11,274 research outputs found

    Effect of cryogenic irradiation on NERVA structural alloys

    Get PDF
    Several alloys (Hastelloy X, AISI 347, A-286 bolts, Inconel 718, Al 7039-T63 and Ti-5Al-2.5Sn ELI) were irradiated in liquid nitrogen (140 R) to neutron fluences between 10 to the 17th power and 10 to the 19th power nvt (E greater than 1.0 Mev). After irradiation, tensile properties were obtained in liquid nitrogen without permitting any warmup except for some specimens which were annealed at 540 R. The usual trend of radiation damage typical for materials irradiated at and above room temperature was observed, such as an increase in strength and decrease in ductility. However, the damage at 140 R was greater because this temperature prevented the annealing of radiation-induced defects which occurs above 140 R

    Sensible heat transfer in the Gemini and Apollo pressure suits

    Get PDF
    Sensible heat transfer effects in Gemini and Apollo pressure suit

    Comparison of Fermi-LAT and CTA in the region between 10-100 GeV

    Full text link
    The past decade has seen a dramatic improvement in the quality of data available at both high (HE: 100 MeV to 100 GeV) and very high (VHE: 100 GeV to 100 TeV) gamma-ray energies. With three years of data from the Fermi Large Area Telescope (LAT) and deep pointed observations with arrays of Cherenkov telescope, continuous spectral coverage from 100 MeV to 10\sim10 TeV exists for the first time for the brightest gamma-ray sources. The Fermi-LAT is likely to continue for several years, resulting in significant improvements in high energy sensitivity. On the same timescale, the Cherenkov Telescope Array (CTA) will be constructed providing unprecedented VHE capabilities. The optimisation of CTA must take into account competition and complementarity with Fermi, in particularly in the overlapping energy range 10-100 GeV. Here we compare the performance of Fermi-LAT and the current baseline CTA design for steady and transient, point-like and extended sources.Comment: Accepted for Publication in Astroparticle Physic

    Measuring the cosmic ray acceleration efficiency of a supernova remnant

    Get PDF
    Cosmic rays are the most energetic particles arriving at earth. Although most of them are thought to be accelerated by supernova remnants, the details of the acceleration process and its efficiency are not well determined. Here we show that the pressure induced by cosmic rays exceeds the thermal pressure behind the northeast shock of the supernova remnant RCW 86, where the X-ray emission is dominated by synchrotron radiation from ultra-relativistic electrons. We determined the cosmic-ray content from the thermal Doppler broadening measured with optical spectroscopy, combined with a proper-motion study in X- rays. The measured post-shock proton temperature in combination with the shock velocity does not agree with standard shock heating, implying that >50% of the post-shock pressure is produced by cosmic rays.Comment: Published in Science express, 10 pages, 5 figures and 2 table

    A Macroscopic and Microscopic Study of Compartmentalization and Wound Closure after Mechanical Wounding of Black Walnut Trees

    Get PDF
    Compartmentalization is a concept developed to explain tree response to injury. To study this concept, uniform mechanical wounds were made in fifty black walnut trees. Each tree was wounded at two different heights, 0.5 and 1.4 m, and at two different times, fall (November 1975) and spring (March 1976). The amount of wound closure was noted after one complete growing season, as were several macro- and microscopic characteristics of compartmentalization. Wound closure and compartmentalization were separate responses. Most of the wounds were closed after a single season's growth.The eight trees with one or more open wounds were among the smallest and slowest growing trees in the study. This suggests a positive relationship between growth rate and wound closure, but statistically the relationship was not significant. Wood discoloration was the most prominent wound-related defect. Greater volumes of discolored wood were associated with fall wounds than with spring wounds. Similarly, fall and spring upper wounds were associated with larger volumes of discolored wood than their lower counterparts. Prior fertilizer treatments had no effect on wound closure or compartmentalization. The compartmentalization of wound-affected wood in black walnut agrees with the generalized model of compartmentalization of decay in trees (CODIT). The outer tangential and lateral compartment walls are the strongest, and the inner tangential and top and bottom compartment walls are the weakest and most easily overcome by invading microorganisms. The initial wood discoloration process did not appear to be associated with microorganism activity. Effective compartmentalization was positively correlated with growth rate. Some results of this study suggest that the relative ability to compartmentalize is under genetic control

    A modified monomolecular film test for micro-quantities of lipids in foods

    Get PDF
    This bulletin is a report on Department of Poultry Husbandry research project 17, Egg Utilization--P. [3].Digitized 2007 AES.Includes bibliographical references (page 30)

    Naïve orangutans (Pongo abeliiand Pongo pygmaeus) individually acquire nut‐cracking using hammer tools

    Get PDF
    Nut-cracking with hammer tools (henceforth: nut-cracking) has been argued to be one of the most complex tool-use behaviors observed in nonhuman animals. So far, only chimpanzees, capuchins, and macaques have been observed using tools to crack nuts in the wild (Boesch and Boesch, 1990; Gumert et al., 2009; Mannu and Ottoni, 2009). However, the learning mechanisms behind this behavior, and the extent of nut-cracking in other primate species are still unknown. The aim of this study was two-fold. First, we investigated whether another great ape species would develop nut-cracking when provided with all the tools and appropriate conditions to do so. Second, we examined the mechanisms behind the emergence of nut-cracking by testing a naïve sample. Orangutans (Pongo abelii and Pongo pygmaeus) have the second most extensive tool-use repertoire among the great apes (after chimpanzees) and show flexible problem-solving capacities. Orangutans have not been observed cracking nuts in the wild, however, perhaps because their arboreal habits provide limited opportunities for nut-cracking. Therefore, orangutans are a valid candidate species for the investigation of the development of this behavior. Four nut-cracking-naïve orangutans at Leipzig zoo (P. abelii; Mage = 16; age range = 10–19; 4F; at the time of testing) were provided with nuts and hammers but were not demonstrated the nut-cracking behavioral form. Additionally, we report data from a previously unpublished study by one of the authors (Martina Funk) with eight orangutans housed at Zürich zoo (six P. abelii and two P. pygmaeus; Mage = 14; age range = 2–30; 5F; at the time of testing) that followed a similar testing paradigm. Out of the twelve orangutans tested, at least four individuals, one from Leipzig (P. abelii) and three from Zürich (P. abelii and P. pygmaeus), spontaneously expressed nut-cracking using wooden hammers. These results demonstrate that nut-cracking can emerge in orangutans through individual learning and certain types of non-copying social learning

    Sexual identity of enterocytes regulates autophagy to determine intestinal health, lifespan and responses to rapamycin

    Get PDF
    Pharmacological attenuation of mTOR presents a promising route for delay of age-related disease. Here we show that treatment of Drosophila with the mTOR inhibitor rapamycin extends lifespan in females, but not in males. Female-specific, age-related gut pathology is markedly slowed by rapamycin treatment, mediated by increased autophagy. Treatment increases enterocyte autophagy in females, via the H3/H4 histone-Bchs axis, whereas males show high basal levels of enterocyte autophagy that are not increased by rapamycin feeding. Enterocyte sexual identity, determined by transformerFemale expression, dictates sexually dimorphic cell size, H3/H4-Bchs expression, basal rates of autophagy, fecundity, intestinal homeostasis and lifespan extension in response to rapamycin. Dimorphism in autophagy is conserved in mice, where intestine, brown adipose tissue and muscle exhibit sex differences in autophagy and response to rapamycin. This study highlights tissue sex as a determining factor in the regulation of metabolic processes by mTOR and the efficacy of mTOR-targeted, anti-aging drug treatments
    corecore