (WORDN 0) | S_soft_cnt) in
let s_delay_out = ((S_fsm_sec) => (INCN 17 S_delayA) | S_delayA) in
let new_S_delayA = ((new_S_fsm_src V (new_S_fsm_scs A (ELEMENT s_delay_out (6)))) => (WORDN 0) | S_delay) in
let s_delay_out = ((new_S_fsm_sec) => (INCN 17 new_S_delayA) | new_S_delayA) in
let new_S_instart = ((Test) => (ELEMENT s_delay_out (5)) | (ELEMENT s_delay_out (16))) in
let s_soft_cnt_out = ((new_S_soft_shot A ~new_S_soft_shot_delA) =>
(INCN 2 new_S_soft_cntA) | pnew_S_soft_cntA) in
let s_cpu0_ok = (new_S_fsm_scOf A\ Failure0_A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (new_S_fsm_sclf A Failurel _A (s_soft_cnt_out = (WORDN 5))) in
let s_cpuO_select = ((new_S_fsm_sn V new_S_fsm_so) A ~S_cpu0_fail) in
let s_cpul_select = ((new_S_fsm_sn V new_S_fsm_so) A S_cpuO_fail A ~S_cpul _fail) in
let new_S_cpu_histA = (S_reset_cpuO A S_reset_cpul A Bypass) in
let new_S_fsm_state = S_fsm_state in
let new_S_fsm_rst = S_fsm_rst in
let new_S_fsm_delay6 = S_fsm_delay6 in
let new_S_fsm_delay17 = S_fsm_delay17 in
let new_S_fsm_bothbad = S_fsm_bothbad in
let new_S_fsm_bypass = S_fsm_bypass in
let new_S_soft_shot_del = S_soft_shot_del in
let new_S_soft_cnt = S_soft_cntin
let pew_S_delay = S_delay in
let new_S_bad_cpuO = S_bad_cpu0 in
let new_S_bad_cpul = S_bad_cpul in
let new_S_reset_cpu0 = S_reset_cpu0 in
let new_S_reset_cpul = S_reset_cpul in
let new_S_pmm_fail = S_pmm_fail in
let new_S_cpuO_fail = S_cpu0_fail in
let new_S_cpul _fail =S_cpul_fail in
let new_S_cpu_hist = S_cpu_hist in
let new_S_piu_fail = S_piu_fail in

(new_S_fsm_stateA, new_S_fsm_sn, new_S_fsm_so, new_S_fsm_srcp, pew_S_fsm_sdi, new_S_fsm_srp,
new_S_fsm_src0, new_S_fsm_srcl, new_S_fsm_spf, new_S_fsm_scOf, pew_S_fsm_sclf, new_S_fsm_spmf,
new_S_fsm_sb, new_S_fsm_src, new_S_fsm_sec, new_S_fsm_srs, new_S_fsm_scs, new_S_soft_shot,
new_S_soft_shot_delA, new_S_soft_cntA, new_S_delayA, new_S_instart, new_S_cpu_histA, new_S_fsm_state,
new_S_fsm_rst, new_S_fsm_delay6, new_S_fsm_delayl7, new_S_fsm_bothbad, new_S_fsm_bypass,
new_S_soft_shot_del, new_S_soft_cnt, pew_S_delay, new_S_bad_cpu0, new_S_bad_cpul, new_S_reset_cpu0,
new_S_reset_cpul, new_S_pmm_fail, pew_S_cpu0_fail, new_S_cpul_fail, new_S_cpu_hist, pew_S_piu_fail)”
i

R

Output definition for Phase-A instruction.

let PH_A_out_def = new_definition
(‘PH_A_out',
“| (S_fsm_stateA S_fsm_state :sfsm_ty)

(S_soft_cntA S_delayA S_soft_cnt S_delay :wordn)

(S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_srcO S_fsm_srcl S_fsm_spf S_fsm_scOf
S_fsm_sclf S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs S_fsm_scs S_soft_shot S_soft_shot_delA
S_instart S_cpu_histA S_fsm_rst S_fsm_delay6 S_fsm_delay17 S_fsm_bothbad S_fsm_bypass
S_soft_shot_del S_bad_cpu0 S_bad_cpul S_reset_cpu0 S_reset_cpul S_pmm_fail S_cpuQ_fail S_cpul_fail
S_cpu_hist S_piu_fail :bool)

175

(CIkA CIkB Rst Bypass Test Gerh Gerl FailureO_ Failurel _ :bool) .

PH_A_out (S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpu0_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)

(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureO_, Failurel) =

let new_S_fsm_stateA =
((S_fsm_rst) => SSTART |
((S_fsm_state = SSTART) => SRA |
((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) |
((S_fsm_state = SPF) => SCOI |
((S_fsm_state = SCOI) => ((S_fsm_delay17) => SCOF | SCOI) |
((S_fsm_state = SCOF) => ST
((S_fsm_state = ST) => SC1I |
((S_fsm_state = SC1I) => ((S_fsm_delayl7) => SC1F | SCI1I) |
((S_fsm_state = SC1F) => SS |
((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS) |
((S_fsm_state = SSTOP) => SSTOP |
((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |
((S_fsm_state = SN) => ((S_fsm_delayl7) => SO | SN) |
((S_fsm_state = SO) => SO | S_ILL))))))))))) in
let new_S_fsm_sn = (new_S_fsm_stateA = SN) in
let new_S_fsm_so = (new_S_fsm_stateA = SO) in
let new_S_fsm_srcp = (((~(new_S_fsm_state A = SO)) \ (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let new_S_fsm_sdi = (((~(new_S_fsm_stateA = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let new_S_fsm_srp = ((new_S_fsm_stateA = SSTART) V (new_S_fsm_stateA = SRA)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SC1F) V (new_S_fsm_stateA = SS)
V (new_S_fsm_stateA = SCS)) in
let new_S_fsm_srcO = ((~(new_S_fsm_stateA = SPF)) A (~(new_S_fsm_stateA = SCOI))) in
let new_S_fsm_srcl = ((~(new_S_fsm_stateA = ST)) A (~(new_S_fsm_stateA = SCI1I))) in
let new_S_fsm_spf = ((S_fsm_state = SRA) A S_fsm_delay6 A ~S_fsm_rst) in
let new_S_fsm_scOf = (new_S_fsm_stateA = SCOF) in
let new_S_fsm_sclf = (new_S_fsm_stateA = SC1F) in
let new_S_fsm_spmf = (new_S_fsm_stateA = SO) in
let new_S_fsm_sb = (new_S_fsm_stateA = SSTART) in
let new_S_fsm_src = ((new_S_fsm_stateA = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SC1F) V (new_S_fsm_stateA = SS)
V ((S_fsm_state = SCS) A S_fsm_delay6)) in
let new_S_fsm_sec = (((~(new_S_fsm_stateA = SSTOP)) A (~(new_S_fsm_stateA = SO))) V (S_fsm_state = SN)) in
let new_S_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST) A ~S_fsm_rst)) in
let new_S_fsm_scs = (new_S_fsm_stateA = SCS) in
let new_S_soft_shot = (~Gerh A Gerl) in
let new_S_soft_shot_delA = S_soft_shot_del in
let new_S_soft_cntA = ((new_S_fsm_srs) => (WORDN 0) | S_soft_cnt) in
let s_delay_out = ((S_fsm_sec) => (INCN 17 S_delayA) | S_delayA) in
let new_S_delayA = ((new_S_fsm_src V (new_S_fsm_scs A (ELEMENT s_delay_out (6)))) = (WORDN 0) | S_delay) in
let s_delay_out = ((new_S_fsm_sec) => (INCN 17 new_S_delayA) | new_S_delayA) in
let new_S_instart = ((Test) => (ELEMENT s_delay_out (5)) | (ELEMENT s_delay_out (16)}) in
let s_soft_cnt_out = ((new_S_soft_shot A ~new_S_soft_shot_delA) =>

176

(INCN 2 new_S_soft_cntA) | new_S_soft_cntA) in
let s_cpu0_ok = (new_S_fsm_scOf A Failure0_ A (s_soft_cnt_out = (WORDN $5))) in
let s_cpul_ok = (new_S_fsm_sclf A Failurel A (s_soft_cnt_out = (WORDN 5))) in
let s_cpu0_select = ((new_S_fsm_sn V new_S_fsm_so0) A ~S_cpuO_fail) in
let s_cpul_select = ((new_S_fsm_snV new_S_fsm_so) N S_cpu0_fail A ~S_cpul_fail) in
let new_S_cpu_histA = (S_reset_cpuO A S_reset_cpul A Bypass) in
let new_S_fsm_state = S_fsm_state in
let new_S_fsm_rst=S_fsm_rst in
let new_S_fsm_delay6 = S_fsm_delay6 in
let pew_S_fsm_delay17 = S_fsm_delayl7 in
let new_S_fsm_bothbad = S_fsm_bothbad in
let new_S_fsm_bypass = S_fsm_bypass in
let new_S_soft_shot_del = S_soft_shot_del in
let new_S_soft_cnt = S_soft_cntin
let new_S_delay = S_delay in
let new_S_bad_cpu0 = S_bad_cpu0 in
let new_S_bad_cpul = S_bad_cpul in
let new_S_reset_cpu0 = S_reset_cpu0O in
let new_S_reset_cpul = S_reset_cpul in
let new_S_pmm_fail = S_pmm_fail in
let new_S_cpuO_fail = S_cpu0_fail in
let new_S_cpul_fail =S_cpul_fail in
let new_S_cpu_hist = S_cpu_hist in
let new_S_piu_fail = S_piu_fail in
let ssO = (ALTER ARBN (0) ((new_S_fsm_stateA = SS) V (new_S_fsm_stateA = SSTOP)
V (new_S_fsm_stateA = SCS) V (new_S_fsm_stateA = SN)
V (new_S_fsm_stateA = SO))) in
let ss1 = (ALTER ss0 (1) ((new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (pew_S_fsm_stateA = SCII) V (new_S_fsm_stateA = SCIF)
V (new_S_fsm_stateA = SS) V (new_S_fsm_stateA = SSTOP)
V (new_S_fsm_stateA = SCS))) in
let ss2 = (ALTER ssl (2) ((new_S_fsm_stateA = SPF)V (new_S_fsm_stateA = SCOI)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SSTOP) V (new_S_fsm_stateA = SO))) in
let 553 = (ALTER s52 (3) ((new_S_fsm_stateA = SRA} V (new_S_fsm_stateA = SPF)
V (new_S_fsm_stateA = ST) V (new_S_fsm_state A = SC1I)
V (new_S_fsm_stateA = SCS) V (new_S_fsm_stateA = SN)
V (new_S_fsm_stateA = S0))) in
Jet S_state = 553 in
let Reset_cport = new_S_fsm_srcp in
let Disable_int = (~new_S_instart A ~(new_S_fsm_sn A (ELEMENT s_delay_out (6))) Anew_S_fsm_sdi) in
let Reset_piu = new_S_fsm_srp in
let Reset_cpu0 = new_S_reset_cpu0 in
let Reset_cpul = new_S_reset_cpul in
let Cpu_hist = new_S_cpu_hist in
let Piu_fail = new_S_piu_fail in
let CpuQ_fail = new_S_cpu0_fail in
let Cpul_fail = new_S_cpul_fail in
let Pmm_fail = new_S_pmm_fail in

(S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist, Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail)”
)

177

Next-state definition for Phase-B instruction.

let PH_B_inst_def = new_definition
(‘PH_B_inst',
“1 (S_fsm_stateA S_fsm_state :sfsm_ty)
(S_soft_cntA S_delayA S_soft_cnt S_delay :wordn)
(S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_srcO S_fsm_srcl S_fsm_spf S_fsm_scOf
S_fsm_scl1f S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs S_fsm_scs S_soft_shot S_soft_shot_delA
S_instart S_cpu_histA S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass
S_soft_shot_del S_bad_cpu0 S_bad_cpul S_reset_cpu0 S_reset_cpul S_pmm_fail S_cpu0_fail S_cpul_fail
S_cpu_hist S_piu_fail :bool)
(CIKA CIkB Rst Bypass Test Gerh Gerl FailureO_ Failurel_ :bool) .
PH_B_inst (S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)
(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureO_, Failurel) =

let s_soft_cnt_out = ((S_soft_shot A ~S_soft_shot_delA) => (INCN 2 S_soft_cntA) | S_soft_catA) in
let s_delay_out = ((S_fsm_sec) => (INCN 17 S_delayA) | S_delayA) in
let s_cpu0_ok = (S_fsm_scOf A FailureO_ A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (S_fsm_sclf A Failurel_ A (s_soft_cnt_out = (WORDN 5))) in
let new_S_soft_shot_del = S_soft_shot in
let new_S_soft_cnt = ((~Gerh A ~Gerl) => (WORDN 0) | s_soft_cnt_out) in
let new_S_delay = s_delay_out in
let new_S_pmm_fail =
((S_fsm_sb A ~S_fsm_spmf) =>T |
((~S_fsm_sb A S_fsm_spmf) => F|
((~S_fsm_sb A ~S_fsm_spmf) => S_pmm_fail | ARB))) in
let new_S_cpu0_fail =
((S_fsm_sb A ~(s_cpu0_ok V Bypass))=>T|
((~S_fsm_sb A\ (s_cpuO_ok V Bypass)) =>F |
((~S_fsm_sb A ~(s_cpu0_ok \/ Bypass)) => S_cpuO_fail | ARB))) in
let new_S_cpul _fail =
((S_fsm_sb A ~(s_cpul_ok V Bypass)) =>T |
((~S_fsm_sb A (s_cpul_ok V Bypass)) => F |
((~S_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((S_fsm_sb A ~(S_fsm_spf V Bypass))=>T |
((~S_fsm_sb A\ (S_fsm_spf V Bypass)) =>F |
((~S_fsm_sb N ~(S_fsm_spf VV Bypass)) => S_piu_fail | ARB))) in
let s_cpuO_select = ((S_fsm_sn V S_fsm_so) A ~new_S_cpu0_fail) in
let s_cpul_select = ((S_fsm_sn V S_fsm_so) A new_S_cpuO_fail A ~new_S_cpul _fail) in
let new_S_bad_cpu0 =
((S_fsm_sb A ~s_cpu0O_select) => T |
((~S_fsm_sb A s_cpu0_select) => F |
((~S_fsm_sb A\ ~s_cpuO_select) => S_bad_cpu0 | ARB))) in
let new_S_bad_cpul =
((S_fsm_sb A -s_cpul_select)=>T|
((~S_fsm_sb A's_cpul_select) => F !
((~S_fsm_sb N\ ~s_cpul_select) => S_bad_cpul | ARB))) in

178

let new_S_reset_cpu0 = (new_S_bad_cpu0 A S_fsm_src0) in
let new_S_reset_cpul = (new_S_bad_cpul A S_fsm_srcl) in
let new_S_cpu_hist = S_cpu_histA in

let new_S_fsm_state = S_fsm_stateA in

let new_S_fsm_rst = Rstin

let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in

let new_S_fsm_delay17 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (17))) in
let new_S_fsm_bothbad = (new_S_cpuO_fail A new_S_cpul_fail) in
let new_S_fsm_bypass = Bypass in

let new_S_fsm_stateA = S_fsm_stateA in

let new_S_fsm_sn = S_fsm_sn in

let new_S_fsm_so = S_fsm_so in

let new_S_fsm_srcp = S_fsm_srcp in

let new_S_fsm_sdi = S_fsm_sdi in

let new_S_fsm_srp = S_fsm_srpin

let new_S_fsm_srcO = S_fsm_srcO in

let new_S_fsm_srcl = S_fsm_srcl in

let new_S_fsm_spf = S_fsm_spf in

let new_S_fsm_scOf = S_fsm_scOf in

let new_S_fsm_sclf = S_fsm_sclf in

let new_S_fsm_spmf = S_fsm_spmf in

let new_S_fsm_sb = S_fsm_sb in

let new_S_fsm_src=S_fsm_srcin

let new_S_fsm_sec = S_fsm_sec in

let new_S_fsm_srs = S_fsm_srs in

let new_S_fsm_scs = S_fsm_scs in

let new_S_soft_shot = S_soft_shot in

let new_S_soft_shot_delA = S_soft_shot_delA in

let new_S_soft_cntA = S_soft_cntA in

let new_S_delayA = S_delayA in

let new_S_instart = S_instart in

let new_S_cpu_histA = S_cpu_histA in

(new_S_fsm_stateA, new_S_fsm_sn, new_S_fsm_so, new_S_fsm_srcp, new_S_fsm_sdi, new_S_fsm_srp,
new_S_fsm_src0, new_S_fsm_srcl, new_S_fsm_spf, pew_S_fsm_scOf, pew_S_fsm_sclf, new_S_fsm_spmf,
new_S_fsm_sb, new_S_fsm_src, new_S_fsm_sec, new_S_fsm_sts, new_S_fsm_scs, new_S_soft_shot,
new_S_soft_shot_delA, new_S_soft_cntA, new_S_delayA, new_S_instart, new_S_cpu_histA, new_S_fsm_state,
new_S_fsm_rst, pew_S_fsm_delay6, new_S_fsm_delay17, new_S_fsm_bothbad, new_S_fsm_bypass,
new_S_soft_shot_del, new_S_soft_cnt, new_S_delay, new_S_bad_cpu0, new_S_bad_cpul, new_S_reset_cpu0,
new_S_reset_cpul, new_S_pmm_fail, new_S_cpu0_fail, new_S_cpul _fail, new_S_cpu_hist, new_S_piu_fail)”

%

Output definition for Phase-B instruction.

let PH_B_out_def = new_definition
(‘PH_B_out',
“| (S_fsm_stateA S_fsm_state :sfsm_ty)

(S_soft_cntA S_delayA S_soft_cnt S_delay :wordn)

(S_fsm_sn S_fsm_so S_fsm_srcp S_fsm_sdi S_fsm_srp S_fsm_src0 S_fsm_srcl S_fsm_spf S_fsm_scOf
S_fsm_sclf S_fsm_spmf S_fsm_sb S_fsm_src S_fsm_sec S_fsm_srs S_fsm_scs S_soft_shot S_soft_shot_delA
S_instart S_cpu_histA S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass
S_soft_shot_del S_bad_cpuQ S_bad_cpul S_reset_cpu0 S_reset_cpul S _pmm_fail S_cpu0_fail S_cpul_fail

179

S_cpu_hist S_piu_fail :bool)
(CIkA CIkB Rst Bypass Test Gerh Gerl FailureO_ Failurel _ :bool) .

PH_B_out (S_fsm_stateA, S_fsm_sn, S_fsm_so, S_fsm_srcp, S_fsm_sdi, S_fsm_srp, S_fsm_src0, S_fsm_srcl,
S_fsm_spf, S_fsm_scOf, S_fsm_sclf, S_fsm_spmf, S_fsm_sb, S_fsm_src, S_fsm_sec, S_fsm_srs,
S_fsm_scs, S_soft_shot, S_soft_shot_delA, S_soft_cntA, S_delayA, S_instart, S_cpu_histA,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_pmm_fail, S_cpu0_fail, S_cpul_fail, S_cpu_hist, S_piu_fail)

(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureQ_, Failurel) =

let s_soft_cnt_out = ((S_soft_shot \ ~S_soft_shot_delA) => (INCN 2 S_soft_cntA) | S_soft_cntA) in
let s_delay_out = ((S_fsm_sec) => (INCN 17 S_delayA) | S_delayA) in
let s_cpuO_ok = (S_fsm_scOf A FailureO_ A (s_soft_cat_out = (WORDN 5))) in
let s_cpul_ok = (S_fsm_scif A Failurel_ A (s_soft_cnt_out = (WORDN 5))) in
let new_S_soft_shot_del = S_soft_shot in
let new_S_soft_cnt = ((~Gerh A ~Gerl) => (WORDN 0) | s_soft_cnt_out) in
let new_S_delay = s_delay_out in
let new_S_pmm_fail =
((S_fsm_sb A ~S_fsm_spmf) =>T |
((~S_fsm_sb A S_fsm_spmf) => F |
((~S_fsm_sb A ~S_fsm_spmf) => S_pmm_fail | ARB))) in
let new_S_cpu0_fail =
((S_fsm_sb A ~(s_cpu0O_ok V Bypass)) =>T |
((~S_fsm_sb A (s_cpuO_ok V Bypass)) => F |
((~S_fsm_sb A ~(s_cpu0_ok V Bypass)) => S_cpu0_fail | ARB))) in
let new_S_cpul_fail =
((S_fsm_sb A ~(s_cpul_ok V Bypass)) =>T1
((~S_fsm_sb A (s_cpul_ok V Bypass)) => F |
((~S_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((S_fsm_sb A ~(S_fsm_spf V Bypass)) =>T'|
((~S_fsm_sb A (S_fsm_spf V Bypass)) =>F |
((~S_fsm_sb A ~(S_fsm_spf V Bypass)) => S_piu_fail | ARB))) in
let s_cpuO_select = ((S_fsm_sn V S_fsm_so) A ~new_S_cpu0_fail) in
let s_cpul_select = ((S_fsm_sn V S_fsm_so) A new_S_cpu0_fail A ~new_S_cpul_fail) in
let new_S_bad_cpu0 =
((S_fsm_sb A ~s_cpu0_select) =>T |
((~S_fsm_sb A s_cpuO_select) => F i
((~S_fsm_sb A ~s_cpu0_select) => S_bad_cpu0 | ARB))) in
let new_S_bad_cpul =
((S_fsm_sb A ~s_cpul_select) =>T |
((~S_fsm_sb A's_cpul_select) =>F1
((~S_fsm_sb A ~s_cpul_select) => S_bad_cpul | ARB))) in
let new_S_reset_cpu0 = (new_S_bad_cpu0 A S_fsm_src0) in
let new_S_reset_cpul = (new_S_bad_cpul A S_fsm_srcl) in
let new_S_cpu_hist = S_cpu_histA in
let new_S_fsm_state = S_fsm_stateA in
let new_S_fsm_rst = Rst in
let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in
let new_S_fsm_delay17 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (17))) in
let new_S_fsm_bothbad = (new_S_ _fail A new_S_cpul_fail) in
let new_S_fsm_bypass = Bypass in
let new_S_fsm_stateA = S_fsm_stateA in
let new_S_fsm_sn = S_fsm_sn in

180

let new_S_fsm_so = S_fsm_so in

let new_S_fsm_srcp = S_fsm_srcp in

let new_S_fsm_sdi = S_fsm_sdi in

let new_S_fsm_srp = S_fsm_srpin

let new_S_fsm_srcO=S_fsm_srcO in

let new_S_fsm_srcl = S_fsm_srcl in

let new_S_fsm_spf = S_fsm_spfin

let new_S_fsm_scOf = S_fsm_scOf in

let new_S_fsm_sclf = S_fsm_sclfin

let new_S_fsm_spmf = S_fsm_spmf in

let new_S_fsm_sb = S_fsm_sb in

let new_S_fsm_src = S_fsm_src in

let new_S_fsm_sec = S_fsm_sec in

let new_S_fsm_srs = S_fsm_srs in

let new_S_fsm_scs = S_fsm_scs in

let new_S_soft_shot = S_soft_shot in

let new_S_soft_shot_delA = S_soft_shot_delA in

let new_S_soft_cntA = S_soft_cntA in

let new_S_delayA = S_delayA in

let new_S_instart = S_instart in

let new_S_cpu_histA = S_cpu_histA in

Jet ss0 = (ALTER ARBN (0) ((new_S_fsm_stateA = SS) V (new_S_fsm_stateA = SSTOP)

V (new_S_fsm_stateA = SCS) V (new_S_fsm_stateA = SN)
V (new_S_fsm_stateA = SO))) in

let ss1 = (ALTER 550 (1) ((new_S_fsm_stateA = SCOF) V (vew_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SCII) V (new_S_fsm_stateA = SC1F)
V (new_S_fsm_stateA = SS) V (new_S_fsm_stateA = SSTOP)
V (new_S_fsm_stateA = SCS))) in

let 552 = (ALTER ssl (2) ((new_S_fsm_stateA = SPF) V (new_S_fsm_stateA = SCOI)
V (new_S_fsm_stateA = SCOF) V (new_S_fsm_stateA = ST)
V (new_S_fsm_stateA = SSTOP) V (new_S_fsm_stateA = SO))) in

let ss3 = (ALTER ss2 (3) ((new_S_fsm_stateA = SRA) V (new_S_fsm_stateA = SPF)
V (new_S_fsm_stateA = ST) V (new_S_fsm_stateA = SCi1I)
V (new_S_fsm_state A = SCS) V (new_S_fsm_stateA = SN)
V (new_S_fsm_stateA = SO))) in

let S_state =ss3 in

let Reset_cport = new_S_fsm_srcp in

let Disable_int = (~new_S_instart A ~(new_S_fsm_sn A (ELEMENT s_delay_out (6))) Apew_S_fsm_sdi) in

let Reset_piu = new_S_fsm_stp in

let Reset_cpu0 = new_S_reset_cpu0 in

let Reset_cpul = new_S_reset_cpul in

let Cpu_hist = new_S_cpu_hist in

let Piu_fail = new_S_piu_fail in

let CpuO_fail = new_S_cpu0_fail in

let Cpul_fail = new_S_cpul_fail in

let Pmm_fail = new_S_pmm_fail in

(S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist, Piu_fail, Cpu0_fail,
Cpul_fail, Pmm_fail)”
)

close_theory();;

181

Appendix D ML Source for the Clock-Level Specification of the PIU Ports.

This appendix contains the HOL models for the clock-level specification for the PIU ports. The ports
are listed in the order: P_Port, M_Port, R_Port, C_Port, and SU_Cont.

D.1 P Port Specification

&

File: p_clockl.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the clock-level specification of the P-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of ldaho.

set_search_path (search_path() @ [‘/bome/titan3/dfura/ftep/piu/hol/lib/*]);;
system ‘rm p_clock!.th*;;

new_theory ‘p_clockl‘;;

map new_parent { ‘paux_def";‘aux_def"; ‘array_def*;'wordn_def*];;

let pc_state_ty = “:(wordn#boolwordn#bool#pfsm_ty#bool#bool#bool#boolitbooli#wordn#bool#bool#bool#bool#bool)’;;
let pc_state = “((P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,

P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_)
Apc_state_ty)”s;;

let pc_env_ty = “:(boolbool#bool#wordn#bool#bool#wordn#bool#bool#wordni#tbool¥bool#bool)”;;
let pc_env = “((ClkA, CIkB, Rst, L_ad_in, L_ads_,L_den_,L_be_,L_wr, L_lock_,]_ad_in,I_cgnt_, I bold_, I srdy_)
Apc_env_ty)"::

let pc_out_ty = *:(wordn#bool#wordn#wordn#wordn#bool#bool#booli#boobool#bool#bool#bool)”;;

let pc_out = “((L_ad_out, L_ready_, I_ad_data_out, I_ad_addr_out, _be_,I_rale , I_male ,I_crqt_, I cale_,
Lmrdy_,I_last_,I_hlda_, I_lock_)
Apc_out_ty)"s;

o,
0

Next-state definition for EXEC instruction.

let pEXEC_inst_def = new_definition
(‘pEXEC_inst",
“1 (P_fsm_state :pfsm_ty)
(P_addr P_be_ P_size :wordn)

(P_destl P_wr P_fsm_rst P_fsm_sack P_fsm_cgnt_P_fsm_hold_ P_rqt P_down P_lock_

182

P_lock_inh_ P_male_ P_rale_ :bool)
(L_ad_in L_be_I_ad_in:wordn)
(CIKA CIkB Rst L _ads_L_den_L_wr L_lock_I_cgnt_I_hold_I_srdy_:bool).

pEXEC_inst (P_addr, P_dest!, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,
P_1qt, P_size, P_down, P_lock , P_lock_inh_, P_male_, P_rale_)
(CIKA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_,L_wr, L_lock_, I_ad_in, I_cgnt_, I_hold_,
Lsidy_)=

let new_P_fsm_state =
((P_fsm_rst) =>PA |
((P_fsm_state = PH) => ((~P_fsm_bold_) =>PH | PA) |
((P_fsm_state = PA) =>
(((P_rqt A ~P_destl) V (P_rqt A P_destl A ~P_fsm_cgnt_))=>PDI|
((~P_fsm_hold_AP_lock) =>PHIPA))I
((P_fsm_state = PD) =>
((P_fsm_sack A P_fsm_hold_)V (P_fsm_sack A~P_fsm_hold_A ~P_lock))=>PA |
((P_fsm_sack A ~P_fsm_bhold_AP_lock) => PHIPD))!| P_ILL)))) in
let new_P_addr = ((~P_rqt) => (SUBARRAY L_ad_in (25,0)) | P_addr) ip
let new_P_dest] = ((~P_rqt) => (ELEMENT L_ad_in (31)) | P_destl) in
let new_P_be_ = ((~P_rgt)=>L_be_IP_be_)in
let new_P_wr = ((~P_rqt) => L_wr | P_wr) in
let new_P_size =
((~P_rqt) => (SUBARRAY L_ad_in (1,0))!
((P_down) => (DECN 1 P_size)! P_size)) in
let p_ale = (~L_ads_AL_den_)in
let p_sack = ((P_size = ((P_down) => (WORDN 1) | (WORDN O)) A ~I_srdy_A (new_P_fsm_state = PD)) in
let new_P_1qt =
((p_ale A ~(p_sack VRst)) => T |
((~p_ale A (p_sack VRst)) => F |
((~p_ale A ~(p_sack V Rst)) => P_rqt | ARB))) in
let new_P_down = (~I_srdy_ A (new_P_fsm_state = PD)) in
let new_P_male_ = ((new_P_fsm_state = PA) =>
~(~new_P_destl A (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A new_P_rqt) | P_male_) in
let new_P_rale_ = ((new_P_fsm_state = PA) =>
~(~new_P_destl A (SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A new_P_rqt) | P_rale_) in
let new_P_lock_ =
((Rst)=>T|
((new_P_fsm_state = PD) => L _lock_| P_lock_))in
let new_P_lock_inh_ =
((Rst)y=>T |
((~new_P_male_V ~new_P _rale_)=>L_lock_| P_lock_inh_)) in
let new_P_fsm_rst =Rstin
let new_P_fsm_sack = p_sack in
let new_P_fsm_cgnt_=1_cgnt_in
let new_P_fsm_hold_=1_hold_in

—_ v

new_P_fsm_cgnt_, new_P_fsm_hold_, new_P_rqt, new_P_size, new_P_down, new_P_lock_, new_P_lock_inh_,
new_P_male_, new_P_rale_)”

%

(new_P_addr, new_P_destl, new_P_be new_P_wr, new_P_fsm_state, new_P_fsm_rst, new_P_fsm_sack,

70

Output definition for EXEC instruction.

183

let pEXEC_out_def = new_definition
(‘pEXEC_out',
“! (P_fsm_state :pfsm_ty)
(P_addr P_be_ P_size :wordn)
(P_destl P_wr P_fsm_rst P_fsm_sack P_fsm_cgnt_ P_fsm_hold_ P_rqt P_down P_lock_
P_lock_inh_ P_male_ P_rale_ :bool)
(L_ad_in L_be_ I_ad_in:wordn)
(CIkA CIkB Rst L_ads_ [._den_ L_wr L_lock_ I_cgnt_I_hold_1I_srdy_ :bool) .
pPEXEC_out (P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,
P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male , P_rale_)
(CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_, L_wr, L_lock_, I_ad_in, I cgnt_, I_hold_,

ILsrdy)= o

let new_P_fsm_state =
((P_fsm_rst) =>PA |
((P_fsm_state = PH) => ((~P_fsm_hold_) => PH { PA) |
((P_fsm_state = PA) =>
(((P_rqt A ~P_dest1) V (P_rqt A P_destl A ~P_fsm_cgnt_)) =>PD/|
((~P_fsm_hold_ AP_lock_)=>PH I PA))|
((P_fsm_state = PD) =>
(((P_fsm_sack A P_fsm_hold_) V (P_fsm_sack A ~P_fsm_hold_A ~P_lock_)) =>PA |
((P_fsm_sack \ ~P_fsm_hold_AP_lock_)=>PH|PD))IP_ILL)))) in
let new_P_addr = ((~P_zqt) => (SUBARRAY L_ad_in (25,0)) | P_addr) in
let new_P_dest] = ((~P_rqt) => (ELEMENT L_ad_in (31)) | P_destl) in
letnew_P_be_= ((~P_rqt) =>L_be_1P _be_)in
let new_P_wr = ((~P_rqt)=>L_wr | P_wr) in
let new_P_size =
((~P_rqt) = (SUBARRAY L _ad_in (1,0)) |
((P_down) => (DECN 1 P_size) | P_size)) in
let p_ale = (~L_ads_AL_den_)in
let p_sack = ((new_P_size = ((P_down) => (WORDN 1) | (WORDN 0))) A ~I_srdy_ A (new_P_fsm_state = PD)) in
letnew_P_mqt=
((p_ale A ~(p_sack VRst)) =>T |
((~p_ale A (p_sack VRst)) => F1
((~p_ale A ~(p_sack VV Rst)) => P_rqt | ARB))) in
let new_P_down = (~I_srdy_ A (new_P_fsm_state = PD)) in
let new_P_male_ = ((new_P_fsm_state = PA) =>
~(~new_P_destl A\ (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A new_P_rqt) | P_male_) in
let new_P_rale_ = ((new_P_fsm_state = PA) =>
~(~pew_P_dest] A ((SUBARRAY new_P_addr (25,24)) = (WORDN 3)) Anew_P_rqt) | P_rale_) in
let new_P_lock_ =
((Rst)=>T]|
((new_P_fsm_state = PD)=> L _lock_1P_lock_)) in
let new_P_lock_inh_ =
((Rst)=>T|
((~new_P_male_V ~new_P_rale_) => L_lock_ | P_lock_inh_)) in
let new_P_fsm_rst = Rst in
let new_P_fsm_sack = p_sack in
let new_P_fsm_cgnt_=I_cgnt_in
let new_P_fsm_hold_ =I_hold_ in
let L_ad_out = (((~(new_P_fsm_state = PA))
A (~(new_P_fsm_state = PH))

184

A ~((new_P_fsm_state = PD) A new_P_wr)) => I_ad_in1 ARBN) in
let L_ready_ = ~(~L_srdy_A (new_P_fsm_state = PD)) in
let odO = ARBN in
let odl = (MALTER 0d0 (31,27) new_P_be_) in
let od2 = (ALTER od1 (26) F) in
let od3 = (MALTER o0d2 (25,24) (SUBARRAY pew_P_addr (1,0))) in
let od4 = (MALTER o0d3 (23,0) (SUBARRAY new_P_addr (25,2))) in
let I_ad_addr_out = ((new_P_fsm_state = PA) => od4 | ARBN) in
let I_ad_data_out = (((new_P_fsm_state = PD) Anew_P_wr) =>L_ad_in | ARBN) in
let I_be_ = ((~(new_P_fsm_state = PH)) => ((new_P_fsm_state = PA) => new_P_be_|L_be_)| ARBN) in
let I_rale_ = ((~(new_P_fsm_state = PH)) =>
~(~new_P_dest1 A (SUBARRAY pew_P_addr (25,24)) = (WORDN 3)) A (new_P_fsm_state = PA)
Anew_P_rqt) | ARB) in
let I_male_ = ((~(new_P_fsm_state = PH)) =>
~(~new_P_dest] A (<((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A (new_P_fsm_state = PA)
Anew_P_rqt) | ARB) in
let I_crqt_ = ~(new_P_destl A new_P_rqt) in
let I_cale_= ~(~I_cgnt_A (new_P_fsm_state = PA)A I hold)in
let I_mrdy_ = ((~(new_P_fsm_state = PH)) =>F | ARB)in
let I_last_ = ((~(new_P_fsm_state = PH)) => (P_size = ((P_down) => (WORDN 1) | (WORDN 0))) | ARB) in
let I_hida_= ~(new_P_fsm_state = PH) in
let I_lock_ = ~(~new_P_lock_A new_P_lock_inh_) in

(L_ad_out, L_ready_, I_ad_data_out, 1_ad_addr_out,I_be_, I_rale_,I_male_, I_crqt_, I_cale_, I_mrdy_,
Ilast_, 1 hlda_, I_lock_)”
%

close_theory();;

185

D.2 M Port Specification

R

File: m_clock]l.ml

Author: (c) D.A. Fura 1992

Date: 31 March 1992

This file contains the ml source for the clock-level specification of the M-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.

The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

set_search_path (search_path() @ [‘/bome/titan3/dfura/ftep/piw/hol/lib/*]};;
system ‘rm m_clockl.th*;;

new_theory ‘m_clockl*;;

loadf ‘abstract’;;

map new_parent | ‘maux_def"; aux_def";‘array_def*;‘'wordn_def*];;

let mc_state_ty = “:(mfsm_ty#bool#bool#bool#bool¥wordn#bool#bool#wordn¥wordn#bool#boolitbool#wordn#wordn)”’;;
let mc_state = “((M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
:Amc_state_ty)”;;

let mc_env_ty = “:(bool#bool#bool#bool#boo#wordn#bool#bool#wordn#tbool#wordn#bool#bool)”;;
let mc_env = “((ClkA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I_last_, I_be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
Amc_env_ty)";;

let mc_out_ty = “:(wordn#boo¥wordn#wordn#bool#bool#bool#bool#bool)”’;;
let mc_out = “((I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_, MB_parity)
:Amc_out_ty)”;;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

%

Next-state definition for EXEC instruction.

let mEXEC_inst_def = new_definition
(‘mEXEC_inst,
“! (M_fsm_state :mfsm_ty)
(M_count M_addr M_be M_rd_data M_detect :wordn)
(M_fsm_male_ M_fsm_last_ M_fsm_mrdy_ M_fsm_rst M_se M_wr M_rdy M_wwdel M_parity :bool)
(I_ad_in I_be_ MB_data_in :wordn)

186

(CIkA CIkB Rst Disable_eeprom Disable_writes I_male_I_last_1_mrdy_ Edac_en_ Reset_parity :bool)
(rep:~rep_ty) .
mEXEC_inst (M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
(CIKA, CIkB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I last_, I _be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)
rep=

let m_bw = ((~(M_be = (WORDN 15))) AM_wr A (~(M_fsm_state = MI))) in
let m_ww = ((M_be = (WORDN 15)) A M_wr A (~(M_fsm_state = MD)) in
let new_M_fsm_state =
(M_fsm_rst) => MI |
((M_fsm_state = MI) => ((~M_fsm_male_) =>MA IM])|
((M_fsm_state = MA) =>
(~M_fsm_mrdy_ A m_ww) => MW |
((~-M_fsm_mrdy_ A ((~M_wr A (~(M_fsm_state = MI))} Vm_bw)) => MR [MA)}
((M_fsm_state = MR) =>
((m_bw A\ (M_count = (WORDN 0))) => MBW |
((M_fsm_last_ A ~M_wr A (~(M_fsm_state = MI)) A (M_count = (WORDN 0)))=>MA |
((~M_fsm_last_ A ~M_wr N (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MRR IMR))} |
((M_fsm_state = MRR) => MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ A (M_count = (WORDN 0))) =>MI |
((M_fsm_last_ A (M_count = (WORDN 0))) => MA 1MW} |
((M_fsm_state = MBW) => MW | M_ILL))))))) in
let new_M_se = ((~I_male_) => (ELEMENT I_ad_in (23)) | M_se) in
let new_M_wr = ((~I_male_) => (ELEMENT I_ad_in (27)) IM_wr) in
let new_M_addr =
((-I_male_) => (SUBARRAY I_ad_in (18,0))
((M_rdy) => (INCN 18 M_addr) | M_addr)) in
let new_M_count =
(((new_M_fsm_state = MA) V (new_M_fsm_state = MBW)) => ((new_M_se) => (WORDN 1) | (WORDN 2)) |
(((new_M_fsm_state = MW) V (new_M_fsm_state = MR)) => (DECN 2 M_count) | M_count)) in
let m_rdy = (((new_M_fsm_state = MW) A (new_M_count = (WORDN 0)))
V ((new_M_fsm_state = MR) A (new_M_count = (WORDN 0)) A ~new_M_wr)) in
let m_srdy_ = ~((M_rdy A ~new_M_wr) V (m_rdy A\ new_M_wr)) in
let new_M_be = ((~I_male_V ~m_srdy_) => (NOTN 3 I_be_) | M_be) in
let new_M_rdy = m_rdy in
let new_M_wwdel = ((new_M_fsm_state = MA) A new_M_wr A (new_M_be = (WORDN 15))) in
let new_M_rd_data = (((new_M_fsm_state = MR)) => (Ham_Dec rep MB_data_in) | M_rd_data) in
let new_M_detect =
((((new_M_fsm_state = MR) A ~new_M_wr) V new_M_wr VV (new_M_fsm_state = MI)) =>
((~Edac_en_) => (Ham_Det1 rep MB_data_in) | WORDN 0) | M_detect) in
let m_error = (~m_srdy_ A (~(new_M_fsm_state = MI)) A Ham_Det2 rep (new_M_detect, ~Edac_en_)) in
let new_M_parity =
((m_error A ~(Rst V Reset_parity)) => T |
((~m_error A\ (Rst V Reset_parity))=>F |
((~m_error A\ ~(Rst V Reset_parity)) => M_parity | ARB))) in
let new_M_fsm_male_=I_male_in
let new_M_fsm_last_ =1_last_in
let new_M_fsm_mrdy_=1_mrdy_in
let new_M_fsm_rst = Rst in

(new_M_fsm_state, new_M_fsm_male_, new_M_fsm_last_, new_M_fsm_mrdy_, new_M_fsm_rst, new_M_count,

187

a3

pew_M_se, new_M_wr, new_M_addr, new_M_be, new_M_rdy, new_M_wwdel, new_M_parity, new_M_rd_data,
new_M_detect)”
¥

Output definition for EXEC instruction.

let mEXEC_out_def = new_definition
(‘mEXEC_out‘,

“1 (M_fsm_state :mfsm_ty)

(M_count M_addr M_be M_rd_data M_detect :wordan)

(M_fsm_male_ M_fsm_last_ M_fsm_mrdy_M_fsm_rst M_se M_wr M_rdy M_wwdel M _parity :bool)

(I_ad_in I_be_ MB_data_in :wordn)

(CIKA CIkB Rst Disable_eeprom Disable_writes I_male_I_last_]_mrdy_ Edac_en_Reset _parity :bool)

(rep:Prep_ty) .

mEXEC_out (M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wrz, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect)
(CIKA, CIKB, Rst, Disable_eeprom, Disable_writes, I_ad_in, I_male_, I_last , 1 be_,
I_mrdy_, MB_data_in, Edac_en_, Reset_parity)

rep =

let m_bw = ((~(M_be = (WORDN 15))) A M_wr A (~(M_fsm_state = MI))) in
let m_ww = ((M_be = (WORDN 15)) A M_wr A (~(M_fsm_state = MI))) in
let new_M_fsm_state =
((M_fsm_rst) => M1 |
((M_fsm_state = MI) => ((~M_fsm_male_) => MA IMI)!
((M_fsm_state = MA) =>
((~M_fsm_mrdy_ Am_ww) =>MW |
((~M_fsm_mrdy_ A ((~M_wr A (~(M_fsm_state = MI))) Vm_bw)) => MR | MA)) |
((M_fsm_state = MR) =>
((m_bw A (M_count = (WORDN 0))) => MBW |
((M_fsm_last_ A ~M_wr A (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MA |
((~M_fsm_last_ A ~M_wr A (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MRR | MR))) |
((M_fsm_state = MRR) => MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ A (M_count = (WORDN 0))) => MI |
((M_fsm_last_ A (M_count = (WORDN 0))) => MA | MW)) |
((M_fsm_state = MBW) => MW | M_ILL))))))) in
let new_M_se = ((~]_male_) => (ELEMENT I_ad_in (23)) { M_se) in
let new_M_wr = ((~I_male_) => (ELEMENT I_ad_in (27)) | M_wr) in
let new_M_addr=
((~]_male_) => (SUBARRAY I_ad_in (18,0))!
((M_rdy) => (INCN 18 M_addr) | M_addr)) in
et new_M_count =
(((new_M_fsm_state = MA) V (new_M_fsm_state = MBW)) => ((new_M_se) => (WORDN 1) | (WORDN 2)) |
(((new_M_fsm_state = MW) V (new_M_fsm_state = MR)) => (DECN 2 M_count) | M_count)) in
let m_rdy = (((new_M_fsm_state = MW) A (new_M_count = (WORDN 0)))
V ((new_M_fsm_state = MR) A (new_M_count = (WORDN 0)) A ~new_M_wr)) in
let m_srdy_ = ~((M_rdy A ~new_M_wr) V (m_rdy A new_M_wr)) in
let pew_M_be = ((~I_male_ V ~m_srdy_) => (NOTN 3 I_be_) | M_be) in
let new_M_rdy =m_rdy in
let new_M_wwdel = ((new_M_fsm_state = MA) A new_M_wr A (new_M_be = (WORDN 15))) in
let new_M_rd_data = (((new_M_fsm_state = MR)) => (Ham_Dec rep MB_data_in) | M_rd_data) in

188

let new_M_detect =
((((new_M_fsm_state = MR) A ~new_M_wr) V new_M_wr V (new_M_fsm_state = MI)) =>
((~Edac_en_) => (Ham_Detl rep MB_data_in) | WORDN 0) | M_detect) in
let m_error = (~m_srdy_ N\ (~(new_M_fsm_state = MI)) A Ham_Det2 rep (new_M_detect, ~Edac_en_)) in
let new_M_parity =
((m_error A ~(Rst V Reset_parity)) => T |
((~m_error N\ (Rst V Reset_parity)) =>F |
((~m_error A ~(Rst V Reset_parity)) => M_parity | ARB))) in
let new_M_fsm_male_= I_male_in
let new_M_fsm_last_ =1_last_in
let new_M_fsm_mrdy_ = [_mrdy_ in
let new_M_fsm_rst = Rst in
let I_ad_out = ((~new_M_wr A (~(new_M_fsm_state = MI))) => M_rd_data | ARBN) in
let I_srdy_ = (((~(new_M_fsm_state = MI))) =>m_srdy_| ARB)in
let MB_addr = ((M_rdy) => (INCN 18 M_addr) | M_addr) in
let mb_data_7_0 = ((ELEMENT M_be (0))) => (SUBARRAY I_ad_in (7.0)) | (SUBARRAY M_rd_data (7,0))) in
let mb_data_15_8 = (ELEMENT M_be (1))) => (SUBARRAY 1_ad_in (15,8)) | (SUBARRAY M_rd_data (15,8))) in
let mb_data_23_16 = ((ELEMENT M_be (2))) => (SUBARRAY [_ad_in (23,16)) | (SUBARRAY M_rd_data (23,16))) in
let mb_data_31_24 = ((ELEMENT M_be (3))) => (SUBARRAY I_ad_in (31,24)) | (SUBARRAY M_rd_data (31,24))) in
let mb_data = ((MALTER (MALTER (MALTER (MALTER ARBN (7,0) mb_data_7_0)
(15,8) mb_data_15_8)
(23,16) mb_data_23_16)
(31,24) mb_data_31_24)) in
let MB_data_out = ((new_M_fsm_state = MW) => (Ham_Enc rep mb_data) | ARBN) in
let MB_cs_eeprom_ = ~((~(new_M_fsm_state = MI)) A ~pew_M_se) in
let MB_cs_sram_ = ~((~(new_M_fsm_state = MI)) A new_M_se) in
let MB_we_ = ~((new_M_se V ~(~(new_M_fsm_state = MI)) V ~Disable_eeprom)
N ~Disable_writes
A ((new_M_fsm_state = MBW) V (new_M_fsm_state = MW)V new_M_wwdel)) in
let MB_oe_ = ~((~new_M_wr A (new_M_fsm_state = MA)) V (new _M_fsm_state = MR)) in
let MB_parity = new_M_parity in

(I_ad_out, I_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_, MB_parity)"
b

close_theory();;

189

D.3 R Port Specification

S
%
File: r_clockl.ml
Author: (¢) D.A. Fura 1992
Date: 31 March 1992
This file contains the ml source for the clock-level specification of the R-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.
%

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piw/hol/lib/']);;

system ‘rm r_clock1.th;;

new_theory ‘r_clockl’;;

loadf ‘abstract‘;;

map new_parent [‘raux_def";‘aux_def";‘array_def"; ‘wordn_def*];;

Jet rc_state_ty = “:(rfsm_ty#bool¥bool#bool#booi#bool#wordn¥bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool# ~
wordn#bool#wordn#bool#wordn#bool#wordn#tbool#wordn#bool#wordn#bool#wordn#boolé#wordn#bool#
wordn#bool#wordn#bool#wordn#bool¥boolwordn#wordn#bool#wordn#wordn#bool#wordn#boowordn#
bool#bool#bool#boolbool#bool#bool#booli#bool#bool#wordn#wordn)”;;

let rc_state = “((R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_ctr0,

R_ctr0_irden, R_ctrO_new, R_ctrO_cry, R_ctr0_out, R_ctrO_orden, R_ctrl_in, R_ctrl_mux_sel,
R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry, R_ctr]_out, R_ctrl_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_ccr_rden, R_ger, R_ger_rden, R_sr, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_intl_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch)

Aro_state_ty)”s;

let rc_env_ty = *:(bool#bool#wordu#bool#bool#wordn#bool#bool#bool#wordn#wordn#bool#bool#

wordn#wordn#wordn#boo#bool#wordn)”;;

let rc_env = “((ClkA, Rst, I_ad_in, I_rale_, I_last_, I_be_, I_mrdy_, Disable_int, Disable_writes,

Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChaonelID, CB_parity, MB_parity, C_ss)
Arc_env_ty)”s;
let r_out_ty = “:(wordn#bool#bool#bool#boo#bool#wordn#wordn#bool#bool)”;;
let r_out = “((I_ad_out, I_srdy_, IntO_, Int], Int2, Int3_, Ccr, Led, Reset_error, Pmm_invalid)
A1_out_ty)”;;

let rep_ty = abstract_type ‘aux_def* ‘Andn*;;

o,

190

%
7o

Next-state definition for EXEC instruction.

let rEXEC_inst_def = new_definition
(‘TEXEC_inst’,
1 (rep :“rep_ty)
(R_fsm_state :rfsm_ty)
(R_ctr0_in R_ctrO R_ctr0_new R_ctrO_out R_ctrl_in R_ctr] R_ctr]_pew R_ctrl_out R_ctr2_in R_ctr2 R_ctr2_new
R_ctr2_out R_ctr3_in R_ctr3 R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr R_cer R_ger R_st R _reg_sel
R_busA_latch :wordn)
(R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_R_fsm_rst R_ctrO_mux_sel R_ctr0_irden R_ctrO_cry R_ctrO_orden
R_ctr]_mux_sel
R_ctrl_irden R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R _ger_rden R_sr_rden R_int0_dis
R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_catlatch_del R_srdy_del_ :bool)
(I_ad_in I_be_ Cpu_fail Reset_cpu S_state Id ChannellD C_ss :wordn)
(CIkA Rst I_rale_1_last_I_mrdy_ Disable_int Disable_writes Piu_fail Pmm_fail CB_parity MB _parity :bool) .
rEXEC_inst rep
(R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctr0_in, R_ctr0_mux_sel, R_ctr0,
R_ctrO_irden, R_ctrO_new, R_ctr0_cry, R_ctr0_out, R_ctrO_orden, R_ctrl_in, R_ctrl_mux_sel,
R_ctrl, R_ctr]_irden, R_ctrl_new, R_ctri_cry, R_cirl_out, R_ctr]_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cty, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_cer, R_cer_rden, R_ger, R_ger_rden, R_st, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_intl_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch)
(CIKA, Rst, I_ad_in, I_rale_, I last_, 1_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannelID, CB_parity, MB_parity, C_ss) =

let new_R_fsm_state =

((R_fsm_rst) =>RI|

((R_fsm_state = RI) => ((~-R_fsm_ale_) =>RA | RDI

((R_fsm_state = RA) => ((~R_fsm_mrdy_) => RDIRA)I

((~R_fsm_last_) => RI1RA)))) in

let r_fsm_cntlatch = (R_fsm_state = RI) A ~R_fsm_ale_)in
let r_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in
let new_R_wr = ((~I_rale_) => (ELEMENT I_ad_in @27) IR_wr) in
let new_R_cntlatch_del = r_fsm_cntlatch in
let new_R_srdy_del_=1_fsm_srdy_in
let new_R_reg_sel =

((~L_rale_) => (SUBARRAY I_ad_in (3,0)) |

((~R_srdy_del_) => (INCN 3 R _reg_sel) IR _reg_sel)) in
let r_reg_sel = ((~R_srdy_del_) => (INCN 3 R_reg_sel) | R_reg_sel) in
let r_writeA = (~Disable_writes AR_wr /A (new_R_fsm_state = RD)) in
let r_writeB = (~Disable_writes A new_R_wr A (new_R_fsm_state = RD)) in
let r_readA = (~R_wr A (new_R_fsm_state = RA)) in
let r_readB = (~new_R_wr A (new_R_fsm_state = RA))in
let r_cir_wrO1 A = ((r_writeA A ((r_reg_sel = (W ORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wrO1B = ((r_writeB A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wr23A = ((r_writeA N\ ((1_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11)))) in
let r_cir_wr23B = ((r_writeB A ((r_reg_sel = (W ORDN 10)) V (1_reg_sel = (WORDN 11)))) in
let new_R_ccr = ((r_writeB A (r_reg_sel = (WORDN 3)))=>1_ad_in | R_ccr) in
let new_R_cer_rden = (r_readB A (r_reg_sel = (WORDN 3))) in

191

let new_R_ger = ((r_writeB A (r_reg_sel = (WORDN 2))) => I_ad_in | R_gcr) in
let new_R_gcr_rden = (r_readB A (r_reg_sel = (WORDN 2))) in
let npew_R_c01_cout_del = R_ctrl_cry in
let new_R_intl_en=
((((ELEMENT new_R_ger (18)) A (r_cir_wrO1B V (R_ctrl_cry A (ELEMENT new_R_gcr (16))))) A
~(~(ELEMENT gew_R_gcr (18)) V (ELEMENT pew_R_gcr (17)) AR_c01_cout_del))) =>T |
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01B V (R_ctrl_cry A (ELEMENT new_R_ger (16))))) A
(~(ELEMENT new_R_gcr (18)) V (ELEMENT new_R_gcr (17)) AR_c01_cout_del))) => F |
((~((ELEMENT new_R_gcr (18)) A (1_cir_wr01B V (R_ctr]_cry A (ELEMENT new_R_gcr (16)))) A
~(~(ELEMENT pew_R_gcr (18)) V (ELEMENT new_R_gcr (17)) A R_c01_cout_del))) => R_intl_en | ARB))) in
let new_R_c23_cout_del = R_ctr3_cry in
let new_R_int2 en=
((((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_ger (200)))) A
~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_gcr (21)) A R_c23_cout_del))) =>T|
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr (20))) A
(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_gcr (21)) AR_c23_cout_del))) => F |
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_ger 20)) A
~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_gcr (21)) A R_c23_cout_del))) => R_int2_en | ARB))) in
let new_R_ctrO_in = ((r_writeB A (1_reg_sel = (WORDN 8))) => I_ad_in | R_ctrO_in) in
let new_R_ctr0_mux_sel = (r_cir_wr01B V ((ELEMENT new_R_gcr (16)) AR_ctrl_cry)) in
let new_R_ctrO_irden = (r_readB A (r_reg_sel = (WORDN 8))) in
let new_R_ctrO = ((R_ctrO_mux_sel) => R_ctrO_in | R_ctrO_new) in
let new_R_ctrO_new = (((ELEMENT new_R_gcr (19))) => (INCN 31 R_ctr0) | R_ctr0) in
let new_R_ctrO_cry = ((ONES 31 R_ctr0) A (BLEMENT new_R_gcr (19))) in
let new_R_ctrO_out = ((r_fsm_cntlatch) => R_ctrO_new | R_ctrO_out) in
let new_R_ctrO_orden = (r_readB A (r_reg_sel = (WORDN 12))) in
let new_R_ctrl_in = ((r_writeB A (r_reg_sel = (WORDN 9))) =>I_ad_in | R_ctrl_in) in
let new_R_ctrl_mux_sel = (1_cir_wr01B V ((ELEMENT new_R_gcr (16)) A R_ctrl_cry)) in
let pew_R_ctrl_irden = (r_readB A (r_reg_sel = (WORDN 9))) in
let new_R_ctrl = ((R_ctrl_mux_sel) => R_ctrl_in | R_ctrl_pew) in
let new_R_ctrl_new = ((R_ctrO_cry) => (INCN 31 R_ctr1) | R_ctrl) in
let new_R_ctrl_cry = ((ONES 31 R_ctr1) AR_ctrQO_cry) in
let new_R_ctrl_out = ((R_cntlatch_del) => R_ctr]l_new | R_ctrl_out) in
let new_R_ctr]_orden = (r_readB A (r_reg_sel = (WORDN 13))) in
let new_R_ctr2_in = ({(r_writeB A (r_reg_sel = (WORDN 10))) =>I_ad_in | R_ctr2_in) in
let new_R_ctr2_mux_sel = ((r_cir_wr23B V (ELEMENT new_R_gcr (20)) AR_ctr3_cry))) in
let new_R_ctr2_irden = (r_readB A (r_reg_sel = (WORDN 10))) in
let new_R_ctr2 = ((R_ctr2_mux_sel) => R_ctr2_in | R_ctr2_pew) in
let new_R_ctr2_new = (((ELEMENT new_R_gcr (23))) => (INCN 31 R_ctr2) | R_ctr2) in
let new_R_ctr2_cry = ((ONES 31 R_ctr2) A (ELEMENT new_R_gcr (23))) in
let new_R_ctr2_out = ((r_fsm_cntlatch) => R_ctr2_new | R_ctr2_out) in
let new_R_ctr2_orden = (r_readB A (r_reg_sel = (WORDN 14))) in
let new_R_ctr3_in = ((r_writeB A (r_reg_sel = (WORDN 11))) =>I_ad_in | R_ctr3_in) in
let new_R_ctr3_mux_sel = ((r_cir_wr23B V ((ELEMENT pew_R_gcr (20)) AR_ctr3_cry))) in
let new_R_ctr3_irden = (r_readB A (r_reg_sel = (WORDN 11))) in
let new_R_ctr3 = ((R_ctr3_mux_sel) => R_ctr3_in | R_ctx3_new) in
let new_R_ctr3_new = ((R_ctr2_cry) => (INCN 31 R_ctr3) I R_ctr3) in
let new_R_ctr3_cry = ((ONES 31 R_ctr3) AR_ctr3_cry) in
let new_R_ctr3_out = ((R_cntlatch_del) => R_ctr3_new | R_ctr3_out) in
let new_R_ctr3_orden = (r_readB A (r_reg_sel = (WORDN 15))) in
let new_R_icr_load = (r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let new_R_icr_old =
((r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => R_icr | R_icr_old) in
let new_R_icr_mask =

192

((r_writeB A ((r_reg_sel = (WORDN 0)} V (r_reg_sel = (WORDN 1)))) => I_ad_in | R_icr_mask) in
let new_R_icr =
((R_icr_load) =>
((~(r_reg_sel = (WORDN 1))) => (Andn rep (R_icr_old, R_icr_mask)) | (Om rep (R_jcr_old, R_icr_mask))) |
R_icr) in
let new_R_icr_rden = ((new_R_fsm_state =RA)A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let sr28 = (ALTER ARBN (28) MB_parity) in
let sr28_25 = (MALTER sr28 (27,25) C_ss) in
let 5128_24 = (ALTER 5r28_25 (24) CB_parity) in
let sr28_22 = (MALTER s128_24 (23,22) ChannellD) in
let sr28_16 = (MALTER 5128_22 (21,16) Id) in
let sr28_12 = (MALTER sr28_16 (15,12) S_state) in
Jet s28_9 = (ALTER sr28_12 (9) Pmm_fail) in
let 5728_8 = (ALTER 5r28_9 (8) Piu_fail) in
let sr28_2 = (MALTER sr28_8 (3,2) Reset_cpu) in
let 5128_0 = (MALTER 5r28_2 (1,0) Cpu_fail) in
let new_R_sr = ((r_fsm_cntlatch) => sr28_O | R_sr) in
Jet new_R_st_rden = (r_readB A (r_reg_sel = (WORDN 4))) in
let r_int0_en = (((ELEMENT R_icr (0)) A (ELEMENT R_ier 8))V
((ELEMENT R _icr (1)) A (ELEMENT R_icr) V
((ELEMENT R _icr (2)) A (ELEMENT R_icr (10))) v
((ELEMENT R_icr (3)) A (ELEMENT R_ier (11))) \
((ELEMENT R_icr (4)) A (ELEMENT R_icr (12))) Vv
((ELEMENT R_icr (5)) A (ELEMENT R_icr (13))) \
((ELEMENT R _icr (6)) A (ELEMENT R_icr (14))) Vv
((ELEMENT R _icr (7)) A (ELEMENT R_icr (15)) in
let new_R_int0_dis = 1_int0_en in
let r_int3_en = (((ELEMENT R _icr (16)) A (ELEMENT R_icr (24)) V
((ELEMENT R_icr (17)) A (ELEMENT R_icr 25))V
((ELEMENT R_icr (18)) A (ELEMENT R_icr eV
((ELEMENT R _icr (19)) A (ELEMENT R_icr V1))
((ELEMENT R_icr (20)) A (ELEMENT R_icr (28))) V
((ELEMENT R _icr (21)) A (ELEMENT R_icr (29))) Y
((ELEMENT R _icr (22)) A (ELEMENT R _icr (30))) \Y
((ELEMENT R_icr (23)) A (ELEMENT R_icr 31)))) in
let new_R_int3_dis = r_int3_en in
let new_R_busA_latch =
((R_ctr0_irden) => R_ctr0_in |
((R_ctr0_orden) => R_ctr0_out |
((R_ctrl_irden) => R _ctrl_in |
((R_ctrl_orden) => R_ctrl_out 1
((R_ctr2_irden) => R _ctr2_in |
((R_ctr2_orden) => R_ctr2_out |
((R_ctr3_irden) => R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => new_R _icr |
((R_ccr_rden) => R_cer |
((R_ger_rden) => R_ger |
((R_sr_rden) => R_sr | ARB))))))))))) in
let new_R_fsm_ale_=1_rale_in
let new_R_fsm_mrdy_ = [_mrdy_in
let new_R_fsm_last_=1_last_in
let new_R_fsm_rst = Rst in

193

(new_R_fsm_state, new_R_fsm_ale_, new_R_fsm_mrdy_, new_R_fsm_last_, new_R_fsm_rst, new_R_ctrO_in,
new_R_ctrO_mux_sel, new_R_ctr0, new_R_ctrO_irden, new_R_ctrO_new, new_R_ctrO_cry, new_R_ctrO_out,
new_R_ctr0_orden, new_R_ctrl_in, new_R_ctrl_mux_sel, new_R_ctrl, new_R_ctrl_irden, new_R_ctrl_new,
new_R_ctr]l_cry,
new_R_ctr]_out, new_R_ctrl_orden, new_R_ctr2_in, new_R_ctr2_mux_sel, new_R_ctr2, new_R_ctr2_irden,
new_R_ctr2_new,
new_R_ctr2_cry, new_R_ctr2_out, new_R_ctr2_orden, new_R_ctr3_in, new_R_ctr3_mux_sel, new_R_ctr3,
new_R_ctr3_irden,
new_R_ctr3_new, new_R_ctr3_cry, new_R_ctr3_out, new_R_ctr3_orden, new_R_icr_load, new_R_icr_old,
new_R_icr_mask,
new_R_icr_rden, new_R_icr, new_R_ccr, new_R_cer_rden, new_R_gcr, new_R_ger_rden, new_R_sr, new_R_sr_rden,
new_R_int0_dis, new_R_int3_dis, new_R_c01_cout_del, new_R_intl_en, new_R_c23_cout_del, new_R_int2_en,
new_R_wr,

new_R_cntlatch_del, new_R_srdy_del_, new_R_reg sel, new_R_busA_latch)”

)

g,
o

Output definition for EXEC instruction.

let fEXEC_out_def = new_definition
(‘rEXEC_out',
“1 (rep :~rep_ty)

(R_fsm_state :rfsm_ty)

(R_ctrO_in R_ctrO R_ctrO_new R_ctrO_out R_ctrl_in R_ctr] R_ctrl_new R_ctr]l_out R_ctr2_in R_ctr2 R_ctr2_new
R_ctr2_out R_ctr3_in R_ctr3 R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr R_ccr R_gcr R_sr R_reg_sel
R_busA_latch :wordn)

(R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_ R_fsm_rst R_ctrO_mux_sel R_ctrO_irden R_ctrO_cry R_ctrO_orden
R_ctrl_mux_sel
R_ctrl_irden R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden R_ctr3_mux_sel
R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R_gcer_rden R_sr_rden R_intO_dis
R_int3_dis R_c0l_cout_del R_inti_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del R_srdy_del_ :bool)

(I_ad_in I_be_ Cpu_fail Reset_cpu S_state Id ChannelID C_ss :wordn)

(CIkA Rst I_rale_ I_last_I_mrdy_Disable_int Disable_writes Piu_fail Pmm_fail CB_parity MB_parity :bool) .

rEXEC_out rep

(R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctr0_in, R_ctrO_mux_sel, R_ctr0,
R_ctr0_irden, R_ctrO_pew, R_ctr0_cry, R_ctrO_out, R_ctrO_orden, R_ctrl_in, R_ctrl_mux_sel,
R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry, R_ctrl_out, R_ctrl_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_ccr_rden, R_gcr, R_ger_rden, R_sr, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_intl _en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch)

(CIkA,Rst, I_ad_in, I_rale_, I last_,I_be_, I_mrdy_, Disable_int, Disable_writes,
Cpu_fail, Reset_cpu, Piu_fail, Pmm_fail, S_state, Id, ChannellD, CB_parity, MB_parity, C_ss) =

let new_R_fsm_state =
((R_fsm_rst) => RI |
((R_fsm_state = RI) => ((~R_fsm_ale_) =>RA IRI}|
((R_fsm_state = RA) => ((~R_fsm_mrdy_)=>RD ! RA)|
((~R_fsm_last_) => RII RA)))) in
let r_fsm_cntiatch = ((R_fsm_state = RI) A ~R_fsm_ale_) in
letr_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in
let new_R_wr = ((~I_rale_) => (ELEMENT I_ad_in (27)) | R_wr) in

194

let new_R_cotlatch_del = r_fsm_cntlatch in
let new_R_srdy_del_=r_fsm_srdy_ in
let new_R_reg_sel =
((~I_rale_) => (SUBARRAY I_ad_in (3,0)) |
((~R_srdy_del_) => (INCN 3 R_reg_sel) | R_reg_sel)) in
let r_reg_sel = ((~R_srdy_del_) => (INCN 3 R_reg_sel) | R_reg_sel) in
let r_writeA = (~Disable_writes A R_wr A (new_R_fsm_state = RD)) in
let r_writeB = (~Disable_writes A new_R_wr A (new_R_fsm_state = RD)) in
let r_readA = (~R_wr A (new_R_fsm_state = RA)) in
let r_readB = (~new_R_wr A (new_R_fsm_state = RA)) in
let r_cir_wrO1A = ((r_writeA A ((r_reg_sel = (W ORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wr01B = ((r_writeB A ((r_reg_sel = (W ORDN 8)) V (r_reg_sel = (WORDN $))))) in
let r_cir_wr23A = ((r_writeA A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))))) in
let r_cir_wr23B = ((r_wniteB A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))))) in
let new_R_cer = ((r_writeB A (r_reg_sel = (WORDN 3))) => I ad_in IR _cer)in
let new_R_ccr_rden = (r_readB A (r_reg_sel= (W ORDN 3))) in
let new_R_ger = ((r_writeB A (r_reg_sel = (WORDN 2))) =>1_ad_in | R_ger) in
let new_R_gcr_rden = (r_readB A (1_reg_sel = (WORDN 2))) in
let new_R_c01_cout_del = R_ctrl_cry in
let pew_R_int]l_en=
((((ELEMENT new_R_gcr (18)) A (r_cir_wiO1B V (R_ctrl _cry A (ELEMENT new_R_ger (16))) A
~(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_gcr (17)) A R_c01_cout_del))) =>T|
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01B V (R_ctrl_cry A (ELEMENT new_R_ger (16))))) A
(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_ger (17)) A R_c01_cout_del})) =>F |
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01B V (R_ctrl_cry A (ELEMENT new_R_gcr (16))))) A
~(~(ELEMENT new_R_gcr (18)) V (ELEMENT new_R_ger (17)) AR_c01_cout_del))) => R_intl_en | ARB)))in
let new_R_c23_cout_del = R_ctr3_cry in
let new_R_int2_en=
((((BLEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr (20))))) A
~(~(ELEMENT new_R_ger (22)) V ((ELEMENT new_R_gcr (21)) A R_c23_cout_del))) => T |
((~((ELEMENT pew_R_ger (22)} A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr (20))) A
(~(ELEMENT new_R_ger (22)) V ((ELEMENT new_R_gcr 21)) A R_c23_cout_del))) =>F |
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_ger (20)))) A
~(~(ELEMENT new_R_gcr (22)) V ((ELEMENT new_R_ger (21)) A R_c23_cout_del))) => R_int2_en | ARB))) n
let new_R_ctr0O_in = ((r_writeB A (r_reg_sel = (W ORDN 8))) => I_ad_in | R_ctr0_in) in
let new_R_ctrO_mux_sel = (r_cir_wrO1B V ((ELEMENT new_R_gcr (16)) AR _ctrl_cry)) in
let new_R_ctr0_irden = (r_readB A (r_reg_sel= (WORDN 8))) in
let new_R_ctr0 = ((R_ctrO_mux_sel) => R_ctrO_in | R_ctrO_new) in
let new_R_ctrO_new = (((ELEMENT new_R_gcr (19))) => (INCN 31 R_ctr0) i R_ctr0) in
let new_R_ctr0_cry = ((ONES 31 R_ctrO) A (ELEMENT new_R_gcr (19))) in
let new_R_ctrO_out = ((r_fsm_cntlatch) => R_ctr0_new | R_ctr0_out) in
let new_R_ctrO_orden = (r_readB A (r_reg_sel = (WORDN 12))) in
let new_R_ctrl_in = ({r_writeB A (r_reg_sel = (WORDN 9})) => I_ad_inIR_ctrl_in)in
let new_R_ctrl_mux_sel = (r_cir_wrO1B V ((ELEMENT new_R_gcr (16)) A R_ctrl_cry)) in
let new_R_ctr]_irden = (r_readB A (r_reg_sel = (W ORDN 9))) in
let new_R_ctrl = (R_ctr]_mux_sel) =>R _ctrl_in| R_ctrl_new)in
let new_R_ctrl_new = ((R_ctr0_cry) => (INCN 31 R _ctrl) | R_ctrl) in
let new_R_ctrl_cry = ((ONES 31 R_ctr]) AR_ctr0_cry) in
let new_R_ctrl_out = ((R_catlatch_del) =>R_ctrl_new)| R_ctr]_out) in
let new_R_ctrl_orden = (r_readB A (r_reg_sel = (WORDN 13))) in
let new_R_ctr2_in = ((r_writeB A (r_reg_sel = (W ORDN 10))) =>I_ad_in | R_ctr2_in) in
let new_R_ctr2_mux_sel = ((r_cir_wr23B V ((ELEMENT new_R_ger 20)) A R_ctr3_cry))) in
let new_R_ctr2_irden = (r_readB A (r_reg_sel = (W ORDN 10))) in
let new_R_ctr2 = (R_ctr2_mux_sel) =>R_ctr2_in | R_ctr2_pew) in

195

let new_R_ctr2_new = (((ELEMENT new_R_gcr (23))) => (INCN 31 R_ctr2) | R_ctr2) in
let new_R_ctr2_cry = ((ONES 31 R_ctr2) A (ELEMENT new_R_gcr (23))) in
let new_R_ctr2_out = ((r_fsm_cntlatch) => R_ctr2_new | R_ctr2_out) in
let new_R_ctr2_orden = (r_readB A (r_reg_sel = (WORDN 14))) in
let new_R_ctr3_in = ((r_writeB A (r_reg_sel = (WORDN 11))) =>I_ad_in i R_ctr3_in) in
let new_R_ctr3_mux_sel = ((r_cir_wr23B V ((ELEMENT new_R_gcr (20)) AR_ctr3_cry))) in
let new_R_ctr3_irden = (r_readB A (r_reg_sel = (WORDN 11))) in
fet new_R_ctr3 = ((R_ctr3_mux_sel) => R_ctr3_in | R_ctr3_new) in
let new_R_ctr3_new = ((R_ctr2_cry) => (INCN 31 R_ctr3) | R_ctr3) in
let new_R_ctr3_cry = ((ONES 31 R_ctr3) AR_ctr3_cry) in
let new_R_ctr3_out = ((R_cntlatch_del) => R_ctr3_new | R_ctr3_out) in
let new_R_ctr3_orden = (r_readB A (r_reg_sel = (WORDN 15))) in
let new_R _icr_load = (r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let new_R_icr_old =
((r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)}))) => R_jcr | R_icr_old) in
let new_R_icr_mask =
((r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => I_ad_in | R_icr_mask) in
let new_R_icr =
((R_icr_load) =>
((~(r_reg_sel = (WORDN 1))) => (Andn rep (R_icr_old, R_icr_mask)) { (Om rep (R_icr_old, R_icr_mask))) |
R_icr) in
let new_R_icr_rden = ((new_R_fsm_state = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let sr28 = (ALTER ARBN (28) MB_parity) in
let 5128 _25 = (MALTER 5128 (27,25) C_ss8) in
let sr28_24 = (ALTER sr28_25 (24) CB_parity) in
let s128_22 = (MALTER s128_24 (23,22) ChannelID) in
let s128_16 = (MALTER sr28_22 (21,16) Id) in
let 5r28_12 = (MALTER sr28_16 (15,12) S_state) in
let s128_9 = (ALTER sr28_12 (9) Pmm_fail) in
let sr28_8 = (ALTER sr28_9 (8) Piu_fail) in
let s128_2 = (MALTER 5128_8 (3,2) Reset_cpu) in
let 5r28_0 = (MALTER sr28_2 (1,0) Cpu_fail) in
let new_R_sr = ((r_fsm_cotlatch) =>sr28_O | R_sr) in
let new_R_sr_rden = (r_readB A (r_reg_sel = (WORDN 4))) in
let r_int0_en = (((ELEMENT R_icr (0)) A (ELEMENT R _icr (8))) V
((ELEMENT R_icr (1)) A (ELEMENT R_icr (9))) V
((ELEMENT R_icr (2)) A (ELEMENT R_icr (10))) V
((ELEMENT R_icr (3)) A (ELEMENT R_icr (11))) V
((ELEMENT R_icr (4)) A (ELEMENT R _icr (12))) V
((ELEMENT R_icr (5)) A (ELEMENT R_icr (13))) V
((ELEMENT R_icr (6)) A (ELEMENT R_icr (14))) V
((ELEMENT R_icr (7)) A (ELEMENT R_icr (15)))) in
let new_R_int0_dis = r_intQ_en in
let r_int3_en = ((ELEMENT R_icr (16)) A (ELEMENT R_icr (24))) V
((ELEMENT R_icr (17)) A (BLEMENT R_icr (25))) V
((ELEMENT R_icr (18)) A (BLEMENT R_icr (26))) V
((ELEMENT R _icr (19)) A (ELEMENT R_icr 27))) V
((ELEMENT R_icr (20)) A (ELEMENT R_icr (28))) V
((ELEMENT R_icr (21)) A (ELEMENT R_icr (29))) V
((ELEMENT R_icr (22)) A (ELEMENT R_icr 30))) V
((ELEMENT R_icr (23)) A (BLEMENT R_icr (31)))) in
let new_R_int3_dis =r_int3_en in
let new_R_busA_latch =
((R_ctr0_irden) => R_ctr0_in |

196

((R_ctr0_orden) => R_ctrO_out |
((R_ctrl_irden) => R_ctr]_in |
((R_ctrl_orden) => R_ctrl_out |
((R_ctr2_irden) => R _ctr2_in |
((R_ctr2_orden) => R_ctr2_out |
((R_ctr3_irden) =>R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => new_R _icr |
((R_ccr_rden) =>R_ccr |
((R_ger_rden) => R_ger |
((R_st_rden) => R_sr | ARB))))))))))) in

let new_R_fsm_ale_=1_rale_in

let pew_R_fsm_mrdy_=1I_mrdy_in

let new_R_fsm_last = I_last_in

let new_R_fsm_rst = Rst in

let I_ad_out = ((~R_wr A ((new_R_fsm_state = RA) V (new_R_fsm_state = RD))) => new_R_busA_latch | ARBN}) in
iet I_srdy_=
(((new_R_fsm_state = RA) V (new_R_fsm_state = RD)) => ~((R_fsm_state = RA) \ (pew_R_fsm_state = RD)) |
ARB)in
let Int0_ = ~(r_int0_en A ~R_int0_dis A ~Disable_int) in
let Int1 = (R_ctrl_cry A new_R_intl_en A ~Disable_int) in
let Int2 = (R_ctr3_cry A new_R_int2_en A ~Disable_int) in
let Int3_ = ~(r_int3_en A ~R_int3_dis A ~Disable_int) in
let Cer =R_cerin
let Led = (SUBARRAY new_R_gcr (3,0)) in
let Reset_error = (ELEMENT new_R_gcr (24)) in
Jet Pmm_invalid = (ELEMENT new_R_ger (28)) in

(I_ad_out, I_srdy_, Int0_, Int1, Int2, Int3_, Ccr, Led, Reset_error, Pmm_invalid)”
)%

197

D.4 C Port Specification

%
File: c_clockl.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the clock-level specification of the C-Port of the FTEP PIU,
an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using a translator
written by P.J. Windley at the University of Idaho.

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piu/hol/lib/*]);;
system ‘rm c_clockl.th*;;

new_theory ‘c_clockl‘;;

loadf ‘abstract’;;

map new_parent [‘caux_def*; ‘aux_def*; array_def";‘wordn_def‘];;

let MSTART = “WORDN 4’;;
let MEND = “WORDN 5";;
let MRDY = “WORDN 6";;
let MWAIT = “WORDN 7;;
let MABORT = “WORDN 0";;

let SACK = “WORDN 5”;;
let SRDY = “WORDN 6™;;
let SWAIT = “WORDN 7°;;
let SABORT = “WORDN 0";;

let cc_state_ty = “:(cmfsm_ty#bool#bool#boolbool#wordn#bool#
csfsm_ty#bool#bool#bool#wordn#
cefsm_ty#bool¥bool#bool#bool#bool#bool#
bool#wordn#bool#bool#bool#wordn#bool#
bool#bool#bool#bool#bool#bool#bool#
bool#bool#bool#wordn#wordn#wordn#wordn#wordo#wordn)”’;;
let cc_state = “((C_mfsm_state,C_mfsm_D,C_mfsm_rst,C_mfsm_crqt_,C_mfsm_bhold_,C_mfsm_ss,C_mfsm_invalid,
C_sfsm_state,C_sfsm_D,C_sfsm_rst,C_sfsm_hlda_,C_sfsm_ms,
C_efsm_state,C_efsm_cale_,C_efsm_last_,C_efsm_male_,C_efsm_rale_,C_efsm_srdy_,C_efsm_rst,
C_wr,C_sizewrbe,C_clkA,C_last_in_,C_lock_in_,C_ss,C_last_out_,

)

C_hold_,C_holdA_,C_cout_0_le_del,C_cin_2_le,C_mrdy_del_,C_iad_en_s_del,C_iad_en_s_delA,

C_wrdy,C_rrdy,C_parity,C_source,C_data_in,C_jad_out,C_iad_in,C_ala0,C_a3a2)
Acc_state_ty)”;;

let cc_env_ty = “:(wordn#wordn#bool#bool#bookibool#bool#bool#bool#booli#bool#

198

wordn#wordn#wordn#wordn#bool#bool#bool#bool#wordn#wordn#bool#bool#wordn#bool)";;
let cc_env = “((I_ad_in, I_be_in_, I_mrdy_in_, I_rale_in_, I_male_in_, I_last_in_, I_srdy_in_,
Llock_, I_cale_,I_hida_, I_crqt_,
CB_qt_in_, CB_ad_in, CB _ms_in, CB_ss_in,
Rst, CIkA, CIkB, CIkD, Id, ChanpelID, Pmm_failure, Piu_invalid, Ccr,
Reset_error)
Aec_env_ty)'ss

letcc_out_ty = ":(boo]#bool#bool#bool#bool#bool#bool#wordn#wordn#
bool#wordn#wordn#wordn#wordn#bool#bool)";;
let cc_out = “((I_cgnt_, I_mrdy_out_, I_bold_, I_rale_out_, I_male_out_, I last_out_, I_srdy_out_,
I_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)
:Acc_out_ty)";;

Jet rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

o,
70

Next-state definition for EXEC instruction.

let cEXEC_inst_def = new_definition
(*cEXEC_inst’,
“| (rep:“rep_ty)
(C_mfsm_state:cmfsm_ty) (C_sfsm_state:csfsm_ty) (C_efsm_state:cefsm_ty)
(C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss C_source C_data_in C_iad_out C_iad_in C_ala0 C_a3a2 :wordn)
(C_mfsm_D C_mfsm_rst C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_invalid C_sfsm_D C_sfsm_rst C_sfsm_bida_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_last_in_ C_lock_in_ C_last_out_ C_bold_ C_holdA_ C_cout_0_le_del C_cin_2_le
C_mrdy_del_ C_iad_en_s_del C_iad_en_s_delA C_wrdy C_grdy C_parity :bool)
(I_ad_in I_be_in_CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in1d ChannellD Ccr :wordn)
(I_mrdy_in_ I_rale_in_ I_male_in_ I_last_in_ I srdy_in_ I_lock_1I_cale_1_hlda_I_crqt_
Rst ClkA CIkB ClkD Pmm_failure Piu_invalid Reset_error :bool) .
cEXEC_inst rep
(C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_crqt_, C_mfsm_hold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hlda_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_rst,
C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock in_, C_ss, C_last_out_,

C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_iad_en_s_delA,
C_wrdy, C_rrdy, C_parity, C_source, C_data_in, C_iad_out, C_iad_in, C_ala0,C_a3a2)
(I_ad_in, I_be_in_,I_mrdy_in_, I_rale_in_, I_male_in_, I_last_in [_srdy_in_,

Ilock_, I_cale_, I_hlda I _crqt_, CB_rgt_in CB_ad_in, CB_ms_in, CB_ss_in,

iy

Rst, ClkA, CIkB, CIkD, Id, ChannelID, Pmm_failure, Piu_invalid, Ccr, Reset_error) =

let ¢_write = (((~(C_mfsm_state = CMI)) A (~(C_mfsm_state = CMRY))) => C_wr | (ELEMENT C_sizewrbe (5))) in
let c_busy = (~((SUBARRAY CB_rqt_in_ (3,1)) = (WORDN 7)}) in
let c_grant = ((SUBARRAY Id (1,0)) = (WORDN 0)) A ~(ELEMENT CB_rqt_in_ (0)))
V ((SUBARRAY Id (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_rqt_in_(1)))
V ((SUBARRAY Id (1,0)) = (WORDN 2)) A ~(ELEMENT CB_1qt_in_ (0))
A (ELEMENT CB_rqt_in_(1))
A (ELEMENT CB_1qt_in_(2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_xqt_in_ (0))
A (ELEMENT CB_rqt_in_(1))

199

A (ELEMENT CB_rqt_in_ (2))
A (ELEMENT CB_rqt_in_ (3)))) in
let c_addressed = (Id = (SUBARRAY C_source (15,10))) in
let c_mfsm_stateA =
((C_mfsm_rst) => CMI |
((C_mfsm_state = CMI) =>
(C_mfsm_D A ~C_mfsm_crqt_ A ~c_busy A ~C_mfsm_invalid) => CMR | CMI |
((C_mfsm_state = CMR) => (C_mfsm_D A c_grant A C_mfsm_hold_) => CMA3 ICMR |
((C_mfsm_state = CMA3) => ((C_mfsm_D) => CMAl ICMA3) |
((C_mfsm_state = CMA1)=>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMAO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA1 |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT I CMAO |
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2 |
((C_mfsm_state = CMD1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMDO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMDI |
((C_mfsm_state = CMDO) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY) A C_last_in_) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_last_in_) => CMW |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT { CMDO |
((C_mfsm_state = CMW) =>
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT |
(C_mfsm_D A (C_mfsm_ss = ASACK) A C_lock_in_) => CMI |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_lock_in_A ~C_mfsm_crqt_) => CMA3 ICMW |
((~C_last_in_) => CMI | CMABT)))))))) in
let c_sfsm_stateA =
((C_sfsm_rst) => CSI |
(C_sfsm_state = CSI) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSA1 | CSI))
(C_sfsm_state = CSL) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSAl |
(C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A ~c_addressed) => CSI |
(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT ICSL) |
(C_sfsm_state = CSAl) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSAO |
(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSAl) |
(C_sfsm_state = CSAQ) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY) A ~C_sfsm_hida_) => CSALE |
(C_sfsm_D A (C_sfsm_ms = "MRDY) A C_sfsm_hlda_) => CSAOW |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSAQ) |
(C_sfsm_state = CSAQOW) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY) A ~C_sfsm_blda_) => CSALE |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>
((C_sfsm_D A c_write A (C_sfsm_ms = AMRDY)) => CSD1 |
(C_sfsm_D A ~c_write A (C_sfsm_ms = AMRDY)) => CSRR |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSALE) |
(C_sfsm_state = CSRR) =>
((C_sfsm_D A ~(C_sfsm_ms = "MABORT)) => CSD1 |

200

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSRR)|
~— (C_sfsm_state = CSD1) =>

((C_sfsm_D A (C_sfsm_ms = *MRDY)) =>CSDO |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT {CSD1) |
(C_sfsm_state = CSDO) =>

((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |

(C_sfsm_D A (C_sfsm_ms = "MRDY)) =>CSD1 |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSDO) |
(C_sfsm_state = CSACK) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) =>CSL |

(C_sfsm_D A (C_sfsm_ms = AMWAIT)) => CSI |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSACK) |
(C_sfsm_D) =>CS11CSABT) in

let c_efsm_stateA =
((C_efsm_rst) => CEI |
(C_efsm_state = CEI) => ((~C_efsm_cale_) => CEE| CED) |
((~C_efsm_last_ A ~C_efsm_srdy_) V ~C_efsm_male_V ~C_efsm_gale_) => CEIl | CEE) in
tet c_srdy_en = ((c_efsm_stateA = CEE) V (C_efsm_state = CEE)) in
let cout_sel0 = (ALTER ARBN (0) (((c_sfsm_stateA = CSD1) V (c_sfsm_stateA = CSDO)) =>
(c_sfsm_stateA = CSD1) |
(c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMALl)
V (c_mfsm_stateA = CMDI1))) in
let cout_sel10 = (ALTER cout_sel0 (1) (((c_sfsm_stateA = CSD1)V (c_sfsm_stateA = CSD0)) =>
Fl
(c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA2))) in
let c_cout_sel = cout_sel10 in
— let new_C_wr = ((~I_cale_) => (ELEMENT I_ad_in (27)) | C_wr) n
let new_C_sizewrbe = ((Rst) => (WORDN 0) |
(((c_sfsm_stateA = CSAQ) A C_clkA) => (SUBARRAY C_data_in (31,22)) | C_sizewrbe)) in
let c_new_write = (((~(c_mfsm_stateA = CMI)) A (~(c_mfsm_stateA = CMR))) =>
new_C_wr | (ELEMENT new_C_sizewrbe (5))) in
let new_C_clkA = CIkD in
let new_C_last_in_ = ((Rst)=>F |
(((c_mfsm_stateA = CMABT) V (c_mfsm_stateA = CMD1) ACKkD) =>I_last_in_1
C_last_in_)) in
let new_C_lock_in_ = ((Rst) => F|
((c_mfsm_stateA = CMA1) => I _lock 1|
C_lock_in_))in
let new_C_ss = (((~(c_mfsm_stateA = CMABT)) A (~(c_mfsm_stateA = CMI))) => CB_ss_in | C_ss) in
tet c_mend = (CB_ms_in = AMEND) in
let c_mabort = (CB_ms_in = AMABORT) in
let new_C_last out_=
(((c_sfsm_stateA = CSA1) A ~(CIkD A (c_mend V ¢_mabort))) =>T|
((~(c_sfsm_stateA = CSA1) A (CIkD A (c_mend V c_mabort))) =>F |
((~(c_sfsm_stateA = CSA1) A (CIkD A (c_mend V c_mabort))) => C_last_out_| ARB))) in
let c_srdy = (CB_ss_in = ~SRDY) in
let c_dfsm_master = ((c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA2)V (c_mfsm_stateA = CMA1)
V (c_mfsm_stateA = CMAO) V (c_mfsm_stateA = CMD1} V (c_mfsm_stateA = CMDO0)) in
let c_dfsm_cad_en = ~((c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMAI1) V (c_mfsm_stateA = CMAO)
V (c_mfsm_stateA = CMA2)
V (c_pew_write A ((c_mfsm_stateA = CMD1) V (c_mfsm_stateA = CMD0)))
V (~c_new_write A ((c_sfsm_stateA = CSD1) V (c_sfsm_stateA = CSD0)))) in
let new_C_hold_ = (c_sfsm_state A = CSI) in

201

let new_C_holdA_ = ((CIkD) => C_hold_ ! C_holdA_) in
let new_C_cout_0_le_del = ((I_cale_) V (I_srdy_in_ A ~c_new_write)
V ((c_mfsm_stateA = CMAQ) A c_srdy A c_new_write A CIkD)
V ((c_mfsm_stateA = CMDO) A c_new_write A ¢_srdy A CIkD)) in
let new_C_cin_2_le = (CkD A (((c_mfsm_stateA = CMDO0) A c_srdy A ~c_new_write) V
((c_sfsm_stateA = CSAQ)) V
((c_sfsm_stateA = CSDO) A c_new_write))) in
let new_C_mrdy_del_ = ~((~c_new_write A CIkD A ((c_sfsm_stateA = CSALE) V (c_sfsm_stateA = CSD1))) V
(~c_new_write A C_clkA A (c_sfsm_stateA = CSACK)) V
(c_new_write A CIkD A (c_sfsm_stateA = CSD(O))) in
let new_C_iad_en_s_del = (((c_sfsm_stateA = CSALE) A (~(C_sfsm_state = CSALE)))
V ((c_sfsm_stateA = CSALE) A c_new_write)
V ((c_sfsm_stateA = CSD1) A c_new_write A (~(C_sfsm_state = CSRR)))
V ((c_sfsm_state A = CSDO) A c_new_write) V
{(c_sfsm_stateA = CSACK) A c_new_write)) in
jet new_C_iad_en_s_delA = ((ClkD) => C_iad_en_s_del | C_iad_en_s_delA) in
let new_C_wrdy = (c_srdy A c_new_write A\ (c_mfsm_stateA = CMD1) A CIkD) in
let new_C_rrdy = (c_srdy A ~c_new_write A (c_mfsm_stateA = CMDO) A CIkD) in
let c_pe = (Par_Det rep (CB_ad_in)) in
let c_mparity = ((c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA1) V (c_mfsm_stateA = CMAQ)
V (c_mfsm_stateA = CMA2) V (c_mfsm_stateA = CMDI1)V (c_mfsm_stateA = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAO) V (C_mfsm_state = CMA2)
V (C_mfsm_state = CMD1)) in
let c_sparity = ((~(c_sfsm_stateA = CSI)) A (~(c_sfsm_stateA = CSACK)) A (~(c_sfsm_stateA = CSABT))) in
let c_pe_cnt = (CIkD A ((~(c_mparity = c_sparity)) V ((SUBARRAY CB_ss_in (1,0)) = (WORDN 0)))) in
let new_C_parity =
(((CIkD A c_pe A c_pe_cnt) A ~Reset_error) =>T |
((~(CIkD A c_pe A c_pe_cat) A Reset_error) => F
((~(ClkD A\ c_pe A\ c_pe_cnt) A ~Reset_error) => C_parity | ARB))) in
let new_C_source =
((Rst)=> (WORDN 0) |
((CIkD A ((c_sfsm_stateA = CSI) V (c_sfsm_stateA = CSL))) => Par_Dec rep (CB_ad_in} | C_source)) in
Jet data_in31_16 =
(MALTER ARBN (31,16) ((Rst) => (WORDN 0) |
((CIkD A (({c_mfsm_state A = CMD1) A c_srdy A ~c_new_write) V
((c_sfsm_stateA = CSA1)) V
((c_sfsm_stateA = CSD1) A c_pew_write))) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (31,16))))) in
let data_in31 0=
(MALTER data_in31_16 (15,0) ((Rst) => (WORDN 0) |
((new_C_cin_2_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (15,0))))) in
let new_C_data_in = data_in31_Oin
let new_C_iad_out = ((C_cin_2_le) => C_data_in | C_iad_out) in
let new_C_iad_in = ((new_C_cout_0_le_del) =>I_ad_in | C_iad_in) in
let new_C_ala0 =
(({c_dfsm_master A C_cout_0_le_del) V
(~c_dfsm_master A C_clkA A (c_sfsm_stateA = CSD1))) => C_iad_in | C_ala0) in
let new_C_a3a2 = ((c_mfsm_stateA = CMR) => Ccr | C_a3a2) in
let new_C_mfsm_state = c_mfsm_stateA in
let new_C_mfsm_D = CIkD in
let new_C_mfsm_rst = Rst in
let new_C_mfsm_crqt_=1_crqt_in
let new_C_mfsm bold_ = new_C_holdA_in

202

let new_C_mfsm_ss = CB_ss_in in

let new_C_mfsm_invalid = Piu_invalid in
let new_C_sfsm_state = c_sfsm_stateA in
let new_C_sfsm_D = CIkD in

let new_C_sfsm_rst= Rstin

let new_C_sfsm_hlda_=1_hlda_in

let new_C_sfsm_ms = CB_ms_in in

let new_C_efsm_cale_=I_cale_in

let new_C_efsm_last_=1_last_in_in

let new_C_efsm_male_ =1_male_in_in
let new_C_efsm_rale_=1_rale_in_in

let new_C_efsm_srdy_=I_srdy_in_in
let new_C_efsm_rst =Rst in

(C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_crqt_, C_mfsm_bold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hlda_, C_sfsm_ms, C_efsm_state, C_efsm_cale_, C_efsm_last_,
C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_rst, C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock_in_,
C_ss, C_last_out_, C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del,

C_iad_en_s_delA, C_wrdy, C_srdy, C_parity, C_source, C_data_in, C_iad_out, C_iad_in, C_ala0, C_a3a2)”
%

70

Output definition for EXEC instruction.

let cEXEC_out_def = new_definition
(‘cEXEC _out',
“| (rep:~rep_ty)
(C_mfsm_state:cmfsm_ty) (C_sfsm_state:csfsm_ty) (C_efsm_state:cefsm_ty)
(C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss C_source C_data_in C_iad_out C_jad_in C_ala0 C_a3a2 :wordn)
(C_mfsm_D C_mfsm_rst C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_invalid C_sfsm_D C_sfsm_rst C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_last_in_C lock_in_ C_last_out_C_hold_ C_holdA_ C_cout_0_le_del C_cin_2_le

C_mrdy_del_ C_iad_en_s_del C_jad_en_s_delA C_wrdy C_mrdy C_parity :bool)
(I_ad_in [_be_in_ CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID Cer :wordn)
(I_mrdy_in_1 rale_in_1 _male_in_1_last_in_I_srdy_in_ I_lock_I_cale_1_hlda_I_crqt_
Rst ClkA CIkB CIkD Pmm_failure Piu_invalid Reset_error :bool) .
cEXEC_out rep
(C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_c1qt_, C_mfsm_hold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hida_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_rst,
C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock_in_, C_ss, C_last_out_,
C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_iad_en_s_delA,

C_wrdy, C_rrdy, C_parity, C_source, C_data_in, C_iad_out, C_jad_in, C_ala0,C_a3a2)
(I_ad_in, I_be_in_, I_mrdy_in_, Lrale_in_, I_male_in_, I_last_in_, I_srdy_in_,
I_lock_, I_cale_, I_hlda_, I_crqt_, CB_rqt in_, CB_ad_in, CB_ms_in, CB_ss_in,

Rst, ClkA, CIkB, CIkD, Id, ChannellD, Pmm_failure, Piu_invalid, Ccr, Reset_error) =

Jet c_write = (((~(C_mfsm_state = CMD)) A {(~(C_mfsm_state = CMR))) => C_wr | (ELEMENT C_sizewrbe (5))) in
let c_busy = (~((SUBARRAY CB_rqt_in_ (3,1)) = (WORDN 7)) in
let c_grant = ((((SUBARRAY 1d (1,0)) = (W ORDN 0)) A ~(ELEMENT CB_zqt_in_ (0)))
V (((SUBARRAY 1d (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_rqt_in_(1)))
V (((SUBARRAY Id (1,0)) = (WORDN 2)) A ~(ELEMENT CB_rqt_in_ (0))

203

A (ELEMENT CB_gqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_xqt_in_ (2))
A (ELEMENT CB_zqt_in_ (3)))) in
let c_addressed = (Id = (SUBARRAY C_source (15,10))) in
let c_mfsm_stateA =
((C_mfsm_rst) => CMI |
((C_mfsm_state = CMI) =>
(C_mfsm_D A ~C_mfsm_crqt_ A ~c_busy A ~C_mfsm_invalid) => CMR | CMI |
((C_mfsm_state = CMR) => (C_mfsm_D A c_grant A C_mfsm_hold_) => CMA3 ICMR |
((C_mfsm_state = CMA3) => ((C_mfsm_D) => CMA1 ICMA3) |
((C_mfsm_state = CMA1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) =>CMAO|
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAL |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAO|
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2 |
((C_mfsm_state = CMD1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMDO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMD1 |
((C_mfsm_state = CMDO) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY) A C_last_in_) =>CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_last_in_) => CMW |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMDO |
((C_mfsm_state = CMW) =>
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT |
(C_mfsm_D A (C_mfsm_ss = ASACK) A C_lock_in_) => CMI |
(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_lock_in_ A ~C_mfsm_crqt_) => CMA3 |CMW |
((~C_last_in_)=>CMI | CMABT))))))))))) in
let c_sfsm_stateA =
((C_sfsm_rst) => CSI |
(C_sfsm_state = CSI) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSA1 | CSI) |
(C_sfsm_state = CSL) =>
((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A ¢_addressed) => CSAl |
(C_sfsm_D A (C_sfsm_ms = “MSTART) A ~c_grant A ~c_addressed) => CSI |
(C_sfsm_D A (C_sfsm_ms = “‘MABORT)) => CSABT ICSL) |
(C_sfsm_state = CSAl)=>
((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSA0|
(C_sfsm_D A (C_sfsmm_ms = AMABORT)) => CSABT | CSA1) |
(C_sfsm_state = CSAQ) =>
((C_sfsm_D A (C_sfsm_ms = AMRDY) A ~C_sfsm_hlda_)=> CSALE |
(C_sfsm_D A (C_sfsm_ms = AMRDY) A C_sfsm_hida_) => CSAOW |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSA0) |
(C_sfsm_state = CSAOW) =>
((C_sfsm_D A (C_sfsm_ms = "MRDY) A ~C_sfsm_hlda_) =>CSALE|
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>
((C_sfsm_D A c_write A (C_sfsm_ms = AMRDY)) => CSD1 |

204

(C_sfsm_D A ~c_write A (C_sfsm_ms = AMRDY)) => CSRR !
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSALE)!
(C_sfsm_state = CSRR) =>
((C_sfsm_D A ~(C_sfsm_ms = AMABORT)) => CSD1 |
(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT I CSRR) 1
(C_sfsm_state = CSD1) =>
((C_sfsm_D A (C_sfsm_ms = “MRDY)) => CSDO|
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSD1)]
(C_sfsm_state = CSDO) =>
((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |
(C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSD1 |
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSD0) |
(C_sfsm_state = CSACK) =>
((C_sfsm_D A (C_sfsm_ms = “MRDY))=> CSL |
(C_sfsm_D A (C_sfsm_ms = AMWAIT)) => CSI|
(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CSACK) |
(C_sfsm_D)=>CSI| CSABT) in
let c_efsm_stateA =
((C_efsm_rst) => CEI |
(C_efsm_state = CEI) => ((~C_efsm_cale_) => CEE I CED |
{((~C_efsm_last_ A ~C_efsm_srdy_) V ~C_efsm_male_V ~C_efsm_rale_) => CEIl | CEE) in
let c_srdy_en = ((c_efsm_stateA = CEE) V (C_efsm_state = CEE)) in
let cout_sel0 = (ALTER ARBN (0) (((c_sfsm_stateA = CSD1) V (c_sfsm_stateA = CSDO)) =>
(c_sfsm_stateA = CSD1) |
(c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMAI)
V (c_mfsm_stateA = CMD1))) in
let cout_sell0 = (ALTER cout_sel0 (1) (((c_sfsm_stateA = CSD1) V (c_sfsm_stateA = CSD0)) =>
F1
(c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA2))) in
let c_cout_sel = cout_sel10 in
let new_C_wr = ((~I_cale_) => (ELEMENT I_ad_in (27)) 1 C_wr) in
let new_C_sizewrbe = ((Rst) => (WORDN 0) |
(((c_sfsm_stateA = CSA0) A C_clkA) => (SUBARRAY C_data_in (31,22)) | C_sizewrbe)) in
let c_new_write = (({~(c_mfsm_stateA = CMID)) A\ (~(c_mfsm_stateA = CMR))) =>
pew_C_wr | (ELEMENT new_C_sizewrbe (5))) in
let new_C_clkA = CkD in
let new_C_last_in_= ((Rst) =>F |
(((c_mfsm_stateA = CMABT) V (c_mfsm_stateA = CMDI1)ACID)=>1I_last_in_|
C_last_in_)) in
let new_C_lock_in_ = ((Rst) => F |
((c_mfsm_stateA = CMAL)=>1_lock_|
C_lock_in_)) in
let new_C_ss = (((~(c_mfsm_stateA = CMABT)) A (~(c_mfsm_stateA = CMI))) => CB_ss_in I C_ss) in
let c_mend = (CB_ms_in = AMEND) in
let c_mabort = (CB_ms_in = AMABORT) in
let new_C_last_out_ =
(((c_sfsm_stateA = CSA1) A ~(CIkD A (c_mend V c_mabort))) => T
((~(c_sfsm_stateA = CSA1) A (CIkD N\ (c_mend V c_mabort))) =>F |
((~(c_sfsm_stateA = CSA1) A ~(CIkD A (c_mend V ¢ _mabort))) => C_last_out_| ARB))) in
let c_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = ((c_mfsm_stateA = CMA3)V (c _mfsm_stateA = CMA2) V (c_mfsm_stateA = CMA1)
V (c_mfsm_stateA = CMAO) V (c_mfsm_stateA = CMD1) V (¢ _mfsm_stateA = CMDO0)) in
let c_dfsm_cad_en = ~((c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA1)V (c_mfsm_stateA = CMAO)
V (c_mfsm_stateA = CMA2)

205

V (c_new_write N\ ((c_mfsm_stateA = CMD1) V (c_mfsm_stateA = CMDO)))
V (~c_new_write A\ ((c_sfsm_stateA = CSD1) V (c_sfsm_state A = CSD0)))) in
let new_C_hold_ = (c_sfsm_stateA = CSI) in
let new_C_holdA_ = ((ClkD) => C_hold_ 1 C_holdA_) in
Jet new_C_cout_0_le_del = ((I_cale_) V (I_srdy_in_ A ~c_new_write)
V ((c_mfsm_stateA = CMAO) A c_srdy A c_new_write A ClkD)
V ((c_mfsm_stateA = CMDO) A c_new_write A\ c_srdy A ClkD)) in
let new_C_cin_2_le = (CIkD A (((c_mfsm_stateA = CMDO) A c_srdy A ~c_new_write) V
((c_sfsm_stateA = CSAQ)) V
((c_sfsm_state A = CSDO) A c_new_write))) in
let new_C_mrdy_del_ = ~((~c_new_write A CIkD A ((c_sfsm_stateA = CSALE) V (c_sfsm_stateA = CSD1)))} V
(~c_new_write A C_clkA A (c_sfsm_stateA = CSACK)) V
(c_new_write N\ CIkD A (c_sfsm_stateA = CSD0))) in
let new_C_iad_en_s_del = (((c_sfsm_stateA = CSALE) A (~(C_sfsm_state = CSALE)))
V ((c_sfsm_stateA = CSALE) A c_new_write)
V ((c_sfsm_stateA = CSD1) A c_new_write A (~(C_sfsm_state = CSRR)))
V ((c_sfsm_stateA = CSDO) A c_new_write) V
((c_sfsm_state A = CSACK) A c_pew_write)) in
let new_C_iad_en_s_delA = ((CIkD) => C_iad_en_s_del | C_iad_en_s_delA) in
let new_C_wrdy = (c_srdy A c_new_write A (c_mfsm_stateA = CMD1) A CIkD) in
let new_C_srdy = (c_srdy A ~c_new_write A (c_mfsm_stateA = CMDO) A CIkD) in
let c_pe = (Par_Det rep (CB_ad_in)) in
let c_mparity = ((c_mfsm_stateA = CMA3) V (c_mfsm_stateA = CMA1) V (c_mfsm_stateA = CMAO)
V (c_mfsm_stateA = CMA2) V (c_mfsm_stateA = CMD1) V (c_mfsm_stateA = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAO) V (C_mfsm_state = CMA2)
V (C_mfsm_state = CMD1)) in
let c_sparity = ((~(c_sfsm_stateA = CSI)) A (~(c_sfsm_stateA = CSACK)) A (~(c_sfsm_stateA = CSABT))) in
let c_pe_cnt = (CIkD A ((~(c_mparity = c_sparity)) V (SUBARRAY CB_ss_in (1,0)) = (WORDN 0)))) in
let new_C_parity =
({((CKkD A c_pe A c_pe_cnt) A ~Reset_ermror) =>T |
{((~(CIkD A c_pe A c_pe_cnt) A Reset_error) => F |
((~(CIkD A c_pe A c_pe_cnt) A ~Reset_error) => C_parity | ARB))) in
let new_C_source =
((Rst)=> (WORDNO0) |
((CIkD A ((c_sfsm_stateA = CSI) V (c_sfsm_stateA = CSL))) => Par_Dec rep (CB_ad_in) | C_source)) in
letdata_in31_16 =
(MALTER ARBN (31,16) ((Rst) => (WORDN 0) |
((CIkD A (((c_mfsm_stateA = CMDI1) A c_srdy A ~c_new_write) V
{(c_sfsm_stateA = CSAL)) V
((c_sfsm_stateA = CSD1) A c_new_write))) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (31,16))))) in
let data_in31_O=
(MALTER data_in31_16 (15,0) ((Rst) => (WORDN 0) i
((new_C_cin_2_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (15,0))))) in
let new_C_data_in = data_in31_Oin
let new_C_iad_out = ((C_cin_2_le) => C_data_in | C_iad_out) in
let new_C_iad_in = ((new_C_cout_0_le_del) => I_ad_in | C_iad_in) in
let new_C_ala0 =
(((c_dfsm_master A C_cout_0_le_del} V
(~c_dfsm_master A C_clkA A (c_sfsm_stateA = CSD1))) => C_jad_in 1 C_ala0) in
let new_C_a3a2 = ((c_mfsm_stateA = CMR) => Ccr | C_a3a2) in
let new_C_mfsm_state = c_mfsm_stateA in
let new_C_mfsm_D = CIkD in

206

let new_C_mfsm_rst = Rstin

let new_C_mfsm_crqt_=1_crqt_in

let new_C_mfsm_hold_ = new_C_holdA_in
let new_C_mfsm_ss = CB_ss_in in

let new_C_mfsm_invalid = Piu_invalid in
let new_C_sfsm_state = c_sfsm_stateA in
let new_C_sfsm_D = CIkD in

let new_C_sfsm_rst = Rstin

let new_C_sfsm_hlda_=1_hlda_in

let new_C_sfsm_ms = CB_ms_in in

let new_C_efsm_cale_=I_cale_in

let new_C_efsm_last_=1_last_in_in

let new_C_efsm_male_ =1_male_in_ in
let new_C_efsm_rale_ =1 _rale_in_in

let new_C_efsm_srdy_=I1_srdy_in_in
let new_C_efsm_rst = Rst in

let I_cgnt_ = ~(c_mfsm_stateA = CMA3) in
let I_mrdy_out_ = ((~I_hlda_) => C_mrdy_del_| ARB) in
let I_hold_ = new_C_boldA_in
let I_rale_out_=
((~I_hlda_) =>
~((c_sfsm_stateA = CSALE) A ((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3)) A C_clkA) | ARB) in
let I_male_out_ =
((~1_hlda_) =>
~((c_sfsm_stateA = CSALE) A (~((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3))) AC_clkA) | ARB) in
let I_last_out_ = ((~I_blda_)=> C_last_out_| ARB) in
let I_srdy_out_ = ((~I_cale_Vc_srdy_en)=> ~(C_wrdy V C_rrdy V (c_mfsm_stateA = CMABT)) | ARB)in
let I_be_out_ = ((~]_hlda_) => (SUBARRAY new_C_sizewrbe (9,6)) | ARBN) in
let I_ad_out = ((new_C_iad_en_s_delA
V ((c_mfsm_stateA = CMD1) A ~c_new_write A c_srdy_en)
V ((c_mfsm_stateA = CMDO) A ~c_new_write A c_srdy_en)
V ((c_mfsm_stateA = CMW) A (C_mfsm_state = CMDO) A\ ~c_new_write A c_srdy_en)
V ((c_sfsm_state A = CSALE) A (~(C_sfsm_state = CSALE)))
V ((c_sfsm_stateA = CSALE) A c_new_write)
V ((c_sfsm_stateA = CSD1) A c_new_write A (~(C_sfsm_state = CSRR)))
V ((c_sfsm_stateA = CSDO0) A c_new_write)
V ((c_sfsm_stateA = CSACK) A c_new_write)) => pew_C_iad_out | ARBN) in
let CB_rqt_out_ = ~(~(c_mfsm_stateA = CMI)) in
let msO = (ALTER ARBN (0) ({((c_mfsm_stateA = CMDO) A ~C_last_in_)V
((c_mfsm_stateA = CMW) A C_lock_in_) V
(c_mfsm_stateA = CMABT))) in
Jet ms10 = (ALTER ms0 (1) (((c_mfsm_stateA = CMA1) V (c_mfsm_stateA = CMAQ) V
(c_mfsm_stateA = CMA2)V (c_mfsm_stateA = CMD1) \Y
((c_mfsm_stateA = CMDO) AC_last_in_)V (c_mfsm_stateA = CMW)V
(c_mfsm_stateA = CMABT)))) in
let ms210 = (ALTER ms10 (2) ({((c_mfsm_stateA = CMA3)V (c_mfsm_stateA = CMA1)V
(c_mfsm_stateA = CMAQ) V (c_mfsm_stateA = CMA2)V
(c_mfsm_stateA = CMD1) V (c_mfsm_stateA = CMDO) V
(c_mfsm_stateA = CMW) V (c_mfsm_stateA = CMABT)) A ~Pmm_failure A ~Piu_invalid))
in
let CB_ms_out = (((~(c_mfsm_stateA = CMI)) A (~(c_mfsm_stateA = CMR))) => ms210 | ARBN) in
let 550 = (ALTER ARBN (0) ((c_sfsm_stateA = CSAOW) VV
((c_sfsm_stateA = CSALE) A ~c_new_write) V

207

(c_sfsm_stateA = CSACK))) in
let 5510 = (ALTER ss0 (1) ~(c_sfsm_stateA = CSACK)) in
let 88210 = (ALTER 510 (2) (~Pmm_failure A ~Piu_invalid}) in
let CB_ss_out = (((~(c_sfsm_stateA = CSI)) A (~(c_sfsm_stateA = CSABT))) => 55210 1 ARBN) in
let CB_ad_out = ((c_dfsm_cad_en) =>
((c_cout_sel = (WORDN 0)) => Par_Enc rep (SUBARRAY new_C_ala0 (15,0)) |
((c_cout_sel = (WORDN 1)) => Par_Enc rep (SUBARRAY new_C_ala0(31,16)) |
((c_cout_sel = (WORDN 2)) => Par_Enc rep (SUBARRAY new_C_a3a2 (15,0)) |
Par_Enc rep (SUBARRAY new_C_a3a2 (31,16))))) | ARBN) in
let C_ss_out=new_C_ss in
let Disable_writes = ((~(c_sfsm_stateA = CSI)) A (~(c_sfsm_stateA =CSL) A
~((ChannelID = (WORDN 0)) A (ELEMENT C_source (6))) A
~{(ChannelID = (WORDN 1)) A (ELEMENT C_source (7))) A
~((ChannelID = (WORDN 2)) A (ELEMENT C_source (8))) A
~({ChannelID = (WORDN 3)) A (ELEMENT C_source (9)))) in
let CB_parity = new_C_parity in

(I_cgnt_,1_mrdy_out_, I_hold_, I_rale_out_, I_male_out_, I_last_out_, I_srdy_out_, I_ad_out, I_be_out_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, C_ss_out, Disable_writes, CB_parity)”
%

close_theory();;

208

D.S SU_Cont Specification

File: s_clockl.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the clock-level specification of the startup controller of the

ETEP PIU, an ASIC developed by the Embedded Processing Laboratory, Boeing High Technology Center.
The bulk of this code was translated from an M-language simulation program using 2 translator written

by P.J. Windley at the University of Idaho.

%

set_search_path (search_path() @ [home/titan3/dfura/ftep/pin/hol/lib/*]);;
system ‘rm s_clockl.th';;

new_theory ‘s_clockl;;

map new_parent [‘saux_def*;‘aux_de *,‘array_def"; ‘wordn_def*];;

let sc_state_ty = “:(sfsm_ty#bool#bool#bool¥bool#bool#boolwordn#wordut
bool#bool#bool#bool#bool#bool#bool#booli#bool)”;;
let sc_state = “((S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_cpu_hist, S_pmm_fail, S_cpu0_fail, S_cpul_fail, S_piu_fail)
Asc_state_ty)";;

let sc_env_ty =" (boolitbool#bool#bool#bool#bool#boolitbool#bool)”;;
let sc_env = “((CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, Failure0_, Failurel)
Asc_env_ty)";;

let sc_out_ty = “:(wordn#bool#bool#bool#bool#bool#bool#bool#bool#bool#bool)“;;

let sc_out = “((S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist,
Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail)
Asc_out_ty)”ss

a,
70

Next-state definition for EXEC instruction.

let sSEXEC_inst_def = new_definition
(‘sEXEC_inst",
“| (S_fsm_state :sfsm_ty)
(S_soft_cnt S_delay :wordn)
(S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass S_soft_shot_del S_bad_cpu0
S_bad_cpul S_reset_cpu0 S_reset_cpul S_cpu_hist S_pmm_fail S_cpu0_fail S_cpul_fail
S_piu_fail :bool)
(CIkA CIkB Rst Bypass Test Gerh Gerl FailureQ_ Failurel :bool) .

209

sEXEC_inst (S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_cpu_hist, S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_piu_fail)
(CIkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureO_, Failurel) =

let new_S_fsm_state =
((S_fsm_rst) => SSTART |
((S_fsm_state = SSTART) => SRA |
((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) |
((S_fsm_state = SPF) => SCOI
((S_fsm_state = SCOI) => ((S_fsm_delay17) => SCOF | SCOI) |
((S_fsm_state = SCOF) => ST
((S_fsm_state = ST) => SC11|
((S_fsm_state = SC1I) => ((S_fsm_delayl7) => SC1F | SC1I) |
((S_fsm_state = SC1F) => 8S |
((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS) |
((S_fsm_state = SSTOP) => SSTOP |
((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |
((S_fsm_state = SN) => ((S_fsm_delayl7) => SO I SN) |
((S_fsm_state = SO) => SO | S_ILL))H))NY)) in
let s_fsm_sn = (new_S_fsm_state = SN} in
let s_fsm_so = (new_S_fsm_state = SO) in
let s_fsm_srcp = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_sdi = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_stp = ((new_S_fsm_state = SSTART) V (new_S_fsm_state = SRA)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1F) V (new_S_fsm_state = SS) V (new_S_fsm_state = SCS)) in
let s_fsm_src0 = ((~(new_S_fsm_state = SPF)) A (~(new_S_fsm_state = SCOI))) in
let s_fsm_srcl = ((~(new_S_fsm_state = ST)) A (~(new_S_fsm_state = SC1I))) in
let s_fsm_spf = ((S_fsm_state = SRA) A S_fsm_delay6 A ~S_fsm_rst) in
let s_fsm_scOf = (new_S_fsm_state = SCOF) in
let s_fsm_sclf = (new_S_fsm_state = SC1F) in
let s_fsm_spmf = (new_S_fsm_state = SO) in
let s_fsm_sb = (new_S_fsm_state = SSTART) in
let s_fsm_src = ((new_S_fsm_state = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST) V (new_S_fsm_state = SC1F)
V (new_S_fsm_state = SS) V ((S_fsm_state = SCS) A S_fsm_delay6)) in
let s_fsm_sec = (((~(new_S_fsm_state = SSTOP)) A (~(new_S_fsm_state = SO))) V (S_fsm_state = SN)) in
let s_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST) A ~S_fsm_rst)) in
let s_fsm_scs = (new_S_fsm_state = SCS) in
let new_S_soft_shot_del = (~Gerh A Gerl) in
let s_soft_cnt_out =
((s_fsm_srs) =>
((Gerl A ~Gerb A ~S_soft_shot_del) => (WORDN 1) | (WORDN 0)) |
((Gerl A ~Gerh A ~S_soft_shot_del) => (INCN 2 S_soft_cnt) | S_soft_cnt)) in
let new_S_soft_cnt = ((~Gerh A ~Gerl) => (WORDN 0) | s_soft_cnt_out) in
let s_delay_out =
((s_fsm_src V (s_fsm_scs A (ELEMENT S_delay (6)))) =>
((s_fsm_sec) => (WORDN 1) | (WORDN O)) !
((s_fsm_sec) => (INCN 17 S_delay) | S_delay)) in
let new_S_delay = s_delay_out in
let s_cpu0_ok = (s_fsm_scOf A FailureO_ A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (s_fsm_sclf A Failurel_ A (s_soft_cnt_out = (WORDN 5))) in
let new_S_pmm_fail =

210

{(s_fsm_sb A ~s_fsm_spmf) =>T|
((~s_fsm_sb N s_fsm_spmf) =>F
((~s_fsm_sb A ~s_fsm_spmf) => S _pmm_fail | ARB))) in
let new_S_cpu0_fail =
((s_fsm_sb A ~(s_cpuO_ok V Bypass)) => T |
((~s_fsm_sb A (s_cpuO_ok V Bypass)) =>F |
((~s_fsm_sb N ~(s_cpuQ_ok V Bypass)) => S_cpu0_fail | ARB))) in
let new_S_cpul_fail =
((s_fsm_sb A ~(s_cpul_ok V Bypass)) => TI
((~s_fsm_sb N\ (s_cpul _ok V Bypass)) => Fl
{(~s_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((s_fsm_sb A ~(s_fsm_spf V Bypass))=>T|
((~s_fsm_sb A (s_fsm_spf V Bypass)) => FI
((~s_fsm_sb A ~(s_fsm_spf V Bypass)) => S _piu_fail | ARB))) in
let s_cpu0_select = ((s_fsm_sn V s_fsm_so) A ~S_cpuO_fail) in
let s_cpul_select = ((s_fsm_sn V s_fsm_so) A S_cpuO_fail A ~S_cpul_fail) in
let new_S_bad_cpu0 =
((s_fsm_sb A ~s_cpuO_select) =>T|
((~s_fsm_sb A s_ _select) =>F |
((~s_fsm_sb A ~s_cpuQ_select) => $_bad_cpu0 | ARB))) in
let new_S_bad_cpul =
((s_fsm_sb A ~s_cpul_select) => TI
((~s_fsm_sb N s_cpul_select) =>F|
((~s_fsm_sb A ~s_cpul_select) => S_bad_cpul | ARB))) in
let new_S_reset_cpu0 = (new_S_bad_cpuO A s_fsm_src0) in
let new_S_reset_cpul = (new_S_bad_cpul As_fsm_srcl) in
let new_S_cpu_hist = (S_reset_cpuO A S_reset_cpul A Bypass) in
let new_S_fsm_rst = Rstin
let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in
let new_S_fsm_delay17 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (7)) in
let new_S_fsm_bothbad = (new_S_cpu0_fail A pew_S_cpul_fail) in
let new_S_fsm_bypass = Bypass in

(new_S_fsm_state, new_S_fsm_rst, new_S_fsm_delay6, new_S_fsm_delay17, new_S_fsm_bothbad,
new_S_fsm_bypass, new_S_soft_shot_del, new_S_soft_cnt, pew_S_delay, new_S_bad_cpu0, new_S_bad_cpul,
pew_S_reset_cpu0, new_S_reset_cpul, new_S_cpu_hist, new_S_pmm_fail, new_S_cpu0_fail, new_S_cpul_fail,
new_S_piu_fail)”

)

R

Output definition for EXEC instruction.

let sEXEC_out_def = new_definition
(‘sEXEC_out’,
“| (S_fsm_state :sfsm_ty)
(S_soft_cnt S_delay :wordn)
(S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass S_soft_shot_del S_bad_cpu0
S_bad_cpul S_reset_cpuO S_reset_cpul S_cpu_hist S _pmm_fail S_cpu0_fail S_cpul_fail
S_piu_fail :bool)
(CIKA CIkB Rst Bypass Test Gerh Gerl FailureQ_ Failurel _ :bool) .
sEXEC_out (S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,

211

S_cpu_hist, S_pmm_fail, S_cpuO_fail, S_cpul _fail, S_piu_fail)
(ClkA, CIkB, Rst, Bypass, Test, Gerh, Gerl, FailureQ_, Failurel) =

let new_S_fsm_state =
((S_fsm_rst) => SSTART |
((S_fsm_state = SSTART) => SRA |
((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) |
((S_fsm_state = SPF) => SCOI |
((S_fsm_state = SCOI) => ((S_fsm_delayl17) => SCOF | SCOI) |
((S_fsm_state = SCOF) => ST |
((S_fsm_state = ST) => SC11 |
((S_fsm_state = SC1I) => ((S_fsm_delay17) => SCIF I SCII) |
((S_fsm_state = SC1F) => 8§ |
((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS) |
((S_fsm_state = SSTOP) => SSTOP |
((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |
((S_fsm_state = SN) => ((S_fsm_delayl7) => SO ISN) |
((S_fsm_state = SO) => SO | S_ILL)))))NN)))) in
let s_fsm_sn = (new_S_fsm_state = SN) in
let s_fsm_so = (new_S_fsm_state = SO) in
let s_fsm_srcp = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_sdi = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_srp = ((new_S_fsm_state = SSTART) V (new_S_fsm_state = SRA)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1F) V (new_S_fsm_state = SS) V (new_S_fsm_state = SCS)) in
let s_fsm_srcO = ((~(new_S_fsm_state = SPF)) A (~(new_S_fsm_state = SCOI))) in
let s_fsm_srcl = ((~(new_S_fsm_state = ST)) A (~(new_S_fsm_state = SC1I))) in
let s_fsm_spf = ((S_fsm_state = SRA) A S_fsm_delay6 A ~S_fsm_rst) in
let s_fsm_scOf = (new_S_fsm_state = SCOF) in
let s_fsm_sclf = (new_S_fsm_state = SCI1F) in
let s_fsm_spmf = (new_S_fsm_state = SO) in
let s_fsm_sb = (new_S_fsm_state = SSTART) in
let s_fsm_src = ((new_S_fsm_state = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST) V (new_S_fsm_state = SC1F)
V (new_S_fsm_state = SS) VV ((S_fsm_state = SCS) A S_fsm_delay6)) in

let 5_fsm_sec = (((~(new_S_fsm_state = SSTOP)) A (~(new_S_fsm_state = SO))) V (S_fsm_state = SN)) in

let s_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST) A ~S_fsm_rst)) in
let s_fsm_scs = (new_S_fsm_state = SCS) in
let new_S_soft_shot_del = (~Gerh A Gerl) in
let s_soft_cnt_out =
((s_fsm_srs) =>
((Gerl A ~Gerh A ~S_soft_shot_del) => (WORDN 1) | (WORDN 0)) |
((Gerl A ~Gerh A ~S_soft_shot_del) => (INCN 2 S_soft_cnt) | S_soft_cat)) in
let new_S_soft_cnt = ((~Gerh A ~Gerl) => (WORDN 0) | s_soft_cnt_out) in
let s_delay_out =
((s_fsm_src V (s_fsm_scs \ (ELEMENT S_delay (6)))) =>
((s_fsm_sec) => (WORDN 1) | (WORDN 0)) |
((s_fsm_sec) => (INCN 17 S_delay) | S_delay)) in
let new_S_delay = s_delay_outin
let s_cpu0_ok = (s_fsm_scOf N\ FailureO_ A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (s_fsm_sc1f A Failurel_ A (s_soft_cnt_out = (WORDN 5))) in
let new_S_pmm_fail =
((s_fsm_sb A ~s_fsm_spmf) => T |
((~s_fsm_sb A s_fsm_spmf) =>F|

212

((~s_fsm_sb A ~s_fsm_spmf) => S_pmm_fail | ARB))) in
let new_S_cpu0_fail =
((s_fsm_sb A ~(s_cpuO_ok V Bypass)) => T |
((~s_fsm_sb A (s_cpuO_ok V Bypass)) =>F |
((~s_fsm_sb A ~(s_cpuO_ok V Bypass)) => S_cpu0_fail | ARB))) in
iet new_S_cpul_fail =
((s_fsm_sb A ~(s_cpul_ok V Bypass)) =>T'|
((~s_fsm_sb A (s_cpul_ok V Bypass)) =>F|
((~s_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((s_fsm_sb A ~(s_fsm_spf V Bypass)) =>T |
((~s_fsm_sb N (s_fsm_spf V Bypass)) => F|
((~s_fsm_sb N ~(s_fsm_spf V Bypass)) => S_piu_fail | ARB))) in
let s_cpu0_select = ((s_fsm_sn V's_fsm_so) A ~S_cpu0_fail) in
let s_cpul_select = ((s_fsm_sn \Vs_fsm_so) A S_cpu0_fail A ~S_cpul_fail) in
let new_S_bad_cpu0 =
((s_fsm_sb A ~s_cpu0_select) =>T|
((~s_fsm_sb N s_cpu0_select) =>F |
((~s_fsm_sb N\ ~s_cpuQ_select) => S_bad_cpu0 | ARB})) in
let new_S_bad_cpul =
((s_fsm_sb A ~s_cpul_select) => T |
((~s_fsm_sb A s_cpul_select) =>F |
((~s_fsm_sb A\ ~s_cpul_select) => S_bad_cpul { ARB))) in
let new_S_reset_cpu0 = (new_S_bad_cpu0 A s_fsm_src0) in
let new_S_reset_cpul = (new_S_bad_cpul A s_fsm_srcl) in
let new_S_cpu_hist = (S_reset_cpuO A S_reset_cpul A Bypass) in
let new_S_fsm_rst =Rstin
let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in
let new_S_fsm_delay17 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (17))) in
let new_S_fsm_bothbad = (new_S_cpuO_fail A new_S_cpul_fail) in
let new_S_fsm_bypass = Bypass in
let ss0 = (ALTER ARBN (0) ((new_S_fsm_state = SS) V (new_S_fsm_state = SSTOP)
V (new_S_fsm_state = SCS) V (new_S_fsm_state = SN)
V (new_S_fsm_state = SO))) in
let ss1 = (ALTER ss0 (1) ((new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1I) V (new_S_fsm_state = SCIF)
V (new_S_fsm_state = SS) V (new_S_fsm_state = SSTOP)
V (new_S_fsm_state = SCS))) in
let 552 = (ALTER ss1 (2) ((new_S_fsm_state = SPF)V (new_S_fsm_state = SCOI)
V (pew_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SSTOP) V (new_S_fsm_state = SO))) in
let s53 = (ALTER ss2 (3) ((new_S_fsm_state = SRA) V (new_S_fsm_state = SPF)
V (new_S_fsm_state = ST) V (new_S_fsm_state = SC1I)
V (new_S_fsm_state = SCS) V (new_S_fsm_state = SN)
V (new_S_fsm_state = SO))) in
let S_state =ss3 in
let Reset_cport = s_fsm_srcp in
let Disable_int = (~(s_fsm_sn A (ELEMENT s_delay_out (6))) A s_fsm_sdi
A ((Test) => ~(ELEMENT s_delay_out (5)) | ~(ELEMENT s_delay_out (16)))) in
let Reset_piu = s_fsm_srp in
let Reset_cpuO = new_S_reset_cpu0 in
let Reset_cpul = new_S_reset_cpul in
let Cpu_hist = new_S_cpu_hist in
let Piu_fail = new_S_piu_fail in

213

let Cpu0_fail = new_S_cpu0_fail in
let Cpul_fail = new_S_cpul_fail in
let Pmm_fail = new_S_pmm_fail in

(S_state, Reset_cport, Disable_int, Reset_piu, Reset_cpu0, Reset_cpul, Cpu_hist, Piu_fail, Cpu0_fail,
Cpul_fail, Pmm_fail)”
)i

close_theory();;

214

Appendix E ML Source for the PIU Block-Level Specification.
This appendix contains the HOL model for the PIU block-level structural specification.

File: piu_block.ml
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the block-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center. At this level
the blocks correspond to the four PIU ports and the startup controller.

%

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/piwhol/lib/*;
/home/titan3/dfura/ftep/pin/hol/pport/;
‘/home/titan3/dfura/ftep/piwholicport/*;
‘/home/titan3/dfura/ftep/piv/hol/mport/*;
/home/titan3/dfura/ftep/piu/hol/cport/;
/home/titan3/dfura/ftep/piu/hol/sucont/]);;

system ‘rm piu_block.th*;;

new_theory ‘piu_block’;;

loadf ‘abstract’;;

map new_parent { ‘aux_def*;'p_clockl*;‘c_clock1*; ‘m_clock1*;‘c_clock1‘;'s_clock1'};;
let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

let PIU_Block_SPEC = new_definition
(‘PTU_Block_SPEC’,
“1 (rep:~rep_ty)
(P_fsm_state :pfsm_ty)
(P_addr P_be_ P_size :wordn)
(P_destl P_wr P_fsm_rst P_fsm_sack P_fsm_cgnt_P_fsm_hold_P_rqt P_down P_lock_
P_lock_inh_ P_male_ P_rale_ :bool)
(C_mfsm_state :cmfsm_ty) (C_sfsm_state :csfsm_ty) (C_efsm_state :cefsm_ty)
(C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss C_source C_data_in C_iad_out C_iad_in C_ala0 C_a3a2 :wordn)
(C_mfsm_D C_mfsm_rst C_mfsm_crqt_ C_mfsm_hold_ C_mfsm_invalid C_sfsm_D C_sfsm_rst C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_last_in_ C_lock_in_ C_last_out_ C_hold_ C_holdA_ C_cout_0_le_del C_cin_2_le

C_mrdy_del_ C_iad_en_s_del C_iad_en_s_delA C_wrdy C_rrdy C_parity :bool)
(M_fsm_state :mfsm_ty)

(M_count M_addr M_be M _rd_data M_detect :wordn)

(M_fsm_male_ M_fsm_last_ M_fsm_mrdy_ M_fsm_rst M_se M_wr M_rdy M_wwdel M_parity :bool)
(R_fsm_state :rfsm_ty)

(R_ctrO_in R_ctrO R_ctr0_new R_ctrO_out R_ctrl_in R_ctrl R_ctrl_new R_ctrl_out R_ctr2_in R_ctr2 R_ctr2_new
R_ctr2_out R_ctr3_in R_ctr3 R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr R_cer R_ger R_sr

215

R_reg_sel R_busA_latch :wordn)

(R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_ R_fsm_rst R_ctrO_mux_sel R_ctr0_irden R_ctrO_cry R_ctrO_orden
R_ctrl_mux_sel R_ctrl_irden R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden
R_ctr3_mux_sel R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_ccr_rden R_gcr_rden R_sr_rden
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del R_srdy_del_ :bool)
(S_fsm_state :sfsm_ty)

(S_soft_cat S_delay :wordn)

(S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass S_soft_shot_del S_bad_cpu0 S_bad_cpul
S_reset_cpu0 S_reset_cpul S_cpu_hist S_pmm_fail S_cpuQ_fail S_cpul_fail S_piu_fail :bool)

(L_ad_in L_be_ :wordn)

(CIkA CIkB Rst L_ads_ L_den_L_wr L_lock_ :bool)

(CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID :wordn)
(CIkD :bool)

(MB_data_in :wordn)

(Edac_en_ :bool)

(Bypass Test Failure0_ Failurel _ :bool)

(L_ad_out :wordn)

(L_ready_ :bool)

(CB_ad_out CB_ms_out CB_ss_out :wordn)
(CB_rqt_out_ :bool)

(MB_addr MB_data_out :wordn)

(MB_cs_eeprom_ MB_cs_sram_ MB_we_ MB_oe_ :bool)
(Led :wordn)

(Int0_ Int] Int2 Int3_ Cpu_hist :bool) .

PIU_Block_SPEC rep
(P_addr, P_dest], P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,
P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_,
C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_crqt_, C_mfsm_hold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hlda_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_rst,
C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock_in_, C_ss, C_last_out_,

A

C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_iad_en_s_delA,
C_wrdy, C_rrdy, C_parity, C_source, C_data_in, C_iad_out, C_iad_in, C_ala0,C_a3a2,

M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect,

R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_ctr0,
R_ctr(_irden, R_ctrO_new, R_ctr0_cry, R_ctrO_out, R_ctrO_orden, R_ctrl_jn, R_ctrl_mux_sel,

R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry, R_ctr!_out, R_ctrl_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_cor_rden, R_ger, R_ger_rden, R_sr, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_int]_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch,

S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass, S_soft_shot_del,
S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul, S_cpu_hist, S _pmm_fail,
S_cpu0_fail, S_cpul_fail, S_piu_fail)

(CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L._be_, L_wr, L_lock_,

CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, CIkD, Id, ChannelID,

MB_data_in, Edac_en_,

Bypass, Test, FailureQ_, Failurel)

(L_ad_out, L_ready_,

216

CB_ad_out, CB_ms_out, CB_ss_out, CB_rqt_out_,
MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_,
Int0_, Intl, Int2, Int3_, Led, Cpu_hist) =

? (i_ad i_be_ :wordn)
(i_male_i_rale_i_crqt_i_cgnt_ i_cale_i_mrdy_i_srdy_i_last_ i_bold_i_hlda_i_lock_ :bool)

(c_ss :wordn)
(disable_writes cb_parity :bool)

(ccr :wordn)
(reset_error piu_invalid :bool)

(mb_parity :bool)

(s_state :wordn)
(teset_cport disable_int reset_piu reset_cpu0 reset_cpul piu_fail pmm_fail cpu0_fail cpul_fail :bool) .

(p_interp rep ((P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_bold_,
P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_),
(CIkA, CIkB, reset_piu, L_ad_in, L_ads_, L_den_,L_be_, L_wr L lock_, i_ad, i_cgnt_, i_bold_, i_srdy_),
(L_ad_out,L_ready_,i_ad,i_ad,i_be_, i_rale_,i_male_,i_crqt_,i_cale_, i_mrdy_,i_last_,i hida_, i_lock_A
(c_interp rep ((C_mfsm_state,C_mfsm_D,C _mfsm_rst,C_mfsm_crqt__,C_mfsm_hold_.C_mfsm_ss,C_mfsm_inva.lid.
C_sfsm_state,C_sfsm_D,C_sfsm _rst,C_sfsm_hlda_,C_sfsm_ms,
C_efsm_stnte,C_efsm_cale_.C_efsm_last_,C_efsm_male_,C_efsm_rale_.C_efsm_s:dy_,C_efsm_rst.
C_wr,C_sizewrbe,C_c]kA,C_last_in_,C_lock_in_.C_ss,C_last_out_.
C_hold_,C_holdA_,C_cout_O_le_de],C_cin_2_le,C _mrdy_del__.C__iad_en_s_del.C_iad_cn__s_delA,
C_wrdy,C_rrdy,C _paxity.C_source.C_data_in.C_iad_out,C_iad_in,C_a] a0,C_a3a2),
(i_ad, i_be_, i_mrdy_, i_rale_, i_male_, i_last_, i_srdy_, i_lock_, i_cale_,i_blda_,i_crqt_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in,
reset_cport, ClkA, ClkB, CIkD, 1d, ChannelID, pmm_fail, piu_invalid, cct, reset_error),
(i_cgnt_, i_mrdy_, i_hold_, 1 _rale_, i_male_, i_last_,i_srdy_, i_ad, i be_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out, c_ss, disable_writes, cb, _parity))) A
(m_interp rep ((M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se,
M_wr, M_addr, M_be, M_rdy, M_wwdel, M _parity, M_rd_data, M_detect),
(ClkA, CIkB, reset_piu, reset_cport, disable_writes, i_ad, i_male_, i_last_,1_be_,
i_mrdy_, MB_data_in, Edac_en_, reset_error),
(i_ad, i_srdy_, MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_, mb_parity))) A
(r_interp rep ((R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_ctr0,
R_ctrO_irden, R_ctrO_new, R_ctr0_cry, R_ctr0_out, R_ctrQ_orden, R_ctr]l_in, R_ctrl_mux_sel,
R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry, R_ctrl_out, R_ctr]_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_ccr_rden, R_ger, R_ger_rden, R_sr, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_intl_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch),
(CIkA, reset_piu, i_ad, i_rale_, i_last_, i_be_, i_mrdy_, disable_int, disable_writes,
cpu0_fail, cpul_fail, reset_cpuO, reset_cpul, piu_fail, pmm_fail, s_state, Id,
ChannelID, cb_parity, mb_parity, c_ss),
(i_ad, i_srdy_, IntO_, Int], Int2, Int3_, ccr, Led, reset_error, piu_invalid))) A
(s_interp rep ((S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpuQ, S_reset_cpul,
S_cpu_hist, S_pmm _fail, S_cpu0_fail, S_cpul_fail, S _piu_fail),
(CIkA, CIkB, Rst, Bypass, Test, Led, FailureO_, Failurel_),

217

(s_state, reset_cport, disable_int, reset_piu, reset_cpuO, reset_cpul, Cpu_hist,
ptu_fail, cpuO_fail, cpul_fail, pmm_fail)))”
X
close_theory();;

218

Appendix F ML Source for the PIU Clock-Level Specification.

This appendix contains the HOL model for the clock-level specification of the PIU.

File: piu_clock1l.m]
Author: (c) D.A. Fura 1992
Date: 31 March 1992

This file contains the ml source for the clock-level specification of the FTEP PIU, an ASIC
developed by the Embedded Processing Laboratory, Boeing High Technology Center.

%

set_search_path (search_path() @ [‘/home/titan3/dfura/ftep/pin/hol/lib/*;
‘fhome/titan3/dfura/ftep/piv/hol/pport/*;
‘/home/titan3/dfura/ftep/piu/hol/cport/*;
‘/home/titan3/dfura/ftep/pin/hol/mport/‘;
‘/home/titan3/dfura/ftep/pin/hol/rport/*;
/home/titan3/dfura/ftep/piu/hol/sucont/]);;

system ‘rm piu_clockl.th;;

new_theory ‘piu_clockl*;;

map new_parent [‘paux_def*; ‘caux_def";‘maux_def"; ‘raux_de - tsaux_def*;‘aux_def*; array_def*;‘wordn_def*];;
loadf “abstract';;

let MSTART = “WORDN 47;;
let MEND = “WORDN 57;;
let MRDY = “WORDN 6";;
let MWAIT = “WORDN 77;;
let MABORT = “WORDN 07;;

let SACK = “WORDN 5”;;
let SRDY = “WORDN 6';;
let SWAIT = “WORDN 77;;
let SABORT = “WORDN 0”;;

let piu_state_ty = “:(wordn#bool#wordn#bool#pfsm_ty#bool#bool#bool#bool#bool#wordn#bool#bool#bool#bool#bool#
cmfsm_ty#bool#bool#bool#bool#wordn#bool#
csfsm_ty#bool#bool#boolwordn#
cefsm_ty#booHibool#bool#bool#boo#bool#
bool#wordn#bool¥bool#boolwordn#bool#
bool#bool#boolitbool#bool#bool#bool#
bool#bool#booWwordn#wordn#wordn#wordn#wordo#wordn#
mfsm_ty#bool#bool#bool#bool#wordn#bool#bool#wordn#wordn#bool#bool#bool#wordn#wordn#
rfsm_ty#bool#bool#bool#bool#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#
wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#wordn#bool#
Wordn#bool#wordn#bool#wordn#bool#bool#wordn#wordn#bool#wordn#wordn#boo]#wordn#bool#wordn#

219

bool#bool#bool#bool#bool#boobool#booltbool#boowordn#wordn#
sfsm_ty#bool#bool#bool#bool#boobool#wardn#wordn#
bool#bool#book#bool#bool#booWbool#bool#bool)’;;

let piu_state = “((P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsin_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,

P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_,
C_mfsm_state,C_mfsm_D,C_mfsm_rst,C_mfsm_crqt ,C_mfsm_hold_,C_mfsm_ss,C_mfsm_invalid,
C_sfsm_state,C_sfsm_D,C_sfsm_rst,C_sfsm_hlda_,C_sfsm_ms,
C_efsm_state,C_efsm_cale_,C_efsm_last_,C_efsm_male_,C_efsm_rale_C_efsm_srdy_,C_efsm_rst,
C_wr,C_sizewrbe,C_clkA,C_last_in_.C_lock_in_,C_ss,C_last_out_,
C_hold_,C_holdA_,C_cout_0_le_del,C_cin_2_le,C_mrdy_del_,C_iad_en_s_del,C_iad_en_s_delA,
C_wrdy,C_rrdy,C_parity,C_source,C_data_in,C_iad_out,C_iad_in,C_ala0,C_a3a2,
M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect,
R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_ctr0,
R_ctrO_irden, R_ctrO_new, R_ctr0_cry, R_ctr0_out, R_ctrO_orden, R_ctrl _in, R_ctrl_mux_sel,
R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry, R_ctrl_out, R_ctrl_orden, R_ctr2_in, R_ctr2_mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_ccr_rden, R_ger, R_ger_rden, R_st, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_int]_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch,
S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass,
S_soft_shot_del, S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul,
S_cpu_hist, S_pmm_fail, S_cpuO_fail, S_cpul_fail, S_piu_fail)

Apiu_state_ty)’’;;

let piu_env_ty = “:(bool#bool#bool#wordn#bool#bool¥wordn#bool#bool#
wordn#wordn#wordn#wordn#bool#wordn#wordn#
wordo#bool#
booklbool#bool#bool)”;;
let piu_env = “((ClkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_, L_wr, L_lock_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, CIkD, Id, ChannellD,
MB_data_in, Edac_en_,
Bypass, Test, FailureO_, Failurel_)
Apiu_env_ty)";;

let piu_out_ty = “:(wordn#bool#
boowordn#wordn#wordn#
wordn#wordn#bool#bool#bool#bool#
bool#bool#bool#tbool#wordn#
bool#bool#bool#tbool#bool#bool#bool)”;;
let piu_out = “((L_ad_out, L_ready_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out,
MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_,
IntO_, Intl, Int2, Int3_, Led,
Reset_cpu0, Reset_cpul, Cpu_hist, Piu_fail, Cpu0_fail, Cpul _fail, Pmm_fail)
Apiu_out_ty)";;

let rep_ty = abstract_type ‘aux_def* ‘Andn‘;;

o9
4

Next-state definition for EXEC instruction.

220

let piuEXEC_inst_def = new_definition
(‘piuEXEC_inst',

“1 (rep:"rep_ty)

(P_fsm_state :pfsm_ty)

(P_addr P_be_ P_size :wordn)

(P_destl P_wr P_fsm_rst P_fsm_sack P_fsm_cgnt_ P_fsm_hold_P_rqt P_down P_lock_

P_lock_inh_ P_male_ P_rale_ :bool)

(C_mfsm_state :cmfsm_ty) (C_sfsm_state :csfsm_ty) (C_efsm_state :cefsm_ty)

(C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss C_source C_data_in C_iad_out C_iad_in C_ala0 C_a3a2 :wordn)

(C_mfsm_D C_mfsm_rst C_mfsm_crgt_C _mfsm_hold_ C_mfsm_invalid C_sfsm_D C_sfsm_rst C_sfsm_hlda_
C_efsm_cale_ C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_cIkA C_last_in_ C_lock_in_ C_last_out_ C_hold_ C_holdA_ C_cout_0_le_del C_cin_2 le
C_mrdy_del_ C_iad_en_s_del C_iad_en_s_delA C_wrdy C_rrdy C _parity :bool)

(M_fsm_state :mfsm_ty)

(M_count M_addr M_be M_rd_data M_detect :wordn)

(M_fsm_male_ M_fsm_last_ M_fsm_mrdy_ M_fsm_rst M_se M_wr M_rdy M_wwdel M_parity :bool)
(R_fsm_state :rfsm_ty)

(R_ctrO_in R_ctr0 R_ctrO_new R_ctr0_out R_ctrl_in R_ctrl R_ctr]_new R_ctrl_out R_ctr2_in R_ctr2 R_ctr2_new
R_ctr2_out R_ctr3_in R_ctr3 R_ctr3_new R_ctr3_out R_icr_old R_jcr_mask R_icr R_cer R_ger R_st
R_reg_sel R_busA_latch :wordn)

(R_fsm_ale_ R_fsm_mrdy_ R_fsm_last_ R_fsm_rst R_ctrO_mux_sel R_ctr0_irden R_ctr0_cry R_ctrO_orden
R_ctrl_mux_sel R_ctrl_irden R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden
R_ctr3_mux_sel R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R _icr_rden R_ccr_rden R_ger_rden R_sr_rden
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del R_srdy_del_ :bool)
(S_fsm_state :sfsm_ty)

(S_soft_cnt S_delay :wordn)

(S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass S_soft_shot_del S_bad_cpu0 S_bad_cpul
S_reset_cpuO S_reset_cpul S_cpu_hist S _pmm_fail S_cpu0_fail S_cpul_fail S_piu_fail :bool)

(L_ad_in L_be_ :wordn)

(CIkA CIkB RstL_ads_L_den_L_wr L_lock_ :bool)

(CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID :wordn)
(CIkD :bool)

(MB_data_in :wordn)

(Edac_en_ :bool)

(Bypass Test Failure0_ Failurel :bool} .

PIuEXEC_inst rep
(P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,
P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_,
C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_crqt_, C_mfsm_hold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hida_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_gst,
C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock_in_, C_ss, C_last_out_,

C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2 _le, C_mrdy_del_, C_iad_en_s_del, C_iad_en_s_delA,

C_wrdy, C_mrdy, C_parity, C_source, C_data_in, C_iad_out, C_iad_in, C_ala0,C_a3a2,

M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect,

R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_cts0,
R_ctrO_irden, R_ctrO_new, R_ctr0_cry, R_ctr0_out, R_ctr0_orden, R_ctrl_in, R_ctrl_mux_sel,

R_ctrl, R_ctrl_irden, R_ctr]l_pew, R_ctrl_cry, R_ctrl_out, R_ctrl_orden, R_ctr2_in, R_ctr2 _mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3 _mux_sel,

221

R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icr, R_ccr, R_ccr_rden, R_ger, R_ger_rden, R_sr, R_sr_rden, R_int0_dis,
R_int3_dis, R_c01_cout_del, R_intl_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch,

S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delayl7, S_fsm_bothbad, S_fsm_bypass, S_soft_shot_del,
S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul, S_cpu_hist, S_pmm_fail,
S_cpu0_fail, S_cpul_fail, S_piu_fail)

(ClkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_, L_wr, L_lock_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, ClkD, Id, ChannellD,
MB_data_in, Edac_en_,

Bypass, Test, FailureQ_, Failurel_) =

let new_P_fsm_state =

((P_fsm_rst) =>PA |

((P_fsm_state = PH) => ((~P_fsm_hold_) => PH I PA) |

((P_fsm_state = PA) =>
(((P_rqt A ~P_dest1) V (P_rqt A P_destl A ~P_fsm_cgnt_)) => PD |
((~P_fsm_hold_ AP_lock_)=>PHIPA))!

((P_fsm_state = PD) =>
(((P_fsm_sack A P_fsm_hold_) V (P_fsm_sack A ~P_fsm_hold_ A ~P_lock_)) =>PA !
((P_fsm_sack A ~P_fsm_hold_ AP_lock_)=>PHIPD))IP_ILL)))) in

let c_write = ((~(C_mfsm_state = CMI)) A (~(C_mfsm_state = CMR))) => C_wr | (ELEMENT C_sizewrbe (5))) in
let c_busy = (~((SUBARRAY CB_1qt_in_ (3,1)) = (WORDN 7))) in
let c_grant = ((SUBARRAY Id (1,0)) = (WORDN 0)) A «(ELEMENT CB_rqt_in_ (0)))
V (((SUBARRAY Id (1,0)) = (WORDN 1)) A ~(ELEMENT CB_rqt_in_ (0)}
A (ELEMENT CB_rqt_in_ (1)))
V (((SUBARRAY Id (1,0)) = (WORDN 2)) A <(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_rqt_in_ (0))
A (ELEMENT CB_zqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2))
A (ELEMENT CB_xsqt_in_ (3)))) in
let c_addressed = (Id = (SUBARRAY C_source (15,10))) in
let new_C_mfsm_state =
((C_mfsm_rst) => CMI |
((C_mfsm_state = CMI) =>
(C_mfsm_D A ~C_mfsm_crqt_ A ~c_busy A ~C_mfsm_invahd) => CMR | CMI |
((C_mfsm_state = CMR) => (C_mfsm_D A c_grant A C_mfsm_hold_) => CMA3 iCMR |
((C_mfsm_state = CMA3) => ((C_mfsm_D) => CMAl | CMA3) |
((C_mfsm_state = CMA1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMAO|
(C_mfsm_D A (C_mfsm_ss = \SABORT)) => CMABT | CMAL |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2 |
(C_mfsm_D A (C_mfsm_ss = "SABORT)) => CMABT | CMAO |
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2 |
((C_mfsm_state = CMDI1) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMDO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMD1 |

222

((C_mfsm_state = CMDQ) =>

(C_mfsm_D A (C_mfsm_ss = "SRDY) A C_last_in_) => CMD1 |

(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_last_in_)=>CMW |

(C_mfsm_D A (C_mfsm_ss = "SABORT)) => CMABT | CMDO |
((C_mfsm_state = CMW) =>

(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT |

(C_mfsm_D A (C_mfsm_ss = *SACK) A C_lock_jn_) => CMI |

(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_lock_in_ A ~C_mfsm_crqt_) =>CMA3 | CMW I
((~C_last_in_) => CMI| CMABT)))M)))) in

let new_C_sfsm_state =

((C_sfsm_rst) => CSI |

(C_sfsm_state = CSI) =>

((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSA1 | CSD) |

(C_sfsm_state = CSL) =>

(C_sfsm_D A (C_sfsm_ms = "MSTART) A ~c_grant A c_addressed) => CSAL |

(C_sfsm_D A (C_sfsm_ms = AMSTART) A\ ~c_grant A ~c_addressed) => CS11

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABTICSL)I
(C_sfsm_state = CSAl) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSAO!

(C_sfsm_D A (C_sfsm_ms = MABORT)) => CSABT ICSAl)!}
(C_sfsm_state = CSA0) =>

((C_sfsm_D A (C_sfsm_ms = ‘MRDY) A ~C_sfsm_hlda_) =>CSALE |

(C_sfsm_D A (C_sfsm_ms = MRDY) A C_sfsm_hlda_) => CSAOW |

(C_sfsm_D A (C_sfsm_ms = ‘MABORT)) => CSABT I CSA0) |
(C_sfsm_state = CSAOW) =>

((C_sfsm_D A (C_sfsm_ms =*MRDY) A ~C_sfsm_hlda_) =>CSALE |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>

((C_sfsm_D A c_write A (C_sfsm_ms = *MRDY)) => CsSD11

(C_sfsm_D A ~c_write A (C_sfsm_ms = AMRDY)) =>CSRR |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT I CSALE)!
(C_sfsm_state = CSRR) =>

((C_sfsm_D A ~(C_sfsm_ms = "MABORT)) => CSD1 |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABTICSRR)!
(C_sfsm_state = CSD1) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSDO |

(C_sfsm_D A (C_sfsm_ms = AMABORT)) => CSABT | CsD1) |
(C_sfsm_state = CSDO) =>

((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |

(C_sfsm_D A (C_sfsm_ms = “MRDY)) => CSD1 |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT ICSDO) |
(C_sfsm_state = CSACK) =>

((C_sfsm_D A (C_sfsm_ms = "MRDY)) => CSL |

(C_sfsm_D A (C_sfsm_ms = AMWAIT)) => CSI |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT | CSACK)|
(C_sfsm_D) => CSI| CSABT) in

let new_C_efsm_state =
((C_efsm_rst) => CEI |
(C_efsm_state = CEI) => ((~C_efsm_cale_) => CEEICED |
((~C_efsm_last_ A ~C_efsm_srdy_)V ~C_efsm_male_ V ~C_efsm_rale_) => CEI | CEE) in

let m_bw = ((~(M_be = (WORDN 15))) AM_wr A (~(M_fsm_state = MI))) in

223

let m_ww = ((M_be = (WORDN 15)) A M_wr A (~(M_fsm_state = MI))) in
let new_M_fsm_state =
(M _fsm_rst) => MI |
((M_fsm_state = MI) => ((~M_fsm_male_) =>MA IMI) |
((M_fsm_state = MA) =>
((~M_fsm_mrdy_ Am_ww)=>MW]
((~M_fsm_mrdy_ A ((~M_wr A (~(M_fsm_state = MI))) Vm_bw)) => MR IMA)) |
((M_fsm_state = MR) =>
((m_bw A (M_count = (WORDN 0))) => MBW |
((M_fsm_last_ A\ ~M_wr A (~(M_fsm_state = MI)) A\ (M_count = (WORDN 0))) => MA |
((~M_fsm_last_ A ~M_wr A (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MRR | MR))) |
((M_fsm_state = MRR) => MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ A (M_count = (WORDN 0))) => MI ||
((M_fsm_last_ A (M_count = (WORDN 0))) => MA IMW)) |
((M_fsm_state = MBW) => MW | M_ILL))))))) in

let new_R_fsm_state =
((R_fsm_rst) =>RI 1|
((R_fsm_state = RI) => ((~R_fsm_ale_) =>RA IRI) |
((R_fsm_state = RA) => ((~R_fsm_mrdy_) => RD | RA} |
((~R_fsm_last_) => RI | RA)))) in
let r_fsm_cntlatch = ((R_fsm_state = RI) A ~R_fsm_ale_) in
letr_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in

let new_S_fsm_state =

((S_fsm_rst) => SSTART |

((S_fsm_state = SSTART) => SRA |

((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) |

((S_fsm_state = SPF) => SCOI |

((S_fsm_state = SCOI) => ((S_fsm_delay17) => SCOF | SCOI) |

((S_fsm_state = SCOF) => ST |

((S_fsm_state = ST) => SCI1I|

((S_fsm_state = SC1I) => ((S_fsm_delay17) => SC1F | SCII)1

((S_fsm_state = SC1IF) => SS |

((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS)|

((S_fsm_state = SSTOP) => SSTOP |

((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |

((S_fsm_state = SN) => ((S_fsm_delayl17) => SO I SN} |

((S_fsm_state = SO) => SO | S_ILL))))))N)) in
let s_fsm_sn = (new_S_fsm_state = SN) in
let s_fsm_so = (new_S_fsm_state = SO) in
let reset_cport = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_sdi = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let reset_piu = ((new_S_fsm_state = SSTART) V (new_S_fsm_state = SRA)

V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1F) V (new_S_fsm_state = SS) \V (new_S_fsm_state = SCS)) in

let s_fsm_srcO = ((~(new_S_fsm_state = SPF)) A (~(new_S_fsm_state = SCOI))) in
let s_fsm_srcl = ((~(new_S_fsm_state = ST)) A (~(new_S_fsm_state = SC1I))) in
let s_fsm_spf = ((S_fsm_state = SRA) A S_fsm_delay6 A ~S_fsm_rst) in
let s_fsm_scOf = (new_S_fsm_state = SCOF) in
let s_fsm_sclf = (new_S_fsm_state = SC1F) in
let s_fsm_spmf = (new_S_fsm_state = SO) in
let s_fsm_sb = (new_S_fsm_state = SSTART) in

224

let s_fsm_src = ((new_S_fsm_state = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)V (new_S_fsm_state = SC1F)
V (new_S_fsm_state = SS) V ((S_fsm_state = SCS) AS_fsm_delay6)) in
let s_fsm_sec = (((~(new_S_fsm_state = SSTOP)) A (~(pew_S_fsm_state = SO))) V (S_fsm_state = SN)) in
let s_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST) A ~S_fsm_rst)) in
let s_fsm_scs = (new_S_fsm_state = SCS) in

let new_P_addr = ((~P_rqt) => (SUBARRAY L_ad_in (25,0)) ! P_addr) in
Jet new_P_destl = ((~P_rqt) => (ELEMENT L _ad_in (31)) | P_dest!) in
let new_P_be_= ((~P_rqt)=>L_be_|P_be_) in
let new_P_wr = ((~P_1qt) => L_wr | P_wr) in
let new_P_size =

((~P_rqt) => (SUBARRAY L _ad_in (1,0)) |
((P_down) => (DECN 1 P_size) | P_size)) in
Jet new_C_holdA_ = ((CikD) =>C_hold_| C_holdA_) in
let i_cale_ = ~((new_C_mfsm_state = CMA3) A {new_P_fsm_state = PA)A pew_C_holdA_) in
let c_srdy_en = ((new_C_efsm_state = CEE) V (C_efsm_state = CEE)) in
let new_M_count =

(((new_M_fsm_state = MA) V (new_M_fsm_state = MBW)) => (M_se) => (WORDN 1) | (WORDN A}
(((new_M_fsm_state = MW) V (new_M_fsm_state = MR)) => (DECN 2 M_count) | M_count)) in
let m_rdy = (((new_M_fsm_state = MW) A (new_M_count = (WORDN 0)))
V ((new_M_fsm_state = MR) A (new_M_count = (WORDN 0)) A ~M_wr)) in
let m_srdy_ = ~((M_rdy A ~M_wr) V (m_rdy AM_wr)) in
let i_srdy_ = ((~i_cale_V c_srdy_en) => ~(C_wrdy VC_mrdy V (new_C_mfsm_state = CMABT)) !
~(new_M_fsm_state = MI) => m_srdy_ |
((new_R_fsm_state = RA) V (new_R_fsm_state = RD)) => ~((R_fsm_state = RA) A
(new_R_fsm_state = RD)) | ARB) in

let p_ale = (~L_ads_AL_den_) in
let p_sack = ((P_size = ((P_down) => (WORDN 1) | (WORDN 0))) A ~i_srdy_ A (new_P_fsm_state = PD)) in
let new_P_rqt =

((p_ale A ~(p_sack V reset_piu)) =>T|
((~p_ale A (p_sack V reset_piu)) => F |

((~p_sale A ~(p_sack V reset_piu)) =>P_rqt | ARB))) in
let new_P_down = (~i_srdy_ A (new_P_fsm_state = PD)) in
let new_P_male_ = ((new_P_fsm_state = PA) =>

~(~new_P_destl A (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) Anew_P_rqt) | P_male_) in
let new_P_rale_ = ((new_P_fsm_state = PA) =>

~(~pew_P_destl A ((SUBARRAY new_P_addr (25,24)) = (WORDN 3)) Anew_P_rqt) | P_rale_)in
let new_P_lock_ =

((reset_piu) => T

((new_P_fsm_state = PD) => L_lock_ | P_lock)) in
let new_P_lock_inh_ =

((reset_piu) =>T'|

((~new_P_male_V ~new_P_rale) => L_lock_1P_lock_inh_})in
let pod31_27 = (MALTER ARBN (31,27) new_P_be_) in
let pod31_26 = (ALTER pod31_27 (26) F) in
let pod31_24 = (MALTER pod31_26 (25,24) (SUBARRAY new_P_addr (1,0))) in
let new_C_iad_en_s_delA = ((CIkD) => C_jad_en_s_del | C_iad_en_s_delA) in
let new_C_sizewrbe = ((reset_cport) => (WORDN 0} |

(((new_C_sfsm_state =CSAONC_clkA)=> (SUBARRAY C_data_in (31,22))1 C_sizewrbe)) in
let c_new_write = (((~(new_C_mfsm_state = CMI)) A (~(new_C_mfsm_state = CMR))) =>
C_wr | (ELEMENT new_C_sizewrbe (5))) in

let new_C_iad_out = ((C_cin_2_le) => C_data_in | C_iad_out) in
let r_reg_sel = ((~R_srdy_del_) => (INCN3 R _reg_sel) |R_reg_sel) in

225

let new_R_icr =
((R_icr_load) =>
((~(r_reg_sel = (WORDN 1))) => (Andn rep (R_icr_old, R_icr_mask)) | (Om rep (R_icr_old, R_icr_mask))) |
R_icr) in
let new_R_busA_latch =
((R_ctrO_irden) => R_ctrO_in |
((R_ctrO_orden) => R_ctrO_out |
((R_ctri_irden) => R_ctrl_in |
((R_ctrl_orden) => R_ctr]l_out |
((R_ctr2_irden) =>R_ctr2_in |
((R_ctr2_orden) => R_ctr2_out |
((R_ctr3_irden) => R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => new_R_icr |
((R_ccr_rden) => R_cer |
((R_ger_rden) => R _ger |
((R_sr_rden) => R_sr | ARB))))))))) in
let i_ad = ((new_P_fsm_state = PA) => pod31_24 |
((new_P_fsm_state = PD) Anew_P_wr)=>L_ad_in|
(new_C_jad_en_s_delAV
((new_C_mfsm_state = CMD1) A ~c_new_write A c_srdy_en) V
((new_C_mfsm_state = CMDO) A ~c_new_write A c_srdy_en) V
((new_C_mfsm_state = CMW) A (C_mfsm_state = CMDO) A ~c_pew_write A c_srdy_en) V
((new_C_sfsm_state = CSALE) A (~(C_sfsm_state = CSALE))) V
((new_C_sfsm_state = CSALE) A c_new_write) V
((new_C_sfsm_state = CSD1) A c_new_write A (~(C_sfsm_state = CSRR))) V
{(new_C_sfsm_state = CSDO) A c_new_write) \/
{(new_C_sfsm_state = CSACK) A c_new_write)) => new_C_iad_out |
(M_wr A ~(new_M_fsm_state = MI)) => M_rd_data |
(~R_wr A ((new_R_fsm_state = RA) V (new_R_fsm_state = RD))) => new_R_busA_latch | ARB) in
let disable_wrnites = ((~(new_C_sfsm_state = CSI)) A\ (~(new_C_sfsm_state = CSL)) A
~((ChannelID = (WORDN 0)) A (ELEMENT C_source (6))) A
~((ChannelID = (WORDN 1)) A (ELEMENT C_source (7))) A
~((ChannelID = (WORDN 2)) A (ELEMENT C_source (8))) A
~((CbannelID = (WORDN 3)) A (ELEMENT C_source (9)))) in
leti rale_=
(~(new_P_fsm_state = PH) =>
~(~new_P_destl A ((SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A (new_P_fsm_state = PA) Anew_P_rqt) |
~((new_C_sfsm_state = CSALE) A ((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3)) A C_clkA)) in
let new_R_wr = ((~i_rale_) => (ELEMENT i_ad (27)) IR_wr) in
let r_writeB = (~disable_writes A new_R_wr A (new_R_fsm_state = RD)) in
let r_readB = (~new_R_wr A\ (new_R_fsm_state = RA)) in
let new_R_ger = ((r_writeB A (1_reg_sel = (WORDN 2))) =>i_ad | R_gcr) in
let new_R_gcr_rden = (1_readB A (r_reg_sel = (WORDN 2))) in
let gerl = (ELEMENT new_R_gcr (0)) in
let gerh = (ELEMENT new_R_gcr (1)) in
let reset_error = (ELEMENT new_R_gcr (24)) in
let piu_invalid = (ELEMENT new_R_gcr (28)) in
let cout_sel0 = (ALTER ARBN (0) (((new_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSDO)) =>
(new_C_sfsm_state = CSD1) |
(new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMAI)
V (new_C_mfsm_state = CMD1))) in
let c_cout_sel = (ALTER cout_sel0 (1) (((new_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSD0)) =>
Fi

226

(new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMA2))) in
let new_C_hold_ = (new_C_sfsm_state = CSI) in
let new_C_wr = ((~i_cale_) => (ELEMENT i_ad (27)) | C_wr) in
let new_C_clkA = CIkD in
leti_last_=
(~(new_P_fsm_state = PH) =>
(P_size = ((P_down) => (WORDN 1) | (WORDN O)) |
C_last_out_) in
let new_C_last_in_ = ((reset_cport) => F |
(((new_C_mfsm_state = CMABT) V (new_C_mfsm_state = CMDI1) A CIkD) => 1_last_|
C_last_in_)) in
let new_C_lock_in_ = ((reset_cport) =>F |
{(new_C_mfsm_state = CMAl)=> ~(~new_P_lock_ A new_P_lock_inh_)|
C_lock_in_)) in
let new_C_ss = (((~(new_C_mfsm_state = CMABT)) A (~(new_C_mfsm_state = CMI))) => CB_ss_in 1 C_ss) in
let new_C_last_out_ =
({(new_C_sfsm_state = CSA1) A ~(CIkD A ((CB _ms_in = "MEND) V (CB_ms_in = "MABORT)))) => Tl
((~(new_C_sfsm_state = CSA1) A (CIkD A ((CB _ms_in = "MEND) V (CB_ms_in = "MABORT)))) => Fl
((~(mew_C_sfsm_state = CSA1) A ~(CIkD A ((CB_ms_in = "MEND) V (CB_ms_in = AMABORT)))) =>C_last_out_|
ARB))) in
let ¢_srdy = (CB_ss_in = ASRDY) in
let c_dfsm_master = ((new_C_mfsm_state = CMA3) V (pew_C_mfsm_state = CMA2) V (new_C_mfsm_state = CMAL)
V (new_C_mfsm_state = CMAQ)V (new_C_mfsm_state = CMD1) V (new_C _mfsm_state = CMDO)) in
let ¢_dfsm_cad_en = ~((new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMAL)V (new_C_mfsm_state = CMAO)
V (new_C_mfsm_state = CMA2)
V (c_new_write A ((new_C_mfsm_state = CMD1) V (new_C_mfsm_state = CMDO0)))
V (~c_new_write A ((new_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSD0)))) in
let new_C_cout_0_le_del = ((i_cale_) V (i_srdy_A ~C_pew_write)
V ((new_C_mfsm_state = CMAO) A c_srdy A\ c_new_write A CIkD)
V ((new_C_mfsm_state = CMDO) A c_new_write A c_srdy A CIkD)) in
let new_C_cin_2_le = (CIkD A (((new_C_mfsm_state = CMDO0) A ¢_srdy N ~c_new_write) V
((new_C_sfsm_state = CSA0)) V
((new_C_sfsm_state = CSDO) A c_new_write))) in
let new_C_mrdy_del_ = ~{(~c_new_write A CIkD A ((new_C_sfsm_state = CSALE)V (new_C_sfsm_state = CSD1))) V
(~c_new_write A C_clkA A (new_C_sfsm_state = CSACK)) V
(c_new_write A CIkD A (new_C_sfsm_state = CSDOY)) in
let new_C_iad_en_s_del = (((new_C_sfsm_state =C SALE) A (~(C_sfsm_state = CSALE)))
V ((new_C_sfsm_state = CSALE) A c_new_write)
V ((new_C_sfsm_state = CSD1) A c_new_write \ (~(C_sfsm_state = CSRR)))
V ((new_C_sfsm_state = CSDO) A c_new_write) V
((new_C_sfsm_state = CSACK) A c_pew_write)) in
let new_C_wrdy = (c_srdy A c_new_write N (new_C_mfsm_state = CMD1) A CKkD) in
tet new_C_rrdy = (c_srdy N\ ~c_new_write A (new_C_mfsm_state = CMDO) A CIkD) in
let c_pe = (Par_Det rep (CB_ad_in)) in
let c_mparity = ((new_C_mfsm_state = CMA3)V (pew_C_mfsm_state = CMA1)V (new_C_mfsm_state = CMAO)
V (new_C_mfsm_state = CMA2) V (new_C_mfsm_state = CMD1) V (new_C_mfsm_state = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAO) V (C_mfsm_state = CMA2)
V (C_mfsm_state = CMD1)) in
let c_sparity = ((~(new_C_sfsm_state = CSI)) A (~(new_C_sfsm_state = CSACK)) A (~(new_C_sfsm_state = CSABT))) in
let c_pe_cnt = (CIkD A ((~(c_mparity = c_sparity)) V (SUBARRAY CB_ss_in (1,0)) = (WORDN 0}))) in
let new_C_parity =
(((CIkD A c_pe A c_pe_cnt) A ~reset_error) => Ti
((~(CIkD A c_pe A c_pe_cat) A reset_error) => Fl
((~(CIkD A c_pe A c_pe_cnt) A ~reset_error) => C_parity | ARB))) in

227

let new_C_source =
((reset_cport) => (WORDN 0) |
((CID A ((new_C_sfsm_state = CSI) V (new_C_sfsm_state = CSL))) => Par_Dec rep (CB_ad_in) | C_source)) in
let data_in31_16 =
(MALTER ARBN (31,16) ((reset_cport) => (WORDN 0) |
((CIkD A (((new_C_mfsm_state = CMD1) A c_srdy A ~c_new_write) V
((new_C_sfsm_state = CSAL)) V
((new_C_sfsm_state = CSD1) A c_new_write))) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (31,16))))) in
let new_C_data_in =
(MALTER data_in31_16 (15,0) ((reset_cport) => (WORDN 0) |
((new_C_cin_2_le) => Par_Dec rep (CB_ad_in) |
(SUBARRAY C_data_in (15,0))))) in
let new_C_iad_in = ((new_C_cout_0_le_del) => i_ad | C_iad_in) in
let new_C_alaQ =
(((c_dfsm_master A C_cout_0_le_del) V
(~c_dfsm_master A C_clkA N (new_C_sfsm_state = CSD1))) => C_iad_in | C_ala0) in
let new_C_a3a2 = ((new_C_mfsm_state = CMR) => R_ccr 1 C_a3a2) in
let i_be_ = ((new_P_fsm_state = PA) => new_P_be_|
(new_P_fsm_state = PD) => L_be_| SUBARRAY new_C_sizewrbe (9,6)) in
Jet i_male_ =
(~(new_P_fsm_state = PH) =>
~(~new_P_dest]l A (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A (new_P_fsm_state = PA) Anew_P_rqt) |
~((new_C_sfsm_state = CSALE) A (~((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3))) AC_clkA)) in
let new_M_se = ((~i_male_) => (ELEMENT i_ad (23)) | M_se) in
let new_M_wr = ((~i_male_) => (ELEMENT i_ad (27)) | M_wr) in
let new_M_addr=
((~i_male_) => (SUBARRAY i_ad (18,0)) |
((M_rdy) => (INCN 18 M_addr) | M_addr)) in
let new_M_be = ((~i_male_V ~m_srdy_) => (NOTN 3 i_be_) | M_be) in
let new_M_rdy = m_rdy in
let new_M_wwdel = ((new_M_fsm_state = MA) A new_M_wr A (new_M_be = (WORDN 15))) in
let new_M_rd_data = (((new_M_fsm_state = MR)) => (Ham_Dec rep MB_data_in) | M_rd_data) in
let new_M_detect =
(((new_M_fsm_state = MR) A ~new_M_wr) V new_M_wr V (new_M_fsm_state = MI)) =>
((~Edac_en_) => (Ham_Detl rep MB_data_in) | WORDN 0) | M_detect) in
let m_error = (~m_srdy_ A (~(new_M_fsm_state = MI)) A Ham_Det2 rep (new_M_detect, ~Edac_en_)) in
let new_M_parity =
((m_error A ~(reset_piu V reset_error))=>T |
((~m_error A (reset_piu V reset_error)) =>F |
((~m_error A\ ~(reset_piu V reset_error)) => M_parity | ARB))) in
let new_R_cntlatch_del = r_fsm_cntlatch in
let new_R_srdy_del_=r_fsm_srdy_in
let new_R_reg_sel =
((~i_rale_) => (SUBARRAY i_ad (3,0)) |
((~R_srdy_del_) => (INCN 3 R_reg_sel) | R_reg_sel)) in
let r_writeA = (~disable_writes A R_wr A (new_R_fsm_state = RD)) in
letr_readA = (~R_wr A (new_R_fsm_state = RA)) in
letr_cir_wrOlA = ((r_writeA N\ ({r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wrO1B = ((r_writeB A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wr23A = ((r_writeA N ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))})) in
let r_cir_wr23B = ((r_writeB A ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))))) in
let new_R_ccr = ((r_writeB A (r_reg_sel = (WORDN 3))) =>i_ad | R_cer) in
let new_R_ccr_rden = (r_readB A (r_reg_sel = (WORDN 3))) in

228

let new_R_c01_cout_del=R_ctrl_cry in

let new_R_intl_en =
(((ELEMENT new_R_ger (18)) A (r_cir_wrO1B V (R_ctrl_cry A (ELEMENT new_R_ger (16))) A
~(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R _ger (17)) A R_c01_cout_del))) =>T|
((~((ELEMENT new_R_gcr (18)) A (r_cir_wrO1B V (R_ctrl_cry A (ELEMENT new_R_ger (16))) A
(~(ELEMENT new_R_gcr (18)) V ((ELEMENT new_R_ger (17)) A R_c01_cout_del))) => F1i
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01B V (R_ctrl_cry A (ELEMENT pew_R_gcr (16))) A
~(~(FLEMENT pew_R_ger (18)) V ((ELEMENT pew_R_ger (17)) AR_cO1_cout_del))) => R_intl_en | ARB))) in

let new_R_c23_cout_del = R_ctr3_cry in

let new_R_int2_en =
(((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr (20)))) A
~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_ger (21)) AR_c23_cout_deD))) =>T|
((~((ELEMENT new_R_gcr (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr 20))) A
(~(ELEMENT pew_R_ger (22)) V ((ELEMENT new_R_gcr 1) A R_c23_cout_del))) =>F|
((~((ELEMENT new_R_gcr 22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_ger 200 A
~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_ger (21)) AR_c23_cout_del))) => R_int2_en | ARB))) in

let new_R_ctrO_in = ((r_writeB A (r_reg_sel = (W ORDN 8))) => i_ad | R_ctr0_in) in

let new_R_ctrO_mux_sel = (r_cir_wr01B V ((ELEMENT new_R_ger (16)) A R_ctrl_cry)) n

let new_R_ctrO_irden = (r_readB A (_reg_sel = (W ORDN 8))) in

let new_R_ctr0 = ((R_ctr0_mux_sel) => R_ctr0_in | R_ctrO_new) in

let new_R_ctrO_new = ((ELEMENT new_R_ger (19))) => (INCN 31 R_ctr0) | R_ctr0) in

let new_R_ctrO_cry = ((ONES 31 R_ctrO) A (ELEMENT new_R_gcr (19))) in

let new_R_ctrO_out = ((r_fsm_cntlatch) => R_ctrQ_new | R_ctrO_out) in

let new_R_ctr0_orden = (r_readB A (r_reg_sel = (WORDN 12))) in

let new_R_ctrl_in = ((r_writeB A (r_reg_sel= (W ORDN 9))) => i_ad | R_ctrl_in) in

let new_R_ctrl_mux_sel = (r_cir_wr01B V ((ELEMENT new_R_gcr (16)) A R_ctrl_cry)) in

let new_R_ctr]l_irden = (r_readB A (r_reg_sel = (WORDN 9))) in

let new_R_ctr] = ((R_ctrl_mux_sel) => R_ctrl _in | R_ctrl_new) in

let new_R_ctrl_new = ((R_ctrO_cry) => (INCN 31 R_ctrl) | R_ctrl) in

let new_R_ctrl_cry = ((ONES 31 R_ctrl) AR_ctr0_cry) in

let new_R_ctrl_out = ((R_cntlatch_del) => R_ctrl_new | R_ctr1_out) in

let new_R_ctrl_orden = (r_readB A (r_reg_sel = (WORDN 13))) in

let new_R_ctr2_in = ((r_writeB A (r_reg_sel = (W ORDN 10))) => i_ad IR_ctr2_in) in

let new_R_ctr2_mux_sel = ((r_cir_wr23B V ((ELEMENT new_R_gcr (20)) AR_ctr3_c1y))) in

let new_R_ctr2_irden = (r_readB A (1r_reg_sel = (W ORDN 10))) in

let new_R_ctr2 = ((R_ctr2_mux_sel) =>R_ctr2_in | R_ctr2_new)in

let new_R_ctr2_new = (((ELEMENT new_R_ger (23))) => (INCN 31 R_ctr2) IR _ctr2) in

let new_R_ctr2_cry = ((ONES 31 R_ctr2) A (ELEMENT new_R_gcr (23))) in

let new_R_ctr2_out = ((r_fsm_cotlatch) => R_ctr2_new | R_ctr2_out) in

let new_R_ctr2_orden = (r_readB A (r_reg_sel = (WORDN 14))) in

let new_R_ctr3_in = ((r_writeB A (1_reg_sel = (WORDN 11))) =>i_ad | R_ctr3_in) in

let new_R_ctr3_mux_sel = ({r_cir_wr23B V ((ELEMENT new_R_gcr (20)) AR _ctr3_cry))) in

let new_R_ctr3_irden = (r_readB A (r_reg_sel = (WORDN 11)))in

let new_R_ctr3 = ((R_ctr3_mux_sel) => R_ctr3_in | R_ctr3_pew) in

let new_R_ctr3_new = ((R_ctr2_cry) => (INCN 31 R_ctr3) | R_ctr3) in

let new_R_ctr3_cry = ((ONES 31 R_ctr3) AR _ctr3_cry) in

let new_R_ctr3_out = ((R_cntlatch_del) => R_ctr3_new | R_ctr3_out) in

let new_R_ctr3_orden = (r_readB A (r_reg_sel = (WORDN 15))) in

let new_R_icr_load = (r_writeB A ((r_reg_sel = (WORDN 0)) V (1_reg_sel = (WORDN 1)))) in

let new_R_icr_old =
((r_writeB A ((r_reg_sel = (WORDN 0)) V (r _reg_sel =(WORDN 1)))) => R_icr I R_icr_old) in

let new_R_icr_mask =
{(r_writeB A ((r_reg_sel = (WORDN 0)) V (r. _reg_sel = (WORDN 1)))) =>i_ad | R_icr_mask) in

let new_R_icr_rden = ((new_R_fsm_state = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)})) in

229

let r_int0_en = ((ELEMENT R_icr (0)) A (ELEMENT R_icr (8))) V
((ELEMENT R_icr (1)) A (ELEMENT R_icr (9))) V
((ELEMENT R_icr (2)) A (ELEMENT R_icr (10))) V
((ELEMENT R_icr (3)) A (ELEMENT R_icr (11))) V
((ELEMENT R_icr (4)) A (ELEMENT R_icr (12))) V
((ELEMENT R_icr (5)) A (ELEMENT R_icr (13))) V
((ELEMENT R_icr (6)) A (ELEMENT R_icr (14))) V
((BELEMENT R_icr (7)) A (ELEMENT R_icr (15)))) in

let new_R_int0_dis = r_int0_en in

let r_int3_en = (((ELEMENT R_icr (16)) A (ELEMENT R_icr (24))) V
((ELEMENT R_icr (17)) A (ELEMENT R_icr (25))) V
((ELEMENT R_icr (18)) A (ELEMENT R _icr (26))) V
((ELEMENT R_icr (19)) A (ELEMENT R_icr 27))) V
((ELEMENT R_icr (20)) A (ELEMENT R _icr (28))) V
((ELEMENT R_icr (21)) A (ELEMENT R_icr (29))) V
((ELEMENT R_icr (22)) A (ELEMENT R_icr 30))) V
((ELEMENT R_icr (23)) A (ELEMENT R_icr (31)))) in

let new_R_int3_dis =r_int3_enin

let new_S_soft_shot_del = (~gcrh A gerl) in
let s_soft_cnt_out =
((s_fsm_srs) =>
({gerl A ~gerh A ~S_soft_shot_del) => (WORDN 1) | (WORDN 0)) |
((gerl A ~gerh A ~S_soft_shot_del) => (INCN 2 S_soft_cnt) | S_soft_cnt)) in
let new_S_soft_cnt = ((~gerh A ~gerl) = (WORDN 0) | s_soft_cat_out) in
let s_delay_out =
((s_fsm_src V (s_fsm_scs A (ELEMENT S_delay (6)))) =>
((s_fsm_sec) => (WORDN 1) | (WORDN 0)) |
((s_fsm_sec) => (INCN 17 S_delay) | S_delay)) in
let new_S_delay = s_delay_out in
let s_cpuO_ok = (s_fsm_scOf A Failure0_ A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (s_fsm_sclf A Failurel_ A (s_soft_cnt_out = (WORDN 5))) in
let new_S_pmm_fail =
((s_fsm_sb A ~s_fsm_spmf) => T |
((~s_fsm_sb A s_fsm_spmf) => F |
((~s_fsm_sb A ~s_fsm_spmf) => S_pmm_fail | ARB))) in
let new_S_cpu0_fail =
((s_fsm_sb A ~(s_cpuO_ok V Bypass)) => T |
((~s_fsm_sb A (s_cpuO_ok V Bypass)) => F |
((~s_fsm_sb A ~(s_cpuO_ok V Bypass)) => S_cpu0_fail | ARB))) in
let new_S_cpul _fail =
((s_fsm_sb A ~(s_cpul_ok V Bypass)) => T |
((~s_fsm_sb A (s_cpul_ok V Bypass)) =>F|
((~s_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((s_fsm_sb A ~(s_fsm_spf V Bypass)) => T |
((~s_fsm_sb A (s_fsm_spf \V Bypass)) => F|
((~s_fsm_sb A ~(s_fsm_spf V Bypass)) => S_piu_fail | ARB))) in
let s_cpuO_select = ((s_fsm_sn V s_fsm_so) A ~S_cpu0_fail) in
let s_cpul_select = ((s_fsm_sn Vs_fsm_so) A S_cpuO_fail A ~S_cpul_fail) in
let new_S_bad_cpu0 =
((s_fsm_sb A ~s_cpuO_select) => T |
((~s_fsm_sb A s_cpuO_select) =>F |
((~s_fsm_sb A ~s_cpuO_select) => S_bad_cpu0 | ARB))) in

230

let new_S_bad_cpul =
((s_fsm_sb A ~s_cpul_select) =>T!
((~s_fsm_sb A s_cpul_select) =>F|
((~s_fsm_sb A ~s_cpul_select) => S_bad_cpul | ARB))) in
let new_S_reset_cpu0 = (new_S_bad_cpu0 A s_fsm_src0) in
let new_S_reset_cpul = (new_S_bad_cpul A s_fsm_srcl) in
let new_S_cpu_hist = (S_reset_cpuO A S_reset_cpul A Bypass) in
let ssO = (ALTER ARBN (0) ((new_S_fsm_state = 5S)V (new_S_fsm_state = SSTOP)
V (new_S_fsm_state = SCS) V (new_S_fsm_state = SN)
V (new_S_fsm_state = SO))) in
let ss1 = (ALTER 550 (1) ((new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1I) V (new_S_fsm_state = SC1F)
V (new_S_fsm_state = SS) V (new_S_fsm_state = SSTOP)
V (new_S_fsm_state = SCS))) in
let ss2 = (ALTER ss1 (2) ((new_S_fsm_state = SPF) V (new_S_fsm_state = SCOI)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (oew_S_fsm_state = SSTOP) V (new_S_fsm_state = SO))) in
let ss3 = (ALTER ss2 (3) ((new_S_fsm_state = SRA) V (new_S_fsm_state = SPF)
V (new_S_fsm_state = ST)V (new_S_fsm_state = SC1I)
V (new_S_fsm_state = SCS) V (new_S_fsm_state = SN)
V (new_S_fsm_state = SO))) in
let s_state = ss3 in
let 5r28 = (ALTER ARBN (28) new_M_parity) in
let 5128_25 = (MALTER 5128 (27,25) new_C_ss) in
let 5r28_24 = (ALTER sr28_25 (24) new_C_parity) in
Jet sr28_22 = (MALTER s128_24 (23,22) ChannelID) in
let sr28_16 = (MALTER sr28_22 (21,16) Id) in
let sr28_12 = (MALTER 5128_16 (15,12) s_state) in
let sr28_9 = (ALTER sr28_12 (9) new_S_pmm_fail) in
let 5128_8 = (ALTER 5r28_9 (8) new_S _piu_fail) in
let s128_3 = (ALTER 5r28_8 (3) new_S_reset_cpul) in
let sr28_2 = (ALTER s128_3 (2) new_S_reset_cpu0) in
let sr28_1 = (ALTER sr28_2 (1) new_S_cpul _fail) in
let s128_0 = (ALTER sr28_1 (0) new_S_cpu0_fail) in
let new_R_sr = ((r_fsm_cntlatch) => sr28_01 R_sr) in
let new_R_sr_rden = (r_readB A (r_reg_sel = (WORDN 4))) in

let new_P_fsm_rst = reset_piu in

let new_P_fsm_sack = p_sack in

let new_P_fsm_cgnt_ = ~(new_C_mfsm_state = CMA3)in
let new_P_fsm_bold_ = new_C_holdA_ in

let new_C_mfsm_D =CIlkD in

let new_C_mfsm_rst = reset_cport in

let new_C_mfsm_crqt_ = ~(new_P_destl A pew_P_rqt) in
let new_C_mfsm_hold_ = new_C_holdA_in

let new_C_mfsm_ss = CB_ss_in in

let new_C_mfsm_invalid = piu_invalid in

fet new_C_sfsm_D = CIkD in

let new_C_sfsm_rst = reset_cport in

let new_C_sfsm_hlda_ = ~(new_P_fsm_state = PH) in

let new_C_sfsm_ms = CB_ms_in in

let new_C_efsm_cale_ = i_cale_in

let new_C_efsm_last_=1_last_in

let new_C_efsm_male_ = i_male_in

231

[N
a2

)

let new_C_efsm_rale_ =i_rale_in

let new_C_efsm_srdy_ = i_srdy_ in

let new_C_efsm_rst = reset_cport in

let new_M_fsm_male_=i_male_ in

let new_M_fsm_last_ =i_last_in

let new_M_fsm_mrdy_ = ((~(P_fsm_state = PH)) => F | C_mrdy_del_) in
let new_M_fsm_rst = reset_piu in

let new_R_fsm_ale_=i_rale_in

let new_R_fsm_mrdy_ = ((~(P_fsm_state = PH)) => F | C_mrdy_del_) in
let new_R_fsm_last_=i_last_in

let new_R_fsm_rst = reset_piu in

let new_S_fsm_rst = Rst in

let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in

let new_S_fsm_delayl7 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (17))) in
let new_S_fsm_bothbad = (new_S_cpuO_fail A new_S_cpul_fail) in

let new_S_fsm_bypass = Bypass in

(new_P_addr, new_P_dest], new_P_be_, new_P_wr, new_P_fsm_state, new_P_fsm_rst, new_P_fsm_sack,

new_P_fsm_cgnt_, new_P_fsm_hold_, new_P_rqt, new_P_size, new_P_down, new_P_lock_, new_P_lock_inh_,
new_P_male_, new_P_rale_,

new_C_mfsm_state, new_C_mfsm_D, new_C_mfsm_rst, new_C_mfsm_crqt_, new_C_mfsm_hold_, new_C_mfsm_ss,
new_C_mfsm_invalid, new_C_sfsm_state, new_C_sfsm_D, new_C_sfsm_rst, new_C_sfsm_hlda_, new_C_sfsm_ms,
new_C_efsm_state, new_C_efsm_cale_, new_C_efsm_last_, new_C_efsm_male_, new_C_efsm_rale_, new_C_efsm_srdy_,
new_C_efsm_rst, new_C_wr, new_C_sizewrbe, new_C_clkA, new_C_last_in_, new_C_lock_in_, new_C_ss,
new_C_last_out_, new_C_hold_, new_C_holdA_, new_C_cout_0_le_del, new_C_cin_2_le, new_C_mrdy_del_,
new_C_iad_en_s_del, new_C_iad_en_s_delA, new_C_wrdy, new_C_rrdy, new_C_parity, new_C_source, new_C_data_in,
new_C_iad_out, new_C_iad_in, new_C_ala0, new_C_a3a2,

new_M_fsm_state, new_M_fsm_male_, new_M_fsm_last_, new_M_fsm_mrdy_, new_M_fsm_rst, new_M_count,
new_M_se, new_M_wr, new_M_addr, new_M_be, new_M_rdy, new_M_wwdel, new_M_parity, new_M_rd_data,
new_M_detect,

new_R_fsm_state, new_R_fsm_ale_, new_R_fsm_mrdy_, new_R_fsm_last_, new_R_fsm_rst, new_R_ctr0_in,
new_R_ctr0_mux_sel, new_R_ctr0, new_R_ctr0_irden, new_R_ctrO_new, new_R_ctrO_cry, new_R_ctr0_out,
new_R_ctrO_orden, new_R_ctrl_in, new_R_ctr]l_mux_sel, new_R_ctrl, new_R_ctr]_irden, new_R_ctrl_new,
new_R_ctrl_cry,

new_R_ctrl_out, new_R_ctrl_orden, new_R_ctr2_in, new_R_ctr2_mux_sel, new_R_ctr2, new_R_ctr2_irden,
new_R_ctr2_new,

new_R_ctr2_cry, new_R_ctr2_out, new_R_ctr2_orden, new_R_ctr3_in, new_R_ctr3_mux_sel, new_R_ctr3,
new_R_ctr3_irden,

new_R_ctr3_new, new_R_ctr3_cry, new_R_ctr3_out, new_R_ctr3_orden, new_R_icr_load, new_R_icr_old,
new_R_icr_mask,

pew_R_icr_rden, new_R_icr, new_R_ccr, new_R_ccr_rden, new_R_gcr, new_R_ger_rden, new_R_sr, new_R_sr_rden,
new_R_int0_dis, new_R_int3_dis, new_R_c01_cout_del, new_R_intl_en, new_R_c23_cout_del, new_R_int2_en,
new_R_wr,

new_R_cntlatch_del, new_R_srdy_del_, new_R_reg_sel, new_R_busA_latch,

new_S_fsm_state, new_S_fsm_rst, new_S_fsm_delay6, new_S_fsm_delay17, new_S_fsm_bothbad,
new_S_fsm_bypass, new_S_soft_shot_del, new_S_soft_cnt, new_S_delay, new_S_bad_cpu0, new_S_bad_cpul,
new_S_reset_cpu0, new_S_reset_cpul, new_S_cpu_hist, new_S_pmm_fail, new_S_cpu0_fail, new_S_cpul_fail,
new_S_piu_fail)”

Output definition for EXEC instruction.

232

let piuEXEC_out_def = new_definition
(‘piuEXEC_out’,

“! (rep:"rep_.ty)
(P_fsm_state :pfsm_ty)
(P_addr P_be_ P_size :wordn)
(P_dest] P_wr P_fsm_rst P_fsm_sack P_fsm_cgnt_P_fsm_hold_ P_rqt P_down P_lock_
P_lock_inh_ P_male_ P_rale_ :bool)
(C_mfsm_state :cmfsm_ty) (C_sfsm_state :csfsm_ty) (C_efsm_state :cefsm_ty)
(C_mfsm_ss C_sfsm_ms C_sizewrbe C_ss C_source C_data_in C_iad_out C_iad_in C_al a0 C_a3a2 :wordn)
(C_mfsm_D C_mfsm_rst C_mfsm_crqt_ C_mfsm_bold_ C_mfsm_invalid C_sfsm_D C_sfsm_rst C_sfsm_hlda_
C_efsm_cale_C_efsm_last_ C_efsm_male_ C_efsm_rale_ C_efsm_srdy_ C_efsm_rst
C_wr C_clkA C_last_in_ C_lock_in_ C_last_out_ C_bold_ C_holdA_ C_cout_0_le_delC_cin_2_le
C_mrdy_del_C_iad_en_s_del C_iad_en_s_delA C_wrdy C_nrdy C_parity :bool)
(M_fsm_state :mfsm_ty)
(M_count M_addr M_be M_rd_data M_detect :wordn)
(M_fsm_male_ M_fsm_last_ M_fsm_mrdy_M_fsm_rst M_se M_wr M_rdy M_wwdel M_parity :bool)
(R_fsm_state :rfsm_ty)
(R_ctr0_in R_ctr0 R_ctr0_new R_ctr0_out R_ctrl_in R_ctr] R_ctr]_pew R_ctrl_out R_ctr2_in R_ctr2 R_ctr2_new
R_ctr2_out R_ctr3_in R_ctr3 R_ctr3_new R_ctr3_out R_icr_old R_icr_mask R_icr R_cer R_ger R_sr
R_reg_sel R_busA_latch :wordn)
(R_fsm_ale_ R_fsm_mrdy_R_fsm_last_ R_fsm_rst R_ctr0_mux_sel R_ctr0_irden R_ctrO_cry R_ctrO_orden
R_ctrl_mux_sel R_ctr]_irden R_ctrl_cry R_ctrl_orden R_ctr2_mux_sel R_ctr2_irden R_ctr2_cry R_ctr2_orden
R_ctr3_mux_sel R_ctr3_irden R_ctr3_cry R_ctr3_orden R_icr_load R_icr_rden R_cer_rden R_ger_rden R_sr_rden
R_int0_dis R_int3_dis R_c01_cout_del R_intl_en R_c23_cout_del R_int2_en R_wr R_cntlatch_del R_srdy_del_ :bool)
(S_fsm_state :sfsm_ty)
(S_soft_cnt S_delay :wordn)
(S_fsm_rst S_fsm_delay6 S_fsm_delayl7 S_fsm_bothbad S_fsm_bypass S_soft_shot_del S_bad_cpu0 S_bad_cpul
S_reset_cpuO S_reset_cpul S_cpu_hist S_pmm_fail S_cpu0_fail S_cpu!_fail S_piu_fail :bool)

(L_ad_in L_be_ :wordn)
(CIkA CIkB RstL_ads_L_den_L_wrL_lock_ :bool)
(CB_rqt_in_ CB_ad_in CB_ms_in CB_ss_in Id ChannelID :wordn)
(CIkD :bool)
(MB_data_in :wordn)
(Edac_en_ :bool)
{Bypass Test Failure0_ Failurel_ :bool) .
piuEXEC_out rep
(P_addr, P_destl, P_be_, P_wr, P_fsm_state, P_fsm_rst, P_fsm_sack, P_fsm_cgnt_, P_fsm_hold_,
P_rqt, P_size, P_down, P_lock_, P_lock_inh_, P_male_, P_rale_,
C_mfsm_state, C_mfsm_D, C_mfsm_rst, C_mfsm_crqt_, C_mfsm_hold_, C_mfsm_ss, C_mfsm_invalid,
C_sfsm_state, C_sfsm_D, C_sfsm_rst, C_sfsm_hlda_, C_sfsm_ms,
C_efsm_state, C_efsm_cale_, C_efsm_last_, C_efsm_male_, C_efsm_rale_, C_efsm_srdy_, C_efsm_rst,
C_wr, C_sizewrbe, C_clkA, C_last_in_, C_lock_in_, C_ss, C_last_out_,
C_hold_, C_holdA_, C_cout_0_le_del, C_cin_2_le, C_mrdy_del_, C_iad_en_s_del, C_iad_en_s_delA,
C_wrdy, C_rrdy, C_parity, C_source, C_data_in, C_iad_out, C_iad_in, C_al a0,C_a3a2,
M_fsm_state, M_fsm_male_, M_fsm_last_, M_fsm_mrdy_, M_fsm_rst, M_count, M_se, M_wr, M_addr,
M_be, M_rdy, M_wwdel, M_parity, M_rd_data, M_detect,
R_fsm_state, R_fsm_ale_, R_fsm_mrdy_, R_fsm_last_, R_fsm_rst, R_ctrO_in, R_ctrO_mux_sel, R_cti0,
R_ctr0_irden, R_ctrO_new, R_ctr0_cry, R_ctrO_out, R_ctr0_orden, R_ctrl_in, R_ctrl_mux_sel,
R_ctrl, R_ctrl_irden, R_ctrl_new, R_ctrl_cry. R_ctrl_out, R_ctrl_orden, R_ctr2_in, R_ctr2 _mux_sel,
R_ctr2, R_ctr2_irden, R_ctr2_new, R_ctr2_cry, R_ctr2_out, R_ctr2_orden, R_ctr3_in, R_ctr3_mux_sel,
R_ctr3, R_ctr3_irden, R_ctr3_new, R_ctr3_cry, R_ctr3_out, R_ctr3_orden, R_icr_load, R_icr_old,
R_icr_mask, R_icr_rden, R_icrt, R_cer, R_ccr_rden, R_ger, R_gcr_rden, R_sr, R_sr_rden, R_int0_dis,

233

R_int3_dis, R_cO1_cout_del, R_intl_en, R_c23_cout_del, R_int2_en, R_wr, R_cntlatch_del, R_srdy_del_,
R_reg_sel, R_busA_latch,

S_fsm_state, S_fsm_rst, S_fsm_delay6, S_fsm_delay17, S_fsm_bothbad, S_fsm_bypass, S_soft_shot_del,
S_soft_cnt, S_delay, S_bad_cpu0, S_bad_cpul, S_reset_cpu0, S_reset_cpul, S_cpu_hist, S_pmm_fail,
S_cpuO_fail, S_cpul_fail, S_piu_fail)

(CIkA, CIkB, Rst, L_ad_in, L_ads_, L_den_, L_be_, L_wr, L_lock_,
CB_rqt_in_, CB_ad_in, CB_ms_in, CB_ss_in, CIkD, Id, ChannelID,
MB_data_in, Edac_en_,

Bypass, Test, FailureQ_, Failurel_) =

let new_P_fsm_state =
((P_fsm_rst) =>PA |

((P_fsm_state = PH) => ((~P_fsm_hold_) =>PH IPA) |

((P_fsm_state = PA) =>
(((P_rqt A ~P_dest1) V (P_rqt AP_dest] A ~P_fsm_cgnt_))=>PD|
((~P_fsm_bold_AP_lock_)=>PH|PA))!

((P_fsm_state = PD) =>
(((P_fsm_sack A P_fsm_hold_) V (P_fsm_sack A ~P_fsm_hold_ A ~P_lock_)) =>PA |
((P_fsm_sack A ~P_fsm_hold_AP_lock_) => PRI PD)) | P_ILL)))) in

let c_write = (((~(C_mfsm_state = CMI)) A (~(C_mfsm_state = CMR))) => C_wr | (ELEMENT C_sizewrbe (5))) in
let ¢c_busy = (~((SUBARRAY CB_rqt_in_ (3,1)) = (WORDN 7))) in
let c_grant = (((SUBARRAY Id (1,0)) = (WORDN 0)) A (ELEMENT CB_rqt_in_ (0)))
V (((SUBARRAY 1d (1,0)) = (WORDN 1)) A «(ELEMENT CB_rqt_in_ (0))
A (BELEMENT CB_rqt_in_ (1))
V (((SUBARRAY M (1,0)) = (WORDN 2)) A (ELEMENT CB_rqt_in_ (0))
N (ELEMENT CB_rqt_in_ (1))
A (ELEMENT CB_rqt_in_ (2)))
V (((SUBARRAY Id (1,0)) = (WORDN 3)) A ~(ELEMENT CB_rqt_in_ (0))
N (ELEMENT CB_rqt_in_ (1))
N (ELEMENT CB_rqt_in_ (2))
N (ELEMENT CB_rqt_in_ (3)))) in
let c_addressed = (Id = (SUBARRAY C_source (15,10))) in
let new_C_mfsm_state =
((C_mfsm_rst) => CMI |
((C_mfsm_state = CMI) =>
(C_mfsm_D A ~C_mfsm_crqt_ A ~c_busy A ~C_mfsm_invalid) => CMR | CMI |
((C_mfsm_state = CMR) => (C_mfsm_D N c_grant A C_mfsm_hold_) => CMA3 ICMR |
((C_mfsm_state = CMA3) => ((C_mfsm_D) => CMAl | CMA3) |
((C_mfsm_state = CMA1)=>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) =>CMAO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA1 |
((C_mfsm_state = CMAQ) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMA2 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMAO |
((C_mfsm_state = CMA2) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY)) => CMD1 |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMA2 |
((C_mfsm_state = CMDI1) =>
(C_mfsm_D A (C_mfsm_ss = *SRDY)) =>CMDO |
(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT |CMD1 |
((C_mfsm_state = CMDO) =>
(C_mfsm_D A (C_mfsm_ss = ASRDY) A C_last_in_) => CMD1 |

234

(C_mfsm_D A (C_mfsm_ss = ASRDY) A ~C_Jast_in_) =>CMW |

(C_mfsm_D A (C_mfsm_ss = ASABORT)) => CMABT | CMDO |
((C_mfsm_state = CMW) =>

(C_mfsm_D A (C_mfsm_ss = ASABORT))=>CMABT |

(C_mfsm_D A (C_mfsm_ss = ASACK) A C_lock_in_) => CMI!

(C_mfsm_D A(C_mfsm_ss = ASRDY) A ~C_lock_in_ A ~-C_mfsm_crqt_) => CMA3 ICMW I
((~C_last_in_) => CMI | CMABTM)))) in

let new_C_sfsm_state =

((C_sfsm_rst) => CSI |

(C_sfsm_state = CSI) =>

((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSA1 | CSI) |

(C_sfsm_state = CSL) =>

((C_sfsm_D A (C_sfsm_ms = AMSTART) A ~c_grant A c_addressed) => CSAl |

(C_sfsm_D A (C_sfsm_ms = MSTART) A\ ~c_grant A ~c_addressed) => CSI|

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABTICSL) |
(C_sfsm_state = CSAl) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSAQ!

(C_sfsm_D A (C_sfsm_ms = “MABORT)) => CSABT |CSAl)I
(C_sfsm_state = CSAQ) =>

((C_sfsm_D A (C_sfsm_ms = "MRDY) A ~C_sfsm_hida_) =>CSALE |

(C_sfsm_D A (C_sfsm_ms = "MRDY) A C_sfsm_hlda_) => CSAOW |

(C_sfsm_D A (C_sfsm_ms = “MABORT)) => CSABT ICSAO) |
(C_sfsm_state = CSAOW) =>

((C_sfsm_D A (C_sfsm_ms = "MRDY) A ~C_sfsm_hlda_) =>CSALE|

(C_sfsm_D A (C_sfsm_ms = “MABORT)) => CSABT | CSAOW) |
(C_sfsm_state = CSALE) =>

((C_sfsm_D A c_write A (C_sfsm_ms = AMRDY)) =>CSD1 1|

(C_sfsm_D A ~c_write A (C_sfsm_ms = AMRDY)) =>CSRR |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABTICSALE) |
(C_sfsm_state = CSRR) =>

((C_sfsm_D A ~(C_sfsm_ms = \MABORT)) => csD11

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT I CSRR) |1
(C_sfsm_state = CSD1) =>

((C_sfsm_D A (C_sfsm_ms = AMRDY)) => CSDO|

(C_sfsm_D N\ (C_sfsm_ms = AMABORT)) => CSABT I CSD1) |
(C_sfsm_state = CSDO) =>

((C_sfsm_D A (C_sfsm_ms = AMEND)) => CSACK |

(C_sfsm_D A (C_sfsm_ms = AMRDY))=>CSD1 |

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT I CSDO) |
(C_sfsm_state = CSACK) =>

((C_sfsm_D A (C_sfsm_ms = "MRDY)) => CSL |

(C_sfsm_D A (C_sfsm_ms = AMWAIT)) => CSIH

(C_sfsm_D A (C_sfsm_ms = "MABORT)) => CSABT ICSACK) |
(C_sfsm_D) => CSI1 CSABT) in

let new_C_efsm_state =
((C_efsm_rst) => CEI |
(C_efsm_state = CE[) => ((~C_efsm_cale_) => CEE | CED) |
((~C_efsm_last_ A ~C_efsm_srdy_) V ~C_efsm_male_V ~C_efsm_rale_)=> CEl! CEE) in

let m_bw = ((~(M_be = (WORDN 15))) AM_wr A (~(M_fsm_state = MI))) in

let m_ww = ((M_be = (WORDN 15)) AM_wr A (~(M_fsm_state = MI))) in
let new_M_fsm_state =

235

((M_fsm_rst) => MI |
((M_fsm_state = MI) => ((~M_fsm_male_) => MA IMI) |
((M_fsm_state = MA) =>
((~M_fsm_mrdy_Am_ww)=>MW |
((~M_fsm_mrdy_ A ((~M_wr A (~(M_fsm_state = MI))) V m_bw)) => MR IMA))|
((M_fsm_state = MR) =>
((m_bw A (M_count = (WORDN 0))) => MBW |
((M_fsm_last_ A ~M_wr A (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MA |
((~M_fsm_last_ A ~M_wr N\ (~(M_fsm_state = MI)) A (M_count = (WORDN 0))) => MRR | MR))) |
((M_fsm_state = MRR) => MI |
((M_fsm_state = MW) =>
((~M_fsm_last_ A (M_count = (WORDN 0))) => MI |
((M_fsm_last_ A\ (M_count = (WORDN 0))) => MA I MW)) |
((M_fsm_state = MBW) => MW { M_ILL))))))) in

let new_R_fsm_state =
((R_fsm_rst) =>RI |
((R_fsm_state = RI) => ((~R_fsm_ale_) =>RA {RI)!
((R_fsm_state = RA) => ((~R_fsm_mrdy_) =>RD ! RA)|
((~R_fsm_last_) => RI RA)))) in
let r_fsm_cntatch = ((R_fsm_state = RI) A ~R_fsm_ale_) in
let r_fsm_srdy_ = ~((R_fsm_state = RA) A ~R_fsm_mrdy_) in

let new_S_fsm_state =
((S_fsm_rst) => SSTART |
((S_fsm_state = SSTART) => SRA |
((S_fsm_state = SRA) => ((S_fsm_delay6) => ((S_fsm_bypass) => SO | SPF) | SRA) |
((S_fsm_state = SPF) => SCOl |
((S_fsm_state = SCOI) => ((S_fsm_delay17) => SCOF | SCOI) |
((S_fsm_state = SCOF) => ST |
((S_fsm_state = ST) => SC111
((S_fsm_state = SC1I) => ((S_fsm_delay17) => SC1F | SC1T) |
((S_fsm_state = SC1F) => SS |
((S_fsm_state = SS) => ((S_fsm_bothbad) => SSTOP | SCS) |
((S_fsm_state = SSTOP) => SSTOP |
((S_fsm_state = SCS) => ((S_fsm_delay6) => SN | SCS) |
((S_fsm_state = SN) => ((S_fsm_delay17) => SO{SN) |
((S_fsm_state = SO) => SO | S_ILL)))MNM))))) in
let s_fsm_sn = (new_S_fsm_state = SN) in
let s_fsm_so = (new_S_fsm_state = SO) in
let reset_cport = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let s_fsm_sdi = (((~(new_S_fsm_state = SO)) A (~(S_fsm_state = SSTOP))) V (S_fsm_state = SRA)) in
let reset_piu = ((new_S_fsm_state = SSTART) V (new_S_fsm_state = SRA)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1F) V (new_S_fsm_state = SS) V (new_S_fsm_state = SCS)) in
let s_fsm_srcO = ((~(new_S_fsm_state = SPF)) A (~(new_S_fsm_state = SCOI))) in
let s_fsm_srcl = ((~(new_S_fsm_state = ST)) A\ (~(new_S_fsm_state = SC1I))) in
let s_fsm_spf = ((S_fsm_state = SRA) A\ S_fsm_delay6é N\ ~S_fsm_rst) in
let s_fsm_scOf = (new_S_fsm_state = SCOF) in
let s_fsm_sclf = (new_S_fsm_state = SC1F) in
let s_fsm_spmf = (new_S_fsm_state = SO) in
let s_fsm_sb = (new_S_fsm_state = SSTART) in
let s_fsm_src = ((new_S_fsm_state = SSTART) V ((S_fsm_state = SRA) A S_fsm_delay6)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST) V (new_S_fsm_state = SC1F)

236

V (new_S_fsm_state = SS) V ((S_fsm_state = SCS) A S_fsm_delayé6)) in
let s_fsm_sec = (((~(new_S_fsm_state = SSTOP)) A (~(vew_S_fsm_state = SO))) V (S_fsm_state = SN)) in
let 5_fsm_srs = (((S_fsm_state = SPF) A ~S_fsm_rst) V ((S_fsm_state = ST)A ~S_fsm_rst)) in
let s_fsm_scs = (new_S_fsm_state = SCS) in

let new_P_addr = ((~P_rqt) => (SUBARRAY L_ad_in (25,0)) | P_addr) in
let new_P_destl = ((~P_rqt) => (ELEMENT L_ad_in (31)) | P_destl) in
let new_P_be_= ((~P_rqt) =>L_be_1{P_be_) in
fet new_P_wr = ((~P_rqt) =>L_wr |P_wr) in
Jet new_P_size =
((~P_sqt) => (SUBARRAY L _ad_in (1,0))1
((P_down) => (DECN 1 P_size) | P_size)) in
let new_C_boldA_ = ((ClkD) => C_hold_) C_holdA_) in
let i_cale_ = ~((new_C_mfsm_state = CMA3) \ (new_P_fsm_state = PA) Apew_C_holdA_) in
let c_srdy_en = ((new_C_efsm_state = CEE) V (C_efsm_state = CEE)) in
let new_M_count =
(((new_M_fsm_state = MA) V (new_M_fsm_state = MBW)) => ((M_se) => (WORDN 1) i (WORDN 2)) |
(((new_M_fsm_state = MW) V (new_M_fsm_state = MR)) => (DECN 2 M_count) | M_count)) in
let m_rdy = (((new_M_fsm_state = MW) A (new_M_count = (WORDN O)))
V ((new_M_fsm_state = MR) A (new_M_count = (WORDN 0)) A ~M_wr)) in
let m_srdy_ = ~(M_rdy A ~M_wr) V (m_rdy A M_wr)) in
let i_srdy_ = ((~i_cale_ V c_srdy_en) => ~(C_wrdy V C_rrdy V (new_C_mfsm_state = CMABT))I
~(new_M_fsm_state = MI) => m_srdy_|
((new_R_fsm_state = RA) V (new_R_fsm_state = RD)) => ~((R_fsm_state = RA) A (new_R_fsm_state =RD)) |
ARB) in
let p_ale = (~L_ads_AL_den_)in
let p_sack = ((P_size = ((P_down) => (WORDN 1) | (WORDN 0)) A ~i_srdy_A (new_P_fsm_state = PD)) in
let new_P_rqt =
((p_ale N ~(p_sack V reset_piu)) => T
((~p_ale A (p_sack V reset_piu)) =>F |
((~p_ale A ~(p_sack V reset_piu)) => P_rqt| ARB))) in
let new_P_down = (~i_srdy_ A (new_P_fsm_state = PD)) in
let new_P_male_ = ((new_P_fsm_state = PA) =>
~(~new_P_destl A (~(SUBARRAY pew_P_addr (25,24)) = (WORDN 3))) A new_P_rqt) | P_male_)in
let new_P_rale_ = ((new_P_fsm_state = PA) =>
~(~new_P_dest] A ((SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A new_P_rqt) | P_rale_) in
let new_P_lock_=
((reset_piu)=>T|
((pew_P_fsm_state = PD) => L_lock_ | P_lock_)) in
let new_P_lock_inh =
((reset_piu)=>T|
((~new_P_male_V ~pew_P_rale_)}=>L_lock_|P_lock_inh_}) in
let pod31_27 = (MALTER ARBN (31,27) new_P_be_) in
let pod31_26 = (ALTER pod31_27 (26) F) in
let pod31_24 = (MALTER pod31_26 (25,24) (SUBARRAY new_P_addr (1,0))) in
let new_C_iad_en_s_delA = ((CIkD) => C_iad_en_s_del | C_iad_en_s_delA) in
let new_C_sizewrbe = ((reset_cport) => (WORDN 0) |
(((new_C_sfsm_state = CSA0) A C_clkA) => (SUBARRAY C_data_in (31,22)) | C_sizewrbe)) in
let c_pew_write = (((~(new_C_mfsm_state = CMI)) A (~(new_C_mfsm_state = CMR))) =>
C_wr | (ELEMENT new_C_sizewrbe (5))) in
let new_C_iad_out = ((C_cin_2_le) => C_data_in 1 C_iad_out) in
let r_reg_sel = ((~R_srdy_del) => (INCN 3 R_reg_sel) | R_reg_sel} in
let new_R_icr =
((R_icr_load) =>

237

((~(r_reg_sel = (WORDN 1))) => (Andn rep (R_icr_old, R_icr_mask)) | (Om rep (R_icr_old, R_icr_mask))) |
R_icr) in
let new_R_busA_latch =
((R_ctrO_irden) => R_ctrO_in |
((R_ctrO_orden) => R_ctrO_out |
((R_ctrl_irden) => R_ctrl_in |
((R_ctrl_orden) => R_ctrl_out |
((R_ctr2_irden) => R_ctr2_in |
((R_ctr2_orden) => R_ctr2_out |
((R_ctr3_irden) =>R_ctr3_in |
((R_ctr3_orden) => R_ctr3_out |
((R_icr_rden) => new_R_icr |
((R_ccr_rden) => R_cer |
((R_ger_rden) =>R_ger |
((R_st_rden) => R_sr | ARB))))))))))) in
let i_ad = ((new_P_fsm_state = PA) => pod31_24 |
((new_P_fsm_state = PD) Apew_P_wr)=>L _ad_in!
(new_C_iad_en_s_delAV
((new_C_mfsm_state = CMD1) A ~c_new_write A c_srdy_en) V
((new_C_mfsm_state = CMDO) A ~c_pew_write A c_srdy_en) V
((new_C_mfsm_state = CMW) A (C_mfsm_state = CMDO) A ~c_new_write A\ c_srdy_en) V
((new_C_sfsm_state = CSALE) A (~(C_sfsm_state = CSALE))) V
{(new_C_sfsm_state = CSALE) A c_new_write) V
((new_C_sfsm_state = CSD1) A c_new_write A (~(C_sfsm_state = CSRR))) V
((new_C_sfsm_state = CSDO) A c_new_write) \/
((new_C_sfsm_state = CSACK) A c_new_write)) => new_C_iad_out |
(M_wr A ~(new_M_fsm_state = MI)) => M_rd_data |
(~R_wr A ((new_R_fsm_state = RA) V (new_R_fsm_state = RD))) => new_R_busA_latch | ARB) in
let disable_writes = ((~(new_C_sfsm_state = CSI)) A (~(new_C_sfsm_state = CSL)) A
~((ChannelID = (WORDN 0)) A (ELEMENT C_source (6))) A
~((ChannelID = (WORDN 1)) A (ELEMENT C_source (7))) A
~((ChannellD = (WORDN 2)) A (ELEMENT C_source (8))) A
~((ChannelID = (WORDN 3)) A (ELEMENT C_source (9)))) in
leti_rale_=
(~(new_P_fsm_state = PH) =>
~(~new_P_destl A (SUBARRAY new_P_addr (25,24)) = (WORDN 3)) A (new_P_fsm_state = PA) Anew_P_rqt) |
~((new_C_sfsm_state = CSALE) A ((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3)) A C_clkA)) in
let new_R_wr = ((~i_rale_) => (ELEMENT i_ad (27)) | R_wr) in
let r_writeB = (~disable_writes A new_R_wr A (new_R_fsm_state = RD)) in
let r_readB = (~new_R_wr A (new_R_fsm_state = RA)) in
let new_R_gcr = ((r_writeB A (r_reg_sel = (WORDN 2))) =>i_ad | R_gcr) in
let new_R_gcr_rden = (r_readB A (r_reg_sel = (WORDN 2))) in
let gerl = (ELEMENT new_R_gcr (0)) in
let gcrh = (ELEMENT new_R_ger (1)) in
let reset_error = (ELEMENT new_R_gcr (24)) in
let piu_invalid = (ELEMENT new_R_gcr (28)) in
let cout_sel0 = (ALTER ARBN (0) (((rew_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSDO0)) =>
(new_C_sfsm_state = CSD1) |
(pew_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMAI)
V (new_C_mfsm_state = CMD1))) in
let c_cout_sel = (ALTER cout_sel0 (1) (((new_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSD0)) =>
Fl
(new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMA2))) in
let new_C_hold_ = (new_C_sfsm_state = CSI) in

238

let new_C_wr = ((~i_cale_) => (ELEMENT i_ad (27)) | C_wr) in
let new_C_clkA = CIkD in
let i_last_=
(~(new_P_fsm_state = PH) =>
(P_size = (P_down) => (WORDN 1) { (WORDN 0))) |
C_last_out_) in
let new_C_last_in_ = ((reset_cport) => F |
(((new_C_mfsm_state = CMABT) V (new_C_mfsm_state = CMDI1) A CIkD) =>1_last_ |
C_last_in_)) in
let new_C_lock_in_ = ((reset_cport) => F |
((new_C_mfsm_state = CMAl) => ~(~new_P_lock_ A new_P_lock_inh_) |
C_lock_in_)) in
let new_C_ss = (((~(new_C_mfsm_state = CMABT)) A (~(new_C_mfsm_state = CMI))) => CB_ss_in | C_ss) in
let new_C_last_out_=
(((new_C_sfsm_state = CSA1) A ~(CIkD A ((CB_ms_in = AMEND) V (CB_ms_in = AMABORT)))) =>T |
{(~(new_C_sfsm_state = CSA1) A (CID A ((CB_ms_in = AMEND) V (CB_ms_in = AMABORT)))) => F1
((~(new_C_sfsm_state = CSA1) A ~(CIkD A (CB _ms_in = AMEND) V (CB_ms_in = AMABORT)))) => C_last_out_}
ARB))) in
let c_srdy = (CB_ss_in =ASRDY) in
let c_dfsm_master = ((new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMA2) V (new_C_mfsm_state = CMAL)
V (new_C_mfsm_state = CMAQ) V (new_C_mfsm_state = CMD1) V (new_C_mfsm_state = CMDO0)) in
let ¢_dfsm_cad_en = ~{(new_C_mfsm_state = CMA3)V (new_C_mfsm_state = CMA1) V (new_C_mfsm_state = CMAO)
V (new_C_mfsm_state = CMA2)
V (c_new_write A ((new_C_mfsm_state = CMD1)V (new_C_mfsm_state = CMD0)))
V (~c_new_write A ((new_C_sfsm_state = CSD1) V (new_C_sfsm_state = CSD0)))) in
let new_C_cout_0_le_del = ((i_cale_) V (i_srdy_A ~c_pew_write)
V ((new_C_mfsm_state = CMAO) A c_srdy A c_new_write A CIkD)
V ((new_C_mfsm_state = CMDO) A c_new_write A ¢_srdy A CIkD)) in
let new_C_cin_2_le = (CIkD A ({(new_C_mfsm_state = CMDO) Ac_srdy A ~c_new_write) V
((new_C_sfsm_state = CSAO)) V
((new_C_sfsm_state = CSDO) A c_new_write))) in
let new_C_mrdy_del_ = ~((~c_new_write A CIkD A ((new_C_sfsm_state = CSALE) V (new_C_sfsm_state = CSD1))) V
(~c_new_write A C_clkA A (new_C_sfsm_state = CSACK)V
(c_new_write A CIkD A (new_C_sfsm_state = CSDQ))) in
let new_C_iad_en_s_del = (((new_C_sfsm_state = CSALE) A\ (~(C_sfsm_state = CSALE)))
V ((new_C_sfsm_state = CSALE) A c_new_write)
V ((new_C_sfsm_state = CSD1) A ¢_new_write A (~(C_sfsm_state = CSRR)))
V ((new_C_sfsm_state = CSD0) A c_new_write) V
((new_C_sfsm_state = CSACK) A c_new_write)) in
let new_C_wrdy = (c_srdy A c_new_write A (new_C_mfsm_state = CMD1) A CIkD) in
let new_C_rrdy = (c_srdy A ~c_new_write A (new_C_mfsm_state = CMD0) A\ CIkD) in
let ¢_pe = (Par_Det rep (CB_ad_in)) in
let c_mparity = ((new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMA1) V (new_C_mfsm_state = CMAO)
V (new_C_mfsm_state = CMA2) V (new_C_mfsm_state = CMD1) V (new_C_mfsm_state = CMDO)
V (C_mfsm_state = CMA1) V (C_mfsm_state = CMAQ) V (C_mfsm_state = CMA2)
V (C_mfsm_state = CMD1)) in
let c_sparity = ((~(new_C_sfsm_state = CSI)) A (~{new_C_sfsm_state = CSACK)) A (~(new_C_sfsm_state = CSABT))) in
let c_pe_cnt = (CIkD A ((~(c_mparity = c_sparity)) V (SUBARRAY CB_ss_in (1,0)) = (WORDN 0)))) in
let new_C_parity =
(((CIkD A c_pe A c_pe_cnt) N ~reset_error) => T
((~(CIkD A c_pe A c_pe_cnt) A reset_error) => F|
((~(CIkD A\ c_pe A c_pe_cnt) A ~reset_error) =>C _parity | ARB))) in
let new_C_source =
((reset_cport) => (WORDN 0) |

239

((CIkD A ((new_C_sfsm_state = CSI) V (new_C_sfsm_state = CSL))) => Par_Dec rep (CB_ad_in) | C_source)) in
let data_in31_16 =
(MALTER ARBN (31,16) ((reset_cport) => (WORDN 0) |
((CIkD A (((new_C_mfsm_state = CMDI1) A c_srdy A ~c_new_write) V
((new_C_sfsm_state = CSAl)) V
((new_C_sfsm_state = CSD1) A c_new_write))) => Par_Dec rep (CB_ad_in) !
(SUBARRAY C_data_in (31,16))))) in
let new_C_data_in =
(MALTER data_in31_16 (15,0) ((reset_cport) => (WORDN 0) |
((new_C_cin_2_le) => Par_Dec rep (CB_ad_in} |
(SUBARRAY C_data_in (15,0))))) in
let new_C_iad_in = ((new_C_cout_0_le_del) => i_ad | C_iad_in) in
let new_C_ala0 =
(((c_dfsm_master A C_cout_0_le_del) V
(~c_dfsm_master A C_clkA N\ (new_C_sfsm_state = CSD1))) =>C_iad_in | C_ala0) in
let new_C_a3a2 = ((new_C_mfsm_state = CMR) => R_ccr 1 C_a3a2) in
let i_be_ = ((new_P_fsm_state = PA) => new_P_be_|
(new_P_fsm_state = PD) => L._be_ | SUBARRAY new_C_sizewrbe (9,6)) in
let i_male_=
(~(new_P_fsm_state = PH) =>
~(~new_P_dest] N\ (~((SUBARRAY new_P_addr (25,24)) = (WORDN 3))) A (new_P_fsm_state = PA) Anew_P_rqt) |
~((new_C_sfsm_state = CSALE) A (~((SUBARRAY new_C_sizewrbe (1,0)) = (WORDN 3))) A C_clkA)) in
let new_M_se = ((~i_male_) => (ELEMENT i_ad (23)) | M_se) in
let new_M_wr = ((~i_male_) => (ELEMENT i_ad (27)) I M_wr) in
let new_M_addr =
((~i_male_) => (SUBARRAY i_ad (18,0))!
((M_rdy) => (INCN 18 M_addr) | M_addr)) in
let new_M_be = ((~i_male_V ~m_srdy_)=> (NOTN 3 i_be_) | M_be) in
let new_M_rdy = m_rdy in
let new_M_wwde] = ((new_M_fsm_state = MA) A new_M_wr A (new_M_be = (WORDN 15))) in
let new_M_rd_data = (((new_M_fsm_state = MR)) => (Ham_Dec rep MB_data_in) | M_rd_data) in
let new_M_detect =
((((new_M_fsm_state = MR) A ~new_M_wr) V new_M_wr V (new_M_fsm_state = MI)) =>
((~Edac_en_) => (Ham_Det] rep MB_data_in) | WORDN 0) | M_detect) in
let m_error = (~m_srdy_ A (~(new_M_fsm_state = MI)) A Ham_Det2 rep (new_M_detect, ~Edac_en_)) in
let new_M_parity =
((m_error A ~(reset_piu V reset_error)) =>T |
((~m_error A (reset_piu V reset_error)) => F |
((~m_error N\ ~(reset_piu V reset_error)) => M_parity | ARB))) in
let new_R_cntlatch_del =r_fsm_cntlatch in
let new_R_srdy_del_=r_fsm_srdy_in
let new_R_reg_sel =
((~i_rale_) => (SUBARRAY i_ad (3,0))|
((~R_srdy_del_) => (INCN 3 R_reg_sel) | R_reg_sel)) in
letr_writeA = (~disable_writes AR_wr A (new_R_fsm_state = RD)) in
let r_read A = (~R_wr A\ (new_R_fsm_state = RA)) in
let r_cir_wr01A = ((r_writeA A\ ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wr01B = ((r_writeB A ((r_reg_sel = (WORDN 8)) V (r_reg_sel = (WORDN 9))))) in
let r_cir_wr23A = ((r_writeA N\ ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))})) in
let r_cir_wr23B = ((r_writeB A\ ((r_reg_sel = (WORDN 10)) V (r_reg_sel = (WORDN 11))))) in
let new_R_ccr = ((r_writeB A (r_reg_sel = (WORDN 3))) =>i_ad | R_ccr) in
let new_R_ccr_rden = (r_readB A (r_reg_sel = (WORDN 3))) in
let new_R_cOl_cout_del = R_ctrl_cry in
let new_R_int]_en =

(((ELEMENT pew_R_gcr (18)) A (r_cir_wrO1B V (R_ctrl_cry A (ELEMENT new_R_gcr (16))) A
~(~(ELEMENT new_R_ger (18)) V ((ELEMENT new_R_gcr (17)) AR_cO1_cout_del))) =>T|
((~((ELEMENT new_R_gcr (18)) A (r_cir_wrO1B V (R_ctrl_cry A (ELEMENT new_R_ger (16))) A
(~(ELEMENT new_R_ger (18)) V ((ELEMENT new_R_ger (17T) A R_c01_cout_del))) =>F 1
((~((ELEMENT new_R_gcr (18)) A (r_cir_wr01B V (R_ctrl_cry A (ELEMENT pew_R_gcr (16)))) A
~(~(ELEMENT new_R_gcr (18)) V (ELEMENT new_R_gcr (17)) AR_c01_cout_del))) => R_intl_en | ARB))) in

let new_R_c23_cout_del = R_ctr3_cry in
let new_R_int2 en=

((((ELEMENT new_R_gcr (22)) A {r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_ger 200 A
~(~(ELEMENT new_R_ger (22)) V ((ELEMENT new_R_ger (21)) A R_c23_cout_del))) =>T]I
((~((ELEMENT new_R_ger (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT pew_R_ger 200N A
(~(ELEMENT new_R_gcr (22)) V ((ELEMENT new_R_ger (21)) A R_c23_cout_del))) =>F |
((~((ELEMENT new_R_ger (22)) A (r_cir_wr23B V (R_ctr3_cry A (ELEMENT new_R_gcr (20)) A
~(~(ELEMENT new_R_gcr (22)) V (ELEMENT new_R_ger (21)) AR_c23_cout_del))) => R_in2_en | ARB))) in

let new_R_ctrO_in = ((r_writeB A (r_reg_sel = (WORDN 8))) => i_ad | R_ctrQ_in) in

let new_R_ctrO_mux_sel = (r_cir_wr01B V ((ELEMENT new_R_gcr (16)) AR_ctrl_cry)) in
let new_R_ctrO_irden = (1_readB A (1_reg_sel = (WORDN 8))) in

let new_R_ctrO = (R_ctr0_mux_sel) => R_ctrO_in | R_ctrO_new) in

let new_R_ctr0_new = (((ELEMENT new_R_gcr (19))) => (INCN 31 R_ctr0) | R_ctr0) in
let new_R_ctrQ_cry = ((ONES 31 R_ctr0) A (ELEMENT pew_R_gcr (19))) in

let new_R_ctrO_out = ((r_fsm_cntlatch) => R_ctrO_new | R_ctrO_out) in

let new_R_ctrO_orden = (r_readB A (r_reg_sel = (WORDN 12))) in

let new_R_ctrl_in = ((r_writeB A (r_reg_sel = (W ORDN 9))) => i_ad | R_ctr]l_in) in

let new_R_ctrl_mux_sel = (r_cir_wr01B V ((ELEMENT new_R_gcr (16)) AR _ctrl_cry)) in
let new_R_ctrl_irden = (r_readB A (1_reg_sel = (WORDN 9))) in

let new_R_ctr]l = (R_ctrl_mux_sel) =>R_ctrl_in| R_ctrl_new) in

let new_R_ctr]l_pew = ((R_ctr0_cry) => (INCN 31 R_ctrl) IR_ctrl) in

let new_R_ctrl_cry = ((ONES 31 R_ctrl) AR_ctrO_cry) in

let new_R_ctrl_out = ((R_cntlatch_del) =>R_ctr]_new | R_ctrl_out) in

let new_R_ctr]l_orden = (r_readB A (1_reg_sel = (WORDN 13))) in

let new_R_ctr2_in = ((r_writeB A (r_reg_sel= (W ORDN 10))) =>i_ad | R_ctr2_in) in

let new_R_ctr2_mux_sel = ((r_cir_wr23BV ((ELEMENT new_R_gcr (20)) AR_ctr3_cry))) n
let new_R_ctr2_irden = (r_readB A (r_reg_sel = (WORDN 10))) in

let new_R_ctr2 = ((R_ctr2_mux_sel) => R_ctr2_in | R_ctr2_new) in

let new_R_ctr2_new = (((ELEMENT new_R_ger (23))) => (INCN 31 R_ctr2) | R_ctr2) in
let new_R_ctr2_cry = ((ONES 31 R_ctr2) A (ELEMENT new_R_gcr (23))) in

let new_R_ctr2_out = ((r_fsm_cntlatch) => R_ctr2_new | R_ctr2_out) in

let new_R_ctr2_orden = (1_readB A (r_reg_sel = (WORDN 14))) in

let new_R_ctr3_in = ((r_writeB A (r_reg_sel = (WORDN 11))) => i_ad | R_ctr3_in)in

let new_R_ctr3_mux_sel = ((r_cir_wr23B V ((ELEMENT new_R_gcr (20)) AR_ctr3_cry))) in
let new_R_ctr3_irden = (r_readB A (r_reg_sel = (WORDN 11))) in

let new_R_ctr3 = ((R_ctr3_mux_sel) => R_ctr3_in | R_ctr3_new) in

let new_R_ctr3_pew = ((R_ctr2_cry) => (INCN 31 R _ctr3) | R_ctr3) in

let new_R_ctr3_cry = ((ONES 31 R_ctr3) AR_ctr3_cry) in

let new_R_ctr3_out = ((R_catlatch_del) =>R_ctr3_new } R_ctr3_out) in

let new_R_ctr3_orden = (r_readB A (1_reg_sel = (WORDN 15))) in

let new_R_icr_load = (r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let new_R_icr_old =

((r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) => R_icr | R_icr_old) in

let new_R_icr_mask =

((r_writeB A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) =>i_ad | R_icr_mask) in

let new_R_icr_rden = ((new_R_fsm_state = RA) A ((r_reg_sel = (WORDN 0)) V (r_reg_sel = (WORDN 1)))) in
let r_int0_en = (((ELEMENT R_icr (0)) A (ELEMENT R_icr (8))) Vv
((ELEMENT R _icr (1)) A (ELEMENT R_icr (9)) V

241

((ELEMENT R_icr (2)) A (ELEMENT R_icr (10))) V
((ELEMENT R_icr (3)) A (ELEMENT R_icr (11))) V
((BELEMENT R_icr (4)) A (ELEMENT R_icr (12)})) V
((ELEMENT R_icr (5)) A (ELEMENT R _icr (13))) V
((ELEMENT R_icr (6)) A (ELEMENT R_icr (14))) V
((ELEMENT R _icr (7)) A (ELEMENT R_icr (15)))) in

let new_R_int0_dis = r_int0O_en in

let r_int3_en = (((ELEMENT R_icr (16)) A (ELEMENT R_icr (24))) V
((ELEMENT R_icr (17)) A (ELEMENT R _icr (25))) V
((ELEMENT R_icr (18)) A (ELEMENT R _icr (26))) V
((ELEMENT R_icr (19)) A (ELEMENT R_icr 27))) V
((ELEMENT R_icr (20)) A (ELEMENT R _icr (28))) V
((ELEMENT R _icr (21)) A (ELEMENT R_icr (29))) V
((ELEMENT R_icr (22)) A (ELEMENT R_icr 30))) V
((ELEMENT R_icr (23)) A (ELEMENT R_icr (31)))) in

let npew_R_int3_dis =r_int3_en in

let new_S_soft_shot_del = (~gerh A gerl) in
let s_soft_cnot_out =
((s_fsm_grs) =>
((gerl A ~gerh N ~S_soft_shot_del) => (WORDN 1) | (WORDN 0)) |
((gerl A ~gerh A ~S_soft_shot_del) => (INCN 2 S_soft_cnt) | S_soft_cat)) in
let new_S_soft_cnt = ((~gerh A ~gerl) => (WORDN 0) s_soft_cnt_out) in
let s_delay_out =
((s_fsm_src V (s_fsm_scs A (ELEMENT S_delay (6)))) =>
((s_fsm_sec) => (WORDN 1) | (WORDN 0)) |
((s_fsm_sec) => (INCN 17 S_delay) | S_delay)) in
let new_S_delay = s_delay_out in
let s_cpuO_ok = (s_fsm_scOf A FailureO_ A (s_soft_cnt_out = (WORDN 5))) in
let s_cpul_ok = (s_fsm_sclf A Failurel_ A (s_soft_cnt_out= (WORDN 5))) in
let new_S_pmm_fail =
((s_fsm_sb A ~s_fsm_spmf) => T |
((~s_fsm_sb A s_fsm_spmf) => F|
((~s_fsm_sb A ~s_fsm_spmf) => S_pmm_fail | ARB))) in
let new_S_cpu0_fail =
((s_fsm_sb A ~(s_cpu0O_ok VV Bypass)) => T |
((~s_fsm_sb A (s_cpuO_ok V Bypass)) => F |
((~s_fsm_sb A ~(s_cpu0_ok V Bypass)) => S_cpu0_fail | ARB))) in
let new_S_cpul_fail =
((s_fsm_sb A ~(s_cpul_ok V Bypass)) => T |
((~s_fsm_sb A (s_cpul_ok V Bypass)) =>F |
((~s_fsm_sb A ~(s_cpul_ok V Bypass)) => S_cpul_fail | ARB))) in
let new_S_piu_fail =
((s_fsm_sb A ~(s_fsm_spf V Bypass)) => T |
((~s_fsm_sb A (s_fsm_spf V Bypass)) => F |
((~s_fsm_sb A ~(s_fsm_spf V Bypass)) => S_piu_fail | ARB))) in
let s_cpuQ_select = ((s_fsm_sn V s_fsm_so) A ~S_cpu0_fail) in
let s_cpul_select = ((s_fsm_su V s_fsm_so) A S_cpuO_fail A ~S_cpul_fail) in
let new_S_bad_cpu0 =
({(s_fsm_sb A ~s_cpu0_select) =>T |
((~s_fsm_sb As_cpuO_select) =>F |
((~s_fsm_sb A ~s_cpu0_select) => S_bad_cpu0 | ARB))) in
let new_S_bad_cpul =
((s_fsm_sb A ~s_cpul_select) =>T'|

242

((~s_fsm_sb A s_cpul_select) =>F|
((~s_fsm_sb A ~s_cpul_select) => S_bad_cpul | ARB)))in

let new_S_reset_cpu0 = (new_S_bad_cpu0 A s_fsm_src0) in

let new_S_reset_cpul = (new_S_bad_cpul A s_fsm_srcl) in

let new_S_cpu_hist = (S_reset_cpu0 A S_reset_cpul A Bypass) in

let 5s0 = (ALTER ARBN (0) ((new_S_fsm_state = $S)V (new_S_fsm_state = SSTOP)

V (new_S_fsm_state = SCS) V (new_S_fsm_state = SN)
V (new_S_fzm_state = SO))) in

let ss1 = (ALTER 550 (1) ((new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SC1[) V (new_S_fsm_state = SC1F)
V (new_S_fsm_state = SS) V (new_S_fsm_state = SSTOP)
V (new_S_fsm_state = SCS))) in

let 552 = (ALTER ss1 (2) ((new_S_fsm_state = SPF)V (new_S_fsm_state = SCOI)
V (new_S_fsm_state = SCOF) V (new_S_fsm_state = ST)
V (new_S_fsm_state = SSTOP) V (new_S_fsm_state = SO))) in

let ss3 = (ALTER ss2 (3) ((new_S_fsm_state = SRA)V (new_S_fsm_state = SPF)
V (new_S_fsm_state = ST) V (new_S_fsm_state = SC1I)
V (new_S_fsm_state = SCS) V (pew_S_fsm_state = SN)
V (new_S_fsm_state = SO))) in

let 5_state = 553 in

let 5r28 = (ALTER ARBN (28) new_M_parity) in

let sr28_25 = (MALTER sr28 (27,25) new_C_ss) in

let sr28_24 = (ALTER sr28_25 (24) new_C_parity) in

let sr28_22 = (MALTER sr28_24 (23,22) ChannelID) in

let s128_16 = (MALTER 5r28_22 (21,16) Id) in

let sr28_12 = (MALTER s128_16 (15,12) s_state) in

Jet s128_9 = (ALTER sr28_12 (9) new_S _pmm_fail) in

let sr28_8 = (ALTER 5128_9 (8) new_S_piu_fail) in

Jet s128_3 = (ALTER sr28_8 (3) new_S_reset_cpul) in

let sr28_2 = (ALTER sr28_3 (2) new_S_reset_cpu0) in

let sr28_1 = (ALTER sr28_2 (1) new_S_cpul_fail) in

let sr28_0 = (ALTER sr28_1 (0) new_S_cpu0_fail) in

let new_R_sr = ((r_fsm_cntlatch) => sr28_0 | R_sr) in

let new_R_sr_rden = (r_readB A (r_reg_sel = (WORDN 4))) in

let new_P_fsm_rst = reset_piu in

let new_P_fsm_sack = p_sack in

let new_P_fsm_cgnt_ = ~(new_C_mfsm_state = CMA3)in
let new_P_fsm_hold_ = new_C_holdA_in

let new_C_mfsm_D = CIkD in

let new_C_mfsm_rst = reset_cport in

let new_C_mfsm_crqt_ = ~(new_P_dest]l A new_P_rqt) in
let new_C_mfsm_hold_ = new_C_holdA _in

let new_C_mfsm_ss = CB_ss_in in

let new_C_mfsm_invalid = piu_invalid in

let new_C_sfsm_D=ClkD in

let new_C_sfsm_rst = reset_cport in

let new_C_sfsm_hlda_ = ~(new_P_fsm_state = PH) in

let new_C_sfsm_ms = CB_ms_in in

let pew_C_efsm_cale_=i_cale_in

let new_C_efsm_last_=i_last_in

let new_C_efsm_male_ =i_male_in

let new_C_efsm_rale_=1i_rale_in

let new_C_efsm_srdy_ = i_srdy_in

243

let new_C_efsm_rst = reset_cport in

let new_M_fsm_male_=i_male_in

let new_M_fsm_last_ =i_last_in

let new_M_fsm_mrdy_ = ((~(P_fsm_state = PH)) => F | C_mrdy_del_) in
let new_M_fsm_rst = reset_piu in

let new_R_fsm_ale_ =i_rale_in

let new_R_fsm_mrdy_ = ((~(P_fsm_state = PH)) => F | C_mrdy_del_) in
let new_R_fsm_last_=1_last_in

let new_R_fsm_rst = reset_piu in

let new_S_fsm_rst = Rst in

let new_S_fsm_delay6 = (ELEMENT s_delay_out (6)) in

let new_S_fsm_delay17 = ((Test) => (ELEMENT s_delay_out (6)) | (ELEMENT s_delay_out (17))) in
let new_S_fsm_bothbad = (new_S_cpuO_fail A new_S_cpul_fail) in

let new_S_fsm_bypass = Bypass in

let L_ad_out = (((~(new_P_fsm_state = PA))
N (~(new_P_fsm_state = PH))
A ~((new_P_fsm_state = PD) Anew_P_wr)) => i_ad | ARBN) in
let L_ready_ = ~(~i_srdy_ A (new_P_fsm_state = PD)) in
let CB_rqt_out_ = ~(~(new_C_mfsm_state = CMI)) in
let msO = (ALTER ARBN (0) (((new_C_mfsm_state = CMDO0) A ~C_last_in_) V
((new_C_mfsm_state = CMW) A C_lock_in_) V
(new_C_mfsm_state = CMABT))) in
let ms10 = (ALTER msO (1) (((new_C_mfsm_state = CMA1) V (new_C_mfsm_state = CMAQ) V
(new_C_mfsm_state = CMA2) V (new_C_mfsm_state = CMD1) V
({(new_C_mfsm_state = CMDO) A C_last_in_) V (new_C_mfsm_state = CMW) V
(new_C_mfsm_state = CMABT)))) in
let ms210 = (ALTER ms10 (2) (((new_C_mfsm_state = CMA3) V (new_C_mfsm_state = CMA1) V
(new_C_mfsm_state = CMAOQ) V (new_C_mfsm_state = CMA2) V
(new_C_mfsm_state = CMDI) V (new_C_mfsm_state = CMDO) V
(new_C_mfsm_state = CMW) V (new_C_mfsm_state = CMABT)) A
~pew_S_pmm_fail A ~(ELEMENT new_R_gcr (28)))) in
let CB_ms_out = ({(~(new_C_mfsm_state = CMI)) A\ (~(new_C_mfsm_state = CMR))) => ms210 | ARBN) in
let ss0 = (ALTER ARBN (0) ((new_C_sfsm_state = CSAOW) V
((mew_C_sfsm_state = CSALE) A ~c_new_write) V
(new_C_sfsm_state = CSACK))) in
let 3510 = (ALTER s5s0 (1) ~(new_C_sfsm_state = CSACK)) in
let 85210 = (ALTER 5510 (2) (~new_S_pmm_fail A ~(ELEMENT new_R_gcr (28)))) in
let CB_ss_out = (((~(new_C_sfsm_state = CSI)) A (~(new_C_sfsm_state = CSABT))) => 55210 | ARBN) in
let CB_ad_out = ((c_dfsm_cad_en) =>
((c_cout_sel = (WORDN 0)) => Par_Enc rep (SUBARRAY new_C_ala0 (15,0)) |
{(c_cout_sel = (WORDN 1)) => Par_Enc rep (SUBARRAY new_C_ala0 (31,16)) |
((c_cout_sel = (WORDN 2)) => Par_Enc rep (SUBARRAY new_C_a3a2 (15,0)) |
Par_Enc rep (SUBARRAY new_C_a3a2 (31,16))))) | ARBN) in
let MB_addr = ((M_rdy) => (INCN 18 M_addr) | M_addr) in
let mb_data_7_0 = (((ELEMENT M_be (0))) => (SUBARRAY i_ad (7,0)) | (SUBARRAY M_rd_data (7,0))) in
let mb_data 15_8 = (((ELEMENT M_be (1))) => (SUBARRAY i_ad (15,8)) | (SUBARRAY M_rd_data (15,8))) in
let mb_data_23_16 = ((ELEMENT M_be (2))) => (SUBARRAY i_ad (23,16)) | (SUBARRAY M_rd_data (23,16))) in
let mb_data_31_24 = (((ELEMENT M_be (3))) => (SUBARRAY i_ad (31,24)) | (SUBARRAY M_rd_data (31,24))) in
let mb_data = (MALTER (MALTER (MALTER (MALTER ARBN (7,0) mb_data_7_0)
(15,8) mb_data_15_8)
(23,16) mb_data_23_16)
(31,24) mb_data_31_24)) in
let MB_data_out = ((new_M_fsm_state = MW) => (Ham_Enc rep mb_data) | ARBN) in

244

let MB_cs_eeprom_ = ~((~(new_M_fsm_state = MD)) A ~new_M_se) in
let MB_cs_sram_ = ~{(~(new_M_fsm_state = MI)) A new _M_se)in
let MB_we_ = ~((new_M_se V ~(~(new_M_fsm_state = MI)) V ~reset_cport)
A ~disable_writes
A ((new_M_fsm_state = MBW) V (new_M_fsm_state = MW) V new_M_wwdel)) in
let MB_oe_ = ~((~new_M_wr A (new_M_fsm_state = MA)) V (pew_M_fsm_state = MR)) in
let disable_int = (~(s_fsm_sn A (ELEMENT s_delay_out (6))) A s_fsm_sdi
A ((Test) => ~(ELEMENT s_delay_out (5)) | ~(ELEMENT s_delay_out (16)))) in
let IntO_ = ~(r_intO_en A ~R_int0_dis A ~disable_int) in
let Intl = (R_ctrl_cry A new_R_intl_en A ~disable_int) in
let Int2 = (R_ctr3_cry Anew_R_int2 en A ~disable_int) in
let Int3_ = ~(r_int3_en A ~R_int3_dis A ~disable_int) in
let Led = (SUBARRAY new_R_ger (3,0) in
let Reset_cpuO = new_S_reset_cpu0 in
let Reset_cpul = new_S_reset_cpul in
let Cpu_hist = pew_S_cpu_hist in
let Piu_fail = new_S_piu_fail in
let Cpu0_fail = new_S_cpu0_fail in
let Cpul_fail = new_S_cpul_fail in
let Pmm_fail = new_S_pmm_fail in

(L_ad_out, L _ready_,
CB_rqt_out_, CB_ms_out, CB_ss_out, CB_ad_out,
MB_addr, MB_data_out, MB_cs_eeprom_, MB_cs_sram_, MB_we_, MB_oe_,
IntO_, Int1, Int2, Int3_, Led,
Reset_cpuO, Reset_cpul, Cpu_hist, Piu_fail, Cpu0_fail, Cpul_fail, Pmm_fail)”
i

close_theory();;

245

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pubhic reporting burden far this coliection of information 15 estimated to sverage) hour per '2sporse. Inciuding the tume 1or reviewing nstructions, searching eusting data sourres
gathering and mantaining the data needed, and completing and review:ng the coliection of information Send comments regarding this burden estimate or any other aspect of the
coltection of intarmation, including suggestions for reducing this burden 1D Washington rieagauirters Services, Directorate for information Operations and Reports, 1215 jetterso
Davis Highway. Suite 1204, Arhington, VA 22202-4302. and to the Office of Management and 8uajet, Paperwork Reduction Project (0704-0188), Washington, OC 23503

1. AGENCY USE ONLY (Leave blank) [2. REPORT DATE 3. REPORT TYPE AND DATES COVERED ~N
November 1, 1992 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Formal Design Specification of a Processor Inter face Unit C NAS1-18586
WU 505-64-10-07
6. AUTHOR(S)
David A, Fura
Phillip J. Windley
Gerald C. Cohen
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Boeing Military Airplanes REPORT NUMBER
P.O. Box 3707 M/S 4C-70
Seattle, WA 98124-2207
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
NASA Langley Research Center AGENCY REPORT NUMBER
Hampton, VA 23681-0001 NASA CR-189698
11. SUPPLEMENTARY NOTES
Langley Technical Monitor: Sally C. Johnson
Task 9 Report
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE ~y”

Unclassified-Unlimited
Sub ject Category 60

13. ABSTRACT (Maximum 200 words)

This report describes work to formally specify the requirements and design

of a processor inter face unit (PIU), a single-chip subsystem providing memory-
inter face bus-inter face, and additional support services for a commercial
microprocessor within a fault-tolerant computer system. This system, the
Fault-Tolerant Bmbedded Processor (FTEP), is targeted towards applications

in avionics and space requiring extremely high levels of mission reliability,
extended maintenance-free operation, or both. The need for high-quality design
assurance in such applications is an undisputed fact, given the disastrous
consequences that even a single design flaw can produce. Thus, the further
development and application of formal methods to fault-tolerant systems is

of critical importance as these systems see increasing use in modern society.

14. SUBJECT TERMS Specification 15. NUMBER OF PAGES
Generic Interpreter Theory 256 :

Fault Tolel'ant Mermry Inter face 16, PRICE CODE

HOL Fault Tolerant Embedded Processor (FTEP) Al2 e

Bus Inter face

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |19 SECURITY CLASSIFICATION § 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE Of ABSTRACT
Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Sees e By ahas Sta 28y
Iy

246 e

