168 research outputs found

    Improving the Channel Utilization of Basic Safety Message in VANETs with Superposition Coded Modulation

    Get PDF
    In this paper, we propose a broadcast scheme to effectively utilize the scarce and shared wireless medium for vehicular ad-hoc networks (VANETs). By using superposition coded modulation (SCM), information elements that comprise basic safety messages (BSMs) were delivered with different service qualities determined by real-time traffic situations. The optimal power allocation strategy and achievable performance gain of the proposed method were first theoretically analyzed. To apply the proposed method into practice, the hierarchical quadrature amplitude modulation technology was then employed to implement the proposed SCM-based broadcast scheme for VANETs. To evaluate the performance of the proposed method in real-time traffic environments, a joint traffic-communication simulation was further conducted. Results agree that the proposed method extends the coverage of the BSM broadcast while maintaining an acceptable communication reliability to meet the requirement of driving safety

    Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A deficiency in phaseolin and phytohemagglutinin is associated with a near doubling of sulfur amino acid content in genetically related lines of common bean (<it>Phaseolus vulgaris</it>), particularly cysteine, elevated by 70%, and methionine, elevated by 10%. This mostly takes place at the expense of an abundant non-protein amino acid, <it>S</it>-methyl-cysteine. The deficiency in phaseolin and phytohemagglutinin is mainly compensated by increased levels of the 11S globulin legumin and residual lectins. Legumin, albumin-2, defensin and albumin-1 were previously identified as contributing to the increased sulfur amino acid content in the mutant line, on the basis of similarity to proteins from other legumes.</p> <p>Results</p> <p>Profiling of free amino acid in developing seeds of the BAT93 reference genotype revealed a biphasic accumulation of gamma-glutamyl-<it>S</it>-methyl-cysteine, the main soluble form of <it>S</it>-methyl-cysteine, with a lag phase occurring during storage protein accumulation. A collection of 30,147 expressed sequence tags (ESTs) was generated from four developmental stages, corresponding to distinct phases of gamma-glutamyl-<it>S</it>-methyl-cysteine accumulation, and covering the transitions to reserve accumulation and dessication. Analysis of gene ontology categories indicated the occurrence of multiple sulfur metabolic pathways, including all enzymatic activities responsible for sulfate assimilation, <it>de novo </it>cysteine and methionine biosynthesis. Integration of genomic and proteomic data enabled the identification and isolation of cDNAs coding for legumin, albumin-2, defensin D1 and albumin-1A and -B induced in the absence of phaseolin and phytohemagglutinin. Their deduced amino acid sequences have a higher content of cysteine than methionine, providing an explanation for the preferential increase of cysteine in the mutant line.</p> <p>Conclusion</p> <p>The EST collection provides a foundation to further investigate sulfur metabolism and the differential accumulation of sulfur amino acids in seed of common bean. Identification of sulfur-rich proteins whose levels are elevated in seed lacking phaseolin and phytohemagglutinin and sulfur metabolic genes may assist the improvement of protein quality.</p

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2

    Get PDF
    Abstract(#br)Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro , and facilitated tumor growth and metastasis in vivo . Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo . In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC

    Integrated profiling identifies ITGB3BP as prognostic biomarker for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a highly malignant tumor. In this study, we sought to identify a novel biomarker for HCC by analyzing transcriptome and clinical data. The R software was used to analyze the differentially expressed genes (DEGs) in the datasets GSE74656 and GSE84598 downloaded from the Gene Expression Omnibus database, followed by a functional annotation. A total of 138 shared DEGs were screened from two datasets. They were mainly enriched in the “Metabolic pathways” pathway (Padj = 8.21E-08) and involved in the carboxylic acid metabolic process (Padj = 0.0004). The top 10 hub genes were found by protein-protein interaction analysis and were upregulated in HCC tissues compared to normal tissues in The Cancer Genome Atlas database. Survival analysis distinguished 8 hub genes CENPE, SPDL1, Hyaluronan-mediated motility receptor, Rac GTPase activating protein 1, Thyroid hormone receptor interactor 13, cytoskeleton-associated protein (CKAP) 2, CKAP5, and Integrin subunit beta 3 binding protein (ITGB3BP) were considered as prognostic hub genes. Multivariate cox regression analysis indicated that all the prognostic hub genes were independent prognostic factors for HCC. Furthermore, the receiver operating characteristic curve revealed that the 8-hub genes model had better prediction performance for overall survival compared to the T stage (p = 0.008) and significantly improved the prediction value of the T stage (p = 0.002). The Human Protein Atlas showed that the protein expression of ITGB3BP was upregulated in HCC, so the expression of ITGB3BP was further verified in our cohort. The results showed that ITGB3BP was upregulated in HCC tissues and was significantly associated with lymph node metastasis

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2.

    Get PDF
    Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo. In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore