91 research outputs found

    Fundamental Study on Support Systemat Cibaliung Underground Gold Mine, Indonesia

    Get PDF
    Geotechnical information is a key for underground design. The most important parameters are rock mass strength, geological structures, main stress and strain, rock mass classification, discontinuities, etc. All of these may have impact on underground\ud stability, if some are suitable, and only just one is troubled, it can be due to instability in the underground. The purposes of this study are to classify the rock mass and to introduced the support system in Cibaliung underground gold mine based on the rock mass classification. The characteristics of some geotechnical aspects of Cikoneng and Cibitung area are shown in this paper. Rock mass classification is measured, and the difference between both locations presented as a preliminary study for the next further research. Recommendation of support system policy of Cibaliung underground gold mine which compared to Pongkor underground gold mine also discussed in this paper

    Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.

    Get PDF
    Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion

    Melt-Mixing by Novel Pitched-Tip Kneading Disks in a Co-Rotating Twin-Screw Extruder

    Full text link
    Melt-mixing in twin-screw extruders is a key process in the development of polymer composites. Quantifying the mixing performance of kneading elements based on their internal physical processes is a challenging problem. We discuss melt-mixing by novel kneading elements called "pitched-tip kneading disk (ptKD)". The disk-stagger angle and tip angle are the main geometric parameters of the ptKDs. We investigated four typical arrangements of the ptKDs, which are forward and backward disk-staggers combined with forward and backward tips. Numerical simulations under a certain feed rate and screw revolution speed were performed, and the mixing process was investigated using Lagrangian statistics. It was found that the four types had different mixing characteristics, and their mixing processes were explained by the coupling effect of drag flow with the disk staggering and pitched-tip and pressure flows, which are controlled by operational conditions. The use of a pitched-tip effectively to controls the balance of the pressurization and mixing ability

    Regulation of NR4A nuclear receptors by p38

    Get PDF
    In Drosophila, the melanization reaction is an important defense mechanism against injury and invasion of microorganisms. Drosophila tyrosine hydroxylase (TH, also known as Pale) and dopa decarboxylase (Ddc), key enzymes in the dopamine synthesis pathway, underlie the melanin synthesis by providing the melanin precursors dopa and dopamine, respectively. It has been shown that expression of Drosophila TH and Ddc is induced in various physiological and pathological conditions, including bacterial challenge; however, the mechanism involved has not been fully elucidated. Here, we show that ectopic activation of p38 MAPK induces TH and Ddc expression, leading to upregulation of melanization in the Drosophila cuticle. This p38-dependent melanization was attenuated by knockdown of TH and Ddc, as well as by that of Drosophila HR38, a member of the NR4A family of nuclear receptors. In mammalian cells, p38 phosphorylated mammalian NR4As and Drosophila HR38 and potentiated these NR4As to transactivate a promoter containing NR4A-binding elements, with this transactivation being, at least in part, dependent on the phosphorylation. This suggests an evolutionarily conserved role for p38 MAPKs in the regulation of NR4As. Thus, p38-regulated gene induction through NR4As appears to function in the dopamine synthesis pathway and may be involved in immune and stress responses

    Single-molecule imaging of full protein synthesis by immobilized ribosomes

    Get PDF
    How folding of proteins is coupled to their synthesis remains poorly understood. Here, we apply single-molecule fluorescence imaging to full protein synthesis in vitro. Ribosomes were specifically immobilized onto glass surfaces and synthesis of green fluorescent protein (GFP) was achieved using modified commercial Protein Synthesis using Recombinant Elements that lacked ribosomes but contained purified factors and enzyme that are required for translation in Escherichia coli. Translation was monitored using a GFP mutant (F64L/S65T/F99S/M153T/V163A) that has a high fluorophore maturation rate and that contained the Secretion Monitor arrest sequence to prevent dissociation from the ribosome. Immobilized ribosomal subunits were labeled with Cy3 and GFP synthesis was measured by colocalization of GFP fluorescence with the ribosome position. The rate of appearance of colocalized ribosome GFP was equivalent to the rates of fluorescence appearance coupled with translation measured in bulk, and the ribosome–polypeptide complexes were stable for hours. The methods presented here are applicable to single-molecule investigation of translational initiation, elongation and cotranslational folding
    corecore