11,434 research outputs found
Animal studies on Spacelab-3
The flight of two squirrel monkeys and 24 rates on Spacelab-3 was the first mission to provide hand-on maintenance on animals in a laboratory environment. With few exceptions, the animals grew and behaved normally, were free of chronic stress, and differed from ground controls only for gravity-dependent parameters. One of the monkeys exhibited symptoms of space sickness similar to those observed in humans, which suggests squirrel monkeys may be good models for studying the space-adaptation syndrome. Among the wide variety of parameters measured in the rats, most notable was the dramatic loss of muscle mass and increased fragility of long bones. Other interesting rat findings were those of suppressed interferon production by spleen cells, defective release of growth hormone by somatotrophs, possible dissociation of circadian pacemakers, changes in hepatic lipid and carbohydrate metabolism, and hypersensitivity of marrow cells to erythopoietin. These results portend a strong role for animals in identifying and elucidating the physiological and anatomical responses of mammals to microgravity
A search for VHE counterparts of Galactic Fermi bright sources and MeV to TeV spectral characterization
Very high-energy (VHE; E>100 GeV) gamma-rays have been detected from a wide
range of astronomical objects, such as pulsar wind nebulae (PWNe), supernova
remnants (SNRs), giant molecular clouds, gamma-ray binaries, the Galactic
Center, active galactic nuclei (AGN), radio galaxies, starburst galaxies, and
possibly star-forming regions as well. At lower energies, observations using
the Large Area Telescope (LAT) onboard Fermi provide a rich set of data which
can be used to study the behavior of cosmic accelerators in the MeV to TeV
energy bands. In particular, the improved angular resolution of current
telescopes in both bands compared to previous instruments significantly reduces
source confusion and facilitates the identification of associated counterparts
at lower energies. In this paper, a comprehensive search for VHE gamma-ray
sources which are spatially coincident with Galactic Fermi/LAT bright sources
is performed, and the available MeV to TeV spectra of coincident sources are
compared. It is found that bright LAT GeV sources are correlated with TeV
sources, in contrast to previous studies using EGRET data. Moreover, a single
spectral component seems unable to describe the MeV to TeV spectra of many
coincident GeV/TeV sources. It has been suggested that gamma-ray pulsars may be
accompanied by VHE gamma-ray emitting nebulae, a hypothesis that can be tested
with VHE observations of these pulsars.Comment: Astronomy and Astrophysics, in press, 17 pages, 12 figures, 5 table
Screening for childhood anaemia using copper sulphate densitometry
Objective. To evaluate copper sulphate densitometry to screen for childhood anaemia in a primary care setting, with a view to identifying children requiring definitive diagnostic testing and treatment.
Design. A cross-sectional screening study. Results of densitometry with a copper sulphate solution of specific gravity (SG) 1.048, corresponding to a haemoglobin (Hb) concentration of 10 g/dl, were compared with laboratory Hb determination.
Setting. Outpatient department of Pretoria Academic Hospital (73 children) and a local cr_che (27 children).
Subjects. One hundred consecutive children, aged between 6 months and 6 years, with informed written consent by parents.
Outcome measure(s). Accuracy of copper sulphate densitometry in screening for Hb concentration below 10 g/dl in terms of sensitivity, specificity, positive and negative predictive values, as well as likelihood ratio.
Results. The prevalence of anaemia (Hb < 10 g/dl) was 17% (95% confidence interval (CI) 10.2; 25.8). Copper sulphate densitometry had a sensitivity of 88.2% (95% CI 62.3; 97.9), a specificity of 89.2% (95% CI 79.9; 94.6), a positive predictive value of 62.5% (95% CI 40.8; 80.5) and a negative predictive value of 97.4% (95%CI 90.0; 99.5) in screening for anaemia. The likelihood ratio of a positive screening test was 8.17.
Conclusions. Copper sulphate densitometry was accurate in screening for childhood anaemia.
(South African Medical Journal: 2002 92(12): 978-981
Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses
Irradiation of a Ru(001) surface covered with CO using intense femtosecond laser pulses (800 nm, 130 fs) leads to desorption of CO with a nonlinear dependence of the yield on the absorbed fluence (100–380 J/m2). Two-pulse correlation measurements reveal a response time of 20 ps (FWHM). The lack of an isotope effect together with the strong rise of the phonon temperature (2500 K) and the specific electronic structure of the adsorbate–substrate system strongly indicate that coupling to phonons is dominant. The experimental findings can be well reproduced within a friction-coupled heat bath model. Yet, pronounced dynamical cooling in desorption, found in the fluence-dependence of the translational energy, and in a non-Arrhenius behavior of the desorption probability reflect pronounced deviations from thermal equilibrium during desorption taking place on such a short time scale
Quantum key distribution using non-classical photon number correlations in macroscopic light pulses
We propose a new scheme for quantum key distribution using macroscopic
non-classical pulses of light having of the order 10^6 photons per pulse.
Sub-shot-noise quantum correlation between the two polarization modes in a
pulse gives the necessary sensitivity to eavesdropping that ensures the
security of the protocol. We consider pulses of two-mode squeezed light
generated by a type-II seeded parametric amplification process. We analyze the
security of the system in terms of the effect of an eavesdropper on the bit
error rates for the legitimate parties in the key distribution system. We also
consider the effects of imperfect detectors and lossy channels on the security
of the scheme.Comment: Modifications:added new eavesdropping attack, added more references
Submitted to Physical Review A [email protected]
Measuring the cosmic ray acceleration efficiency of a supernova remnant
Cosmic rays are the most energetic particles arriving at earth. Although most
of them are thought to be accelerated by supernova remnants, the details of the
acceleration process and its efficiency are not well determined. Here we show
that the pressure induced by cosmic rays exceeds the thermal pressure behind
the northeast shock of the supernova remnant RCW 86, where the X-ray emission
is dominated by synchrotron radiation from ultra-relativistic electrons. We
determined the cosmic-ray content from the thermal Doppler broadening measured
with optical spectroscopy, combined with a proper-motion study in X- rays. The
measured post-shock proton temperature in combination with the shock velocity
does not agree with standard shock heating, implying that >50% of the
post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table
Heat Sources within the Greenland Ice Sheet: Dissipation, Temperate Paleo-Firn and Cryo-Hydrologic Warming
Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses
Femtosecond Surface Vibrational Spectroscopy of CO Adsorbed on Ru(001) during Desorption
Using time-resolved sum-frequency generation spectroscopy, the C-O stretch vibration of carbon monoxide adsorbed on a single-crystal Ru(001) surface is investigated during femtosecond near-IR laser excitation leading to desorption. A large transient redshift, a broadening of the resonance, and a strong decrease in intensity are observed. These originate from coupling of the C-O stretch to low-frequency modes, especially the frustrated rotation, that are highly excited in the desorption process
- …