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Summary
In Drosophila, the melanization reaction is an important defense mechanism against injury and invasion of microorganisms. Drosophila

tyrosine hydroxylase (TH, also known as Pale) and dopa decarboxylase (Ddc), key enzymes in the dopamine synthesis pathway, underlie
the melanin synthesis by providing the melanin precursors dopa and dopamine, respectively. It has been shown that expression of

Drosophila TH and Ddc is induced in various physiological and pathological conditions, including bacterial challenge; however, the
mechanism involved has not been fully elucidated. Here, we show that ectopic activation of p38 MAPK induces TH and Ddc expression,
leading to upregulation of melanization in the Drosophila cuticle. This p38-dependent melanization was attenuated by knockdown of TH

and Ddc, as well as by that of Drosophila HR38, a member of the NR4A family of nuclear receptors. In mammalian cells, p38
phosphorylated mammalian NR4As and Drosophila HR38 and potentiated these NR4As to transactivate a promoter containing NR4A-
binding elements, with this transactivation being, at least in part, dependent on the phosphorylation. This suggests an evolutionarily

conserved role for p38 MAPKs in the regulation of NR4As. Thus, p38-regulated gene induction through NR4As appears to function in
the dopamine synthesis pathway and may be involved in immune and stress responses.
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Introduction
Melanin is a widespread pigment found in the skin, hair and eyes
of animals, protecting them from harmful environmental stimuli.
In arthropods, the melanization reaction is also an important

defense mechanism against injury and invasion of a wide variety
of microorganisms (Cerenius and Soderhall, 2004; Nappi and
Vass, 1993; Sugumaran, 2002). Rapid deposition of melanin at the
wound site prevents the loss of hemolymph and leads to killing of

the invading microorganisms by toxic intermediates, such as
reactive oxygen species, that are produced during the melanin
biosynthesis. In Drosophila, tyrosine-derived catecholamines,

such as dopa and dopamine, serve as the precursors of melanin,
which constitutes the black and brown pigments in the cuticle and
wing (Wittkopp et al., 2003). Drosophila tyrosine hydroxylase

(TH, also known as Pale) catalyses the oxidation of tyrosine to
dopa, which is the first and rate-limiting step in dopamine
biosynthesis. Dopa decarboxylase (Ddc) converts dopa into

dopamine. Some fractions of dopa and dopamine are oxidized

by phenoloxidase (PO) in the hemolymph and converted into
quinones, which are then polymerized non-enzymatically to form
dopa- and dopamine-melanin, respectively.

Mutations in the pale locus, which encodes TH, have been
shown to result in unpigmentated embryos that are unable to
hatch (Jürgens et al., 1984; Neckameyer and White, 1993). It has
also been shown that TH, together with Ddc, is required for

melanin synthesis in the cuticle of adult flies, and expression of
both genes is sufficient to cause ectopic melanin patterns in the
wing (True et al., 1999). A microarray analysis of Drosophila

genes revealed that TH and Ddc were upregulated in the flies
after septic injury with a mixture of Escherichia coli and
Micrococcus luteus (De Gregorio et al., 2001). In addition, in the

moth Manduca sexta, the corresponding tyrosine-hydroxylase-
encoding gene was upregulated in response to inoculation with
M. luteus (Gorman et al., 2007), suggesting the possible
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involvement of DTH and Ddc in immune-associated

melanization. Despite these lines of evidence, however, the

regulatory mechanism of TH and Ddc gene expression in the

context of melanization has been elusive.

p38 MAPKs are preferentially activated in response to a wide

variety of physical, chemical and biological stress stimuli, and

thereafter phosphorylate various substrates, such as transcription

factors and other protein kinases, regulating cellular immune and

stress responses (Kyriakis and Avruch, 2001; Widmann et al.,

1999; Zarubin and Han, 2005). Activation of p38 is regulated by

two classes of protein kinases, MAPK kinases (MAP2Ks) and

MAP2K kinases (MAP3Ks). MAP3Ks phosphorylate and thereby

activate MAP2Ks, and activated MAP2Ks in turn phosphorylate

and activate MAPKs. In Drosophila, three p38-MAPK-encoding

genes, p38a (also known as Mpk2), p38b and p38c, have been

identified (Davis et al., 2008; Han et al., 1998a; Han et al.,

1998b). As with mammalian p38s, Drosophila p38a and p38b

have been shown to be activated by immune stimulation and

various stressors, and flies lacking the p38a or p38b gene are

susceptible to some environmental stressors (Craig et al., 2004;

Cully et al., 2010; Han et al., 1998b). Recently, it has been shown

that the p38a and p38b double-mutant flies are viable in near-

sterile condition but hypersensitive to microbial infection (Chen

et al., 2010). By contrast, p38c appears to be an atypical p38

MAPK, because it has mutations in the TGY motif, which is

required for activating phosphorylation by MAP2Ks (Davis et al.,

2008).

Recent studies have shed light on the tissue- and cell-type-

specific roles of Drosophila p38 family members in innate

immune responses. Oral ingestion of microbial components

induces activation of Drosophila p38, and p38 in turn

transcriptionally induces Dual oxidase (Duox) in the midgut of

flies and contributes to the survival of flies (Ha et al., 2009). In

hemocytes, p38b-mediated ‘phagocytic encapsulation’ of

bacteria increases the infection tolerance of flies injected with

Salmonella typhimurium (Shinzawa et al., 2009). Importantly,

Hodgetts and colleagues have demonstrated that p38c is required

for septic-injury-dependent Ddc expression in epidermal tissues

(Davis et al., 2008). These findings suggest that the Drosophila

p38 MAPKs have a physiological role in innate immunity, as has

been shown with p38 in other species, such as mammals and

Caenorhabditis elegans (Kim et al., 2002; Matsuzawa et al.,

2005).

In the present study, we found that constitutive activation of

Drosophila p38 in the dorsal midline of flies induced black

pigmentation, which was a consequence of upregulated

melanization. In this p38-induced melanization, Drosophila TH,

Ddc and the nuclear receptor HR38 were found to play a crucial

role. Drosophila HR38 belongs to the NR4A subfamily of

nuclear receptors that function as transcription factors and has

been shown to play pivotal roles in adult cuticle formation and

atypical ecdysteroid signaling in flies (Baker et al., 2003;

Kozlova et al., 2009; Kozlova et al., 1998). We found that p38

phosphorylated mammalian NR4As and Drosophila HR38 and

potentiated these NR4As to transactivate the rat TH promoter,

with this transactivation being, at least in part, mediated by the

phosphorylation. This suggests an evolutionarily conserved role

for p38 in the regulation of NR4As. We thus propose that p38-

regulated gene induction through NR4A nuclear receptors serves

as a regulatory mechanism for the dopamine biosynthesis

pathway in the immune and stress responses in Drosophila and
mammals.

Results
Ectopic expression of ASK1DN induces black
pigmentation in the fly thorax

To explore target genes downstream of Drosophila p38, we took

advantage of the MAP3K Drosophila ASK1 (also known as
Pk92B) as a potential p38-activating MAP3K (Kuranaga et al.,
2002). We constructed an expression vector for Drosophila

ASK1DN, lacking the ASK1 N-terminal regulatory domain,
which is similar in its primary structure to the mammalian
ASK1DN that has been shown to act in a constitutively active
manner (Mizumura et al., 2006; Takeda et al., 2000). In Drosophila

S2 cells, p38a was strongly activated by coexpression with
ASK1DN compared with that by wild-type (WT) ASK1, as
determined by an antibody against phosphorylated p38 that

specifically recognizes the dual-phosphorylation of Thr and Tyr
residues in the well-conserved TGY motif in the activation loop of
p38 (Fig. 1A; supplementary material Fig. S1A). We also found

that p38b was activated by coexpression with ASK1DN, although
we could not evaluate the activation state of p38c because of the
lack of the TGY motif (supplementary material Fig. S1A,B).

Although ASK1DN also activated Drosophila JNK, which is a
further stress-activated MAPK, the extent of JNK activation by
ASK1DN was similar to that by ASK1WT (Fig. 1B). These results
suggest that ASK1DN acts as a constitutively active mutant

selectively for the p38 pathway.

We next established a Drosophila transgenic strain harboring

UAS-DASK1DN in which cDNA encoding ASK1DN was inserted
downstream of the UAS binding sequence for the transcription
factor GAL4. We then performed crosses of this strain with
various ‘driver’ strains that express GAL4 through ubiquitous or

tissue-specific promoters. When the pannier (pnr)-GAL4 strain,
in which GAL4 is expressed in a longitudinal dorsal domain
extending along the thoracic and abdominal segments (Calleja

et al., 2000), was crossed with the UAS-DASK1DN strain, the
progeny (pnr.ASK1DN) exhibited black pigmentation in the
thorax cuticle, which corresponded to the pnr-GAL4 expression

region in the thorax; no such pigmentation was observed in the
pnr-GAL4 flies without the UAS-DASK1DN transgene
(Fig. 1C,D). To confirm that this pigmentation was induced by
overexpressed ASK1DN, we generated transgenic flies

expressing the inverted repeat (IR) RNA for ASK1, which
specifically inhibits ASK1 expression in a GAL4-dependent
manner (UAS-DASK1-IR). The pigmentation in pnr.ASK1DN

was suppressed by coexpression with ASK1-IR, excluding the
possibility that this phenotype was caused by an artifact of the
expression system (Fig. 1E).

Intriguingly, the pigmentation in pnr.ASK1DN was confined
to the thorax, although pnr-GAL4 is expressed in the dorsal
midline both of the thorax and abdomen (Fig. 1C,D). This raised

the possibility that the dorsal midline of the thorax is a
preferential region where ASK1DN expression induces visible
pigmentation. To test this possibility, we examined whether and

where ubiquitous expression of ASK1DN induces pigmentation
using a heat-shock-driven GAL4 (hs).ASK1DN flies to
ubiquitously express ASK1DN upon heat shock. These flies,

which were subjected to a 1-hour heat shock at 37 C̊ during their
pupal stage, showed the pigmentation in the lower medial region
of the thorax cuticle, together with a defect in wing expansion
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(Fig. 2A,B). By contrast, ASK1DN expression in immune-related

tissues, such as fat body and hemocytes, did not induce visible

pigmentation (data not shown). These results suggested that

ASK1DN induces pigmentation preferentially in the dorsal

midline of the thorax and that tissue-specific factor(s) and/or

mechanism(s) are required for ectopic pigmentation.

ASK1DN-dependent pigmentation is mediated by the

Drosophila p38 pathway

To evaluate the contribution of p38 in ASK1DN-dependent

pigmentation, we examined whether expression of ASK1DN also

selectively activates p38 in vivo (Fig. 2C). Heat-shock-dependent

expression of ASK1DN in the hs.ASK1DN flies induced p38

activation (Fig. 2C, the upper and weaker phosphorylated p38

band in the blot), although the basal activity of p38 (the lower

stronger band) was high even in the absence of ASK1DN

expression, probably owing to the heat shock used for induction

of GAL4; an analysis using the p38a-null and p38b-null flies

suggested that the upper and lower phosphorylated p38 bands

corresponded to the activated forms of p38a and p38b,

respectively (supplementary material Fig. S1C). By contrast,

ASK1DN expression did not induce JNK activation, indicating

that ASK1DN expression also selectively activates p38 in vivo.

We next examined the requirement of the Drosophila p38

pathway for ASK1DN-induced pigmentation. Expression of

dominant-negative p38a (p38a-DN) (Adachi-Yamada et al.,

1999) or IR RNA-mediated knockdown of p38a or p38b in the

pnr.ASK1DN flies abolished the pigmentation (Fig. 3A–C,J),

whereas knockdown of p38c only had a marginal effect

(Fig. 3D). The pigmentation was also suppressed by

knockdown of a Drosophila MAP2K gene in the p38 pathway,

licorne (lic) (also known as Mkk3) (Han et al., 1998b) (Fig. 3E),

strongly suggesting that the p38 pathway is required for the

ASK1DN-dependent pigmentation.

Knockdown of another MAP2K gene, Mkk4, attenuated the

ASK1DN-dependent pigmentation (Fig. 3F). Because

mammalian MKK4 is known to mediate both the JNK and p38

pathways, this result suggested that the ASK1DN-dependent

pigmentation might be attributed to basal JNK activity, in

addition to ASK1DN-induced p38 activation. However, it was

difficult to assess the requirement of the Drosophila JNK

pathway for the ASK1DN-induced pigmentation; the loss of

JNK activity, accomplished by knockdown of JNK or

overexpression of a dominant-negative form of JNK or the

JNK phosphatase Puckered, in the pnr-GAL4-expressing region,

Fig. 1. Ectopic expression of ASK1DN induces black

pigmentation in flies. (A) Activation of Drosophila p38

(Dp38) by Drosophila ASK1 (DASK1) in S2 cells. S2 cells

were transiently transfected with pUAST-Flag-p38a alone or

together with either pUAST-Flag-ASK1WT, KN or DN

(WT, wild type; KN, kinase-negative) driven by

pWAGAL4. Cell lysates were subjected to immunoblotting

(IB). (B) Activation of Drosophila JNK (DJNK) by

Drosophila ASK1 in S2 cells. S2 cells were transiently

transfected with pUAST-JNK alone or together with either

pUAST-Flag-ASK1WT, KN or DN driven by pWAGAL4.

Cell lysates were subjected to immunoblotting.

(C,D) ASK1DN-induced pigmentation in the thorax cuticle

of pnr.ASK1DN fly. Whole flies (wings and legs were

removed for observation) and magnified thoraxes of pnr-

GAL4/+ (C) and UAS-DASK1DN/+; pnr-GAL4/+ (D) are

shown. (E) ASK1DN-induced pigmentation is abolished by

coexpression with ASK1-IR. Thoraxes of UAS-DASK1DN/

UAS-DASK1-IR; pnr-GAL4/+ are shown.

Fig. 2. hs-GAL4-dependent Drosophila ASK1DN expression induces

black pigmentation in the thorax cuticle. (A,B) The hs-GAL4/+ (A) and

UAS-DASK1D /+; hs-GAL4/+ (B) flies were subjected to a 1-hour heat shock

at 37 C̊ during their pupal stage and were then maintained at 25 C̊ until they

became adults. Whole flies and their magnified thoraxes are shown. (C) hs-

GAL4-dependent ASK1DN expression induces Drosophila p38 activation.

Adult males of hs-GAL4/+ and UAS-DASK1DN/hs-GAL4 were subjected to a

1-hour heat shock at 37 C̊ and then maintained at 25 C̊ for 5 hours. Flies were

lysed and subjected to immunoblotting (IB).
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mostly resulted in lethality before eclosion, probably owing to

defects in dorsal or thorax closure (Riesgo-Escovar et al., 1996;

Sluss et al., 1996; Zeitlinger and Bohmann, 1999). Among the

strains we tested, the pnr.ASK1DN flies in a hemizygous

background for hep1, a hypomorphic allele of the gene encoding

a MAP2K of the JNK pathway (Glise et al., 1995), and those

crossed with the UAS-hep-IR (4353R-2) line avoided lethality but

retained the ASK1DN-dependent pigmentation (Fig. 3G,I). The

contribution of JNK to ASK1DN-dependent pigmentation might

thus be relatively low compared with that of p38, although these

results do not completely exclude the possibility that basal JNK

activity plays some roles.

p38-dependent pigmentation is caused by melanization

Black and brown pigments in Drosophila cuticle are known to

comprise dopa and dopamine melanin (Wittkopp et al., 2003).

Fig. 4A shows the current model of the melanin biosynthesis

pathway in Drosophila (True, 2003; Wittkopp et al., 2002).

Tyrosine is converted into dopa by TH, and dopa is converted

into dopamine by Ddc. Some fractions of dopa and dopamine are

converted into dopa and dopamine melanin, respectively, by

means of the PO system. Dopamine is also catalyzed into N-b-

alanyl dopamine (NBAD) by Ebony, and NBAD is subsequently

converted into yellowish NBAD sclerotin. The melanization

pattern in the thorax cuticle appears to be determined by the

balance of genes involved in the melanin synthesis pathway

including TH, Ddc and ebony, all of which have been reported to

be highly expressed in the epidermal cells of adult thorax (Gibert

et al., 2007; Wittkopp et al., 2002). Consistent with the previous

finding that overexpression of Ebony suppressed melanin

accumulation, probably owing to a reduction in the levels of

dopa and dopamine (Wittkopp et al., 2002), we found that

coexpression of Ebony with ASK1DN abolished ectopic black

pigmentation (Fig. 4B,C). Moreover, we found that, in a

hemizygous background for a yellow (y1) mutation, in which

flies exhibit a yellowish body color compared with WT flies,

pigmentation in the ASK1DN-expressing region, particularly in

the scutellum (the one-fourth to one-third caudomedial portion in

each photo), was brown rather than black (Fig. 4D,E). Because

yellow is known to be required for the production of black

melanin (Walter et al., 1991; Wittkopp et al., 2002), yellow-

dependent production of dopa melanin appears to be required for

black pigmentation in pnr.ASK1DN flies. These results

suggested that upregulation of dopa and dopamine melanin was

involved in Drosophila-p38-dependent pigmentation.

TH and Ddc are required for p38-dependent melanization

Given that the dopa and dopamine levels are regulated by TH and

Ddc, we assessed whether TH and Ddc are involved in the p38-

dependent melanization. Expression of IR RNA for TH or Ddc,

Fig. 3. Drosophila ASK1DN-dependent pigmentation

is mediated by the Drosophila p38 pathway. Thoraxes

of female flies with the following genotypes are shown:

UAS-DASK1DN /UAS-LacZ-IR; pnr-GAL4/+ (A), UAS-

DASK1DN/UAS-Dp38a-IR; pnr-GAL4/+ (B), UAS-

DASK1DN/+; pnr-GAL4/UAS-Dp38b-IR (C), UAS-

DASK1DN/UAS-Dp38c-IR; pnr-GAL4/+ (D), UAS-

DASK1DN/UAS-lic-IR; pnr-GAL4/+ (E), UAS-

DASK1DN/+; pnr-GAL4/dMkk4-IR (F), UAS-DASK1DN/

+; pnr-GAL4/UAS-hep-IR (G), +/Y; UAS-DASK1DN/+;

pnr-GAL4/+ (H), hep1/Y; UAS-DASK1DN/+; pnr-GAL4/

+ (I), and UAS-Dp38a-DN/Y; UAS-DASK1DN/+; pnr-

GAL4/+ (J).

Fig. 4. Drosophila p38-dependent pigmentation is caused by

melanization. (A) A current model of the Drosophila melanin biosynthesis

pathway. (B,C) Drosophila ASK1DN-induced pigmentation is abolished by

coexpression with Ebony. Thoraxes of UAS-DASK1DN/+; pnr-GAL4/+ (B)

and UAS-DASK1DN/UAS-ebony; pnr-GAL4/+ (C) are shown. (D,E)

ASK1DN-induced pigmentation is switched from black to brown in a

hemizygous background for yellow mutation. The scutellum is enclosed by

the brackets. Thoraxes of +/Y; UAS-DASK1DN/+; pnr-GAL4/+ (D) and y1/Y;

UAS-DASK1DN/+; pnr-GAL4/+ (E) are shown.
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which targets all known splicing variants of each gene (Friggi-

Grelin et al., 2003; Shen et al., 1993), attenuated basal

pigmentation in the thorax of pnr-GAL4 flies, indicating the

requirement of TH and Ddc for basal pigmentation (Fig. 5A,B).

Knockdown of either gene also abolished ASK1DN-induced

pigmentation, suggesting that TH and Ddc were essential for p38-

dependent melanization (Fig. 5C–E).

A recent report showing the role of p38c in the induction of

Ddc in the epidermis of bacteria-injected flies motivated us to

examine whether the ASK1DN-dependent p38 activation

induced expression of TH and Ddc in flies (Davis et al., 2008).

Although we initially examined the pnr.ASK1DN-dependent

increase in the mRNA expression of TH and Ddc in adult flies,

we failed to detect it, probably owing to high basal expression

(Gibert et al., 2007). We therefore examined the hs.ASK1DN

pupae and their control hs.GFP pupae 36–48 hours after their

puparium formation, when TH and Ddc expression is reportedly

decreased (Davis et al., 2007a). RNA was extracted from the

pupae maintained at 25 C̊, in which only leaky expression of

GFP or ASK1DN from the hs promoter was induced, avoiding

the effect caused by heat-shock-dependent activation of p38.

Quantitative real-time PCR (qRT-PCR) revealed that mRNA

expression of TH and Ddc was induced in the ASK1DN-

expressing pupae, compared with that in the control pupae

(Fig. 5F), suggesting that Drosophila p38 activation induced the

transcription of TH and Ddc.

HR38 is required for p38-dependent melanization

In mammals, the NR4A subfamily of nuclear receptors consists

of three transcription factors: NR4A1 (also known as Nur77 and

NGFI-B), NR4A2 (also known as Nurr1), and NR4A3 (also

known as NOR-1) (Maxwell and Muscat, 2006). NR4A2 has

been shown to regulate expression of the genes encoding tyrosine

hydroxylase and aromatic L-amino acid decarboxylase (AADC),

a mammalian ortholog of Ddc, and to play crucial roles in the

development of dopaminergic neurons (Jankovic et al., 2005;

Perlmann and Wallen-Mackénzie, 2004). NR4As bind to the

NBRE (NGFI-B response element), through which NR4A2

regulates the mammalian TH promoter (Maxwell and Muscat,

2006). HR38 is the single Drosophila ortholog of the mammalian

NR4A family and has been shown to bind to the NBRE (Baker

et al., 2003; Fisk and Thummel, 1995). Consistent with this, it

has recently been reported that HR38 binds to the NBRE-like

sequence upstream of the Ddc gene and that ectopic expression

of HR38 influences expression of Ddc in a tissue-dependent

manner (Davis et al., 2007b). Furthermore, we found that four

NBRE-like sequences existed in the Drosophila TH gene

promoter (–2748 bp, –2318 bp, –2148 bp, and –459 bp from

the transcription start site). These findings suggest that HR38 is

involved in p38-dependent transcriptional control of Drosophila

TH and Ddc.

To evaluate this possibility, we knocked down HR38 by pnr-

GAL4-dependent expression of IR RNA for HR38. Because of the

lethality of the pnr.DHR38-IR flies at a conventional

temperature of 25 C̊, we maintained the flies at 18 C̊ to reduce

GAL4-dependent expression of HR38-IR and thus avoided the

lethality (Fig. 5G). ASK1DN-induced melanization at 18 C̊,

which was less obvious than that at 25 C̊, probably owing to

the reduced GAL4 activity, was inhibited by coexpression of

HR38-IR (Fig. 5H,I), suggesting that HR38 was required for the

p38-dependent melanization. Taken together with the result that

expression of HR38 did not change upon ASK1DN expression

(Fig. 5F), Drosophila p38 appears to induce TH and Ddc through

post-translational activation of HR38.

Mammalian p38 activation potentiates NR4As to

transactivate the rat TH promoter

Because the structure of the NR4A family factors including

Drosophila HR38 is highly conserved among species (Baker

et al., 2003; Wang et al., 2003), we expected that p38

regulates gene expression through NR4As by a conserved

mechanism. We therefore evaluated the transactivation function

Fig. 5. Drosophila TH, Ddc, and HR38 are required for

Drosophila p38-dependent melanization. (A–E) Drosophila

TH and Ddc are required for ASK1DN-induced melanization.

Thoraxes of UAS-DTH-IR/+; pnr-GAL4/+ (A), UAS-Ddc-IR/

+; pnr-GAL4/+ (B), UAS-DASK1DN/+; pnr-GAL4/+ (C),

UAS-DASK1DN/UAS-DTH-IR; pnr-GAL4/+ (D), UAS-Ddc-

IR/+; UAS-DASK1DN/+; pnr-GAL4/+ (E) are shown.

(F) mRNA expression of Drosophila TH (DTH) and Ddc is

induced by Drosophila ASK1DN (DASK1DN) expression.

Total RNA isolated from pupae of UAS-GFPS65T/+; hs-

GAL4/+ (hs.GFP) and UAS-DASK1DN/+; hs-GAL4/+

(hs.DASK1DN) at 36–48 hours after puparium formation

was subjected to qRT-PCR analysis for the indicated genes.

Results shown are the means ¡ s.e.m. for five independent

RNA preparations from 7–10 pupae each. (G–I) HR38 is

required for ASK1DN-induced melanization. Thoraxes of

UAS-DHR38-IR/+; pnr-GAL4/+ (G), UAS-DASK1DN/+;

pnr-GAL4/+ (H), and UAS-DASK1DN/UAS-DHR38-IR; pnr-

GAL4/+ (I) are shown. Flies were crossed and maintained at

18 C̊ to avoid the lethality.
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of NR4As by coexpressing the reporter gene TH/–9kb, which

contained the rat TH promoter (–9 kb to +15 bp) fused to the

luciferase gene (Iwawaki et al., 2000), in rat PC12 cells and

measuring the relative luciferase activity. Although expression

of mammalian ASK1DN or either of the NR4As activated the

promoter to some extent, coexpression of ASK1DN and either

of NR4As synergistically activated the promoter (Fig. 6A). The

reporter gene TH/NBRE1 containing three copies of NBRE, but

not the control gene TH/NBRE1-mt containing the same copies of

mutated NBRE sequences, was activated only when either of

NR4As was coexpressed with ASK1DN (Fig. 6B), indicating that

mammalian ASK1DN potentiated NR4As to transactivate the rat

TH promoter through the NBREs. Importantly, synergistic

activation of the TH/–9kb promoter by coexpression of ASK1DN

and NR4A2 was dose-dependently suppressed by treatment with

the p38 inhibitor SB203580 but not with the JNK inhibitor

SP600125 (Fig. 6C), suggesting that p38 activation was required

for the ASK1DN-induced transactivation functions of NR4As.

Moreover, coexpression of NR4A2 with the constitutively active

MKK6 (also known as MAP2K6) mutant MKK6DD, which is a

MAP2K that selectively activates p38, induced synergistic

activation of the TH/–9kb promoter (Fig. 6D), suggesting that

activation of p38 is sufficient to potentiate NR4As to transactivate

the TH promoter.

p38 directly phosphorylates NR4As

Because Drosophila p38 activation did not upregulate HR38

expression (Fig. 5F), we sought to examine whether p38 regulates

NR4As by protein modification such as phosphorylation. To this

end, we used a bacterially expressed GST-tagged N-terminal

portion of NR4A2 (GST–NR4A2-NT) as a substrate of p38 in an in

vitro kinase assay. This portion of NR4A2 includes most of

consensus phosphorylation sites targeted by p38 (Ser-Pro or Thr-

Pro; indicated as red arrowheads in Fig. 7D). Whereas p38a (also

known as MAPK14) and p38b (also known as MAPK11)

phosphorylated GST–NR4A2-NT only faintly, both of them

were activated by coexpression with ASK1WT, but not with

kinase-negative (KN) form of ASK1, and effectively

phosphorylated GST–NR4A2-NT (Fig. 7A). Because ASK1WT

alone did not phosphorylate NR4A2-NT (data not shown), p38

MAPKs activated by ASK1 appear to directly phosphorylate

NR4A2.

To assess whether p38 MAPKs also phosphorylated NR4As

within cells, we treated, or left untreated, lysates of NR4A2-

expressing cells with l-phosphatase (lPPase) and subjected them

to immunoblotting (Fig. 7B). PPase-treated NR4A2 migrated

slightly faster than untreated NR4A2 (Fig. 7B, lanes 1 and 2),

suggesting that NR4A2 was basally phosphorylated to some

extent. Whereas coexpression of p38b did not affect the

migration of NR4A2 probably due to the inactive states of

p38b as determined using an antibody against phosphorylated

p38 (Fig. 7B, lanes 3 and 4), coexpression of p38b and ASK1DN

markedly retarded the migration of NR4A2 in a manner sensitive

to lPPase (Fig. 7B, lanes 5 and 6). We also found that, in HEK-

293 cells coexpressing p38b and ASK1DN, HR38 and NR4A2

exhibited similarly retarded migrations, both of which were

sensitive to SB203580 (Fig. 7C). These results suggested that

p38 phosphorylated NR4As within cells.

Fig. 6. Mammalian p38 activation potentiates NR4As to transactivate the rat TH promoter. (A) Mammalian ASK1DN induces the transactivation function

of NR4As. The rat TH/–9kb reporter gene and one of the NR4As, in the presence or absence of ASK1DN, were transiently expressed in PC12 cells. The luciferase

activity was measured and converted into a fold increase relative to that of the cells transfected with an empty vector (first column). Results shown are

representative of three independent experiments and are the means ¡ s.e.m. for triplicate determinations. (B) ASK1DN-induced transactivation functions of

NR4As are mediated largely through NBREs. The TH/NBRE1 or TH/NBRE1-mt reporter gene and either of NR4As, in the presence or absence of ASK1DN, were

transiently expressed in PC12 cells. The luciferase activity was measured and shown as in A. (C) Mammalian p38 but not JNK is required for the

ASK1DN-induced transactivation functions of NR4A2. NR4A2 and/or ASK1DN together with the TH/–9kb reporter gene were transiently expressed in PC12

cells. At 4 hours after the transfection, the indicated concentrations of SB203580 or SP600125 were added to the culture medium. After a further 20 hours, the

luciferase activity was measured and indicated as a fold increase relative to that of control DMSO-treated cells transfected with an empty vector (black columns).

Results shown are representative of three independent experiments and are the means ¡ s.e.m. for triplicate determinations. (D) Mammalian p38 is sufficient to

activate NR4A2. NR4A2 and/or a constitutively active mutant of MKK6 (MKK6DD) together with the TH/–9kb reporter gene were transiently expressed in PC12

cells. The luciferase activity was measured and shown as in A.
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Fig. 7. Mammalian p38 potentiates NR4As, at least in part, by phosphorylation. (A) p38a and p38b phosphorylate NR4A2 in vitro. The indicated tagged proteins

(WT, wild type; KN, kinase-negative) were transiently expressed in HEK-293 cells and were immunoprecipitated (IP) with anti-Flag antibody. The immune complex was

incubated with recombinant GST–NR4A2-NT (1–261 amino acids) in a kinase buffer in vitro. Samples were subjected to SDS-PAGE followed by autoradiographing

(ARG) and immunoblotting (IB) for the indicated tags. The proteins detected are shown on the right-hand side (P- indicates the phosphorylated form). (B) p38

phosphorylates NR4A2 in HEK-293 cells. The indicated expression plasmids were transiently transfected in HEK-293 cells. Cell lysates were divided into two aliquots:

one was untreated and the other was treated with lPPase. Samples were subjected to immunoblotting. (C) p38 phosphorylates Drosophila HR38 (DHR38) in HEK-293

cells. The indicated expression plasmids were transiently transfected in HEK-293 cells. At 4 hours after the transfection, 3 mM of SB203580 was added to the culture

medium. After a further 24 hours, cell lysates were subjected to immunoblotting. (D) ASK1DN-induced transactivation activity is reduced in the cluster II mutant of

NR4A2. The diagram at the top shows the structural features of full-length, N-terminal 261 amino acids (NT) and N-terminal 369 amino acid (DC) forms of NR4A2, the

latter two of which were used as GST fusion proteins in Fig. 7A and E, respectively. A total of 15 potential phosphorylation sites targeted by p38 (Ser-Pro or Thr-Pro;

indicated as red arrowheads) in both human and mouse NR4A2 and the four clusters of the potential phosphorylation sites that we designated I, II, III and IV are also

shown. The rat TH/–9kb reporter gene and either of the four mutants, in which all the potential Ser and Thr residues in each cluster were replaced with Ala (columns I, II,

III or IV), in the presence or absence of ASK1DN, were transiently expressed in PC12 cells. The luciferase activity was measured and indicated as a fold increase relative

to that of cells transfected with an empty vector (–, first column). Results shown are representative of two independent experiments and are the means ¡ s.e.m. for

triplicate determinations. The inset shows that the difference in the extent of ASK1DN-induced transactivation activity between WT NR4A2 and the cluster II mutant was

statistically significant (**P,0.01, using a Student t-test). Results shown are the means ¡ s.e.m. for six independent experiments performed in duplicate or triplicate

determinations. (E) NR4A2 cluster II includes p38b phosphorylation site(s). In vitro kinase (IVK) assays were performed as in Fig. 7A using recombinant GST–NR4A2-

DC (WT; all the potential phosphorylation sites are preserved) and its cluster II alanine mutant (II) as substrates. (F) p38 phosphorylates NR4A2 cluster II in HEK-293

cells. The indicated expression plasmids were transiently transfected in HEK-293 cells. After 24 hours, cell lysates were subjected to immunoblotting.
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p38 MAPKs potentiate NR4As, at least in part,
by phosphorylation

We next examined the involvement of p38-dependent
phosphorylation of NR4As in their transactivation functions. A
total of 15 potential (consensus) phosphorylation sites targeted by

p38 (Ser-Pro or Thr-Pro) exist in both human and mouse NR4A2
as depicted in the diagram in Fig. 7D. Although we initially tested
the NR4A2 mutants carrying single replacements of all potential

sites with Ala residues, the ASK1DN-induced of none of the
mutants had significantly different transactivation functions from
that of WT NR4A2 (data not shown). We therefore examined the

effect of combinational Ala mutations on NR4A2 activity. The 15
potential phosphorylation sites are distributed to four clusters that
we designated I (Ser11, Ser16 and Thr36), II (Ser126, Thr129,
Thr132, Ser140, Thr168, Ser18 and Thr185), III (Ser250 and

Ser256) and IV (Ser351, Ser356 and Ser359). We generated four
mutants, in which all potential Ser and Thr residues in each cluster
were replaced with Ala. Each of these mutants activated the TH/–

9kb promoter to a similar extent to that of WT NR4A2 (Fig. 7D,
left six columns), indicating that these cluster mutants maintained
their basal transactivation functions. Among the four mutants,

however, ASK1DN-dependent synergistic activation of the TH/–

9kb promoter by the cluster II mutant was partially, but
significantly, reduced compared with that by WT (Fig. 7D, right
six columns, and inset), suggesting that phosphorylation of

multiple Ser and Thr residues in cluster II was required for p38-
dependent activation of NR4A2.

To examine whether cluster II actually includes p38
phosphorylation site(s), we generated a GST-tagged NR4A2-
DC protein that lacked C-terminal ligand-binding domain (LBD)
and either contained all the phosphorylation site clusters

(NR4A2-DC WT) or had the Ala replacement mutations in
cluster II (NR4A2-DC II) (Fig. 7D). In vitro kinase assays using
these proteins as substrates revealed that NR4A2-DC II was less

phosphorylated by p38b than NR4A2-DC WT (Fig. 7E).
Moreover, the retarded migration of NR4A2 coexpressed with
ASK1DN was only not observed in the cluster II mutant

(Fig. 7F). These results suggest that p38 activation potentiated
NR4As, at least in part, by direct phosphorylation of cluster II in
NR4As to transactivate the TH promoter.

Discussion
Here, we found that ectopic expression of Drosophila ASK1DN

induced p38-dependent black pigmentation, which was caused by
upregulated melanization. We also found that Drosophila p38
activation induced TH and Ddc expression and that these genes

were essential for the p38-dependent melanization. Taking into
account the diverse functions of p38 in immune and stress
responses in a wide variety of organisms, regulation of basal and/

or stimulation-induced Drosophila TH and Ddc expression might
be an important device for p38 to exert its protective activity
against harmful environmental stimuli in Drosophila.

Several lines of evidence have revealed that expression of
Drosophila TH and Ddc is regulated at the transcription level in
various physiological and pathological conditions. In the

developmental process, these genes are transcriptionally
upregulated before eclosion and play a role in the pigmentation
of the adult cuticle (Davis et al., 2007a). Upon wounding, by

pricking with a sterile needle, Drosophila TH and Ddc expression
is induced in the epidermal cells near the wound site and
contributes to repair the integument (Mace et al., 2005; Pearson

et al., 2009). Septic injury with microbes is another setting in
which regulation of Drosophila TH and Ddc expression is

involved, as described in the introduction. Importantly,
Drosophila p38c has been shown to be selectively required for
E.-coli- and S.-aureus-induced Ddc expression in the epidermis
(Davis et al., 2008). In our genetic interaction studies, we found

that Drosophila p38a and p38b, rather than p38c, were required
for ASK1DN-induced melanization (Fig. 3). Thus, not only
Drosophila p38c but also p38a and p38b might regulate TH and

Ddc expression in a manner dependent on cell types and/or
cellular context.

We have shown, using the hs driver strain, that the dorsal

midline of the thorax is the preferential region where expression
of Drosophila ASK1DN induces visible melanization (Fig. 2).
One plausible explanation for this regional selectivity is that
Drosophila p38 activated by ASK1DN induces TH and Ddc

expression efficiently in cells in the corresponding region of the
thorax. Alternatively, it is possible that, although Drosophila p38
induces TH and Ddc in a wide range of cells, the upregulated TH

and Ddc contribute to visible melanization only in the dorsal
midline of the thorax. In the latter case, Drosophila p38-
dependent regulation of TH and Ddc might have roles, such as in

immune and stress responses, that are independent from
melanization in tissues other than the thorax cuticle.

To investigate further how Drosophila p38 regulates TH and
Ddc expression, we focused on HR38, a member of the NR4A

nuclear receptor family, and found that it was also required for
Drosophila p38-dependent melanization (Fig. 5). NR4A nuclear
receptors are classified as a subgroup of orphan nuclear factors.

However, NR4As have recently been found to function
independently from ligand binding (Baker et al., 2003; Wang
et al., 2003) and, instead, are regulated by their expression levels

and/or post-transcriptional regulation. At least in Drosophila

p38-dependent melanization, HR38 appeared to be regulated
post-transcriptionally rather than transcriptionally, because we

found that Drosophila ASK1DN expression did not induce
mRNA expression of HR38 (Fig. 5F). Consistent with this, we
found that mammalian p38 MAPKs directly phosphorylated
mammalian NR4As (Fig. 7), consistent with the previous

findings that several other kinases, including Akt, ERK, JNK
and RSK, phosphorylated NR4As (Kolluri et al., 2003;
Masuyama et al., 2001; Slagsvold et al., 2002; Wingate et al.,

2006). Among the NR4A2 mutants we generated, in which
potential phosphorylation sites targeted by p38 were replaced
with Ala residues, only the cluster II mutant failed to be

efficiently activated by mammalian p38 (Fig. 7D), suggesting
that phosphorylation of multiple Ser and Thr residues in the
cluster II is required for p38-induced activation of NR4A2. The
partial reduction of both p38-dependent phosphorylation and

activation of the cluster II mutant also suggests that a
combination of phosphorylation of other clusters with that of
cluster II is required (Fig. 7D,E). Comparison of amino acid

sequences of NR4As (Fig. 8) reveals that most of potential
phosphorylation sites targeted by p38 in each protein are in the
relatively unconserved regions, not in the highly conserved

DNA-binding and ligand-binding domains, and that the relative
locations of these sites within a molecule vary among NR4As
with the exception of the serine residue corresponding to Ser181

of NR4A2. This information supports the idea that a combination
of phosphorylation of multiple residues, rather than
phosphorylation of one crucial residue, might be a common
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transactivation mechanism of NR4As induced by p38 MAPKs.

Nevertheless, other mechanisms (e.g. p38-dependent induction

and/or recruitment of certain coactivators of NR4As) might

facilitate the phosphorylation-induced transactivation functions

of NR4As.

In mammals, NR4A2 has been shown to regulate the expression

of genes such as TH and AADC that are important in the synthesis

and storage of dopamine in central dopaminergic neurons (Jankovic

et al., 2005; Perlmann and Wallen-Mackénzie, 2004). As one of our

approaches to elucidate the role of p38 and NR4Rs in mammals, we

examined dopamine levels in brains from ASK1-deficient adult

mice, in which basal p38 activity is reduced compared with those

from WT mice (Takeda et al., 2004). No significant difference in

dopamine levels between WT and ASK1-deficient whole brains

was detected (data not shown). However, dopamine levels are

increased, at least in the striatum and prefrontal cortex, in ASK1-

deficient mice (Kumakura et al., 2010), suggesting that the basal

activity of p38 is not involved in the upregulation of dopamine

levels, at least in the healthy mouse brain. Recently, it has been

shown that genetic mutations of NR4A2 are associated with

Parkinson’s disease, a neurodegenerative disorder primarily

affecting dopaminergic neurons (Le et al., 2003). Given that

various potential roles of p38 in the regulation of the nervous

system have been proposed (Takeda and Ichijo, 2002), p38 might

participate in the pathophysiological regulation of dopaminergic

neurons through NR4A2.

In correlation with the possible involvement of Drosophila p38-

dependent induction of Drosophila TH and Ddc in immune

responses in flies as discussed above, mammalian NR4As have

also been shown to be induced by inflammatory stimuli and to

regulate inflammatory gene expression (Pei et al., 2005; Pei et al.,

2006). Further analyses of the regulatory mechanisms of NR4As

by p38 both in Drosophila and mammals will shed light on the

precise roles of p38–NR4As axis in immune responses. Moreover,

we expect that our model of p38-dependent melanization in

Drosophila will provide a useful tool to genetically search for

signaling components that are crucially involved in the p38-

dependent regulation of immune and stress responses.

Materials and Methods
Expression plasmids

pUAST-ASK1 wild type (WT) was described previously (Kuranaga et al., 2002).
cDNA encoding Drosophila ASK1DN that lacked N-terminal 558 amino acids was
generated by PCR and subcloned into pUAST (pUAST-ASK1DN). ASK1 cDNAs
of WT, kinase-negative [KN; Lys618 was substituted by Met as described
previously (Kuranaga et al., 2002)], and DN were subcloned into pUAST with an
N-terminal Flag tag. Drosophila p38a, p38b, p38c and HR38 cDNAs were cloned
by reverse transcript (RT)-PCR from total RNA isolated from Drosophila embryos
or adult flies and subcloned into pUAST and pcDNA3 (Invitrogen) with an N-
terminal Flag tag, respectively. pUAST-JNK was obtained from Makoto
Nakamura (Matsuyama University, Japan). Head-to-head inverted repeat
constructs, pUAST-ASK1-IR, pUAST-TH-IR and pUAST-HR38-IR, were
generated by inserting cDNA fragments of Drosophila ASK1 [nucleotides (nt)
1759–2257], TH (nt 244–720 of variant I) and HR38 (nt 1–139), respectively, into
pUAST-R57 (a gift from Ryu Ueda, National Institute of Genetics, Mishima,
Japan). A driver plasmid pWAGAL4 that expresses GAL4 under the control of the
actin5C promoter was a gift from Yasushi Hiromi (National Institute of Genetics,
Mishima, Japan) pcDNA3 expressing HA–ASK1DN, HA–ASK1WT, HA–
ASK1KN, Flag–mouse-p38a and Flag–mouse-p38b were described previously
(Mizumura et al., 2006; Nishitoh et al., 1998; Saitoh et al., 1998). pcDNA3-Flag-
NR4A2 was generated by subcloning mouse NR4A2 cDNA from pCMX-Nurr1
(Iwawaki et al., 2000). cDNA encoding the N-terminal 261 and 369 amino acids of
NR4A2 (NR4A2-NT and NR4A2-DC, respectively) were generated by PCR and
subcloned into pGEX4T-1 (GE Healthcare). cDNAs encoding mouse NR4A1 and
NR4A3 were cloned by RT-PCR from total RNA isolated from RAW264.7 cells
and subcloned into pcDNA3-Flag. A constitutively active mutant of human MKK6
(MKK6DD; Ser208 and Thr211 were both replaced with Asp) and a series of
Nurr1 mutants, in which Ser and/or Thr were replaced with Ala, were obtained
using the QuikChange site-directed mutagenesis kit (Stratagene) and subcloned
into pcDNA3, with a C-terminal HA tag, and pcDNA3-Flag, respectively. pTH/–
9kb, pTH/NBRE1, and pTH/NBRE1-mt were as described previously (Iwawaki
et al., 2000). pGL4.70 [hRluc] was purchased from Promega.

Antibodies and reagents

Mouse monoclonal antibody to Flag tag (M2) and rat monoclonal antibody to the
HA tag (clone 3F10) were purchased from Sigma and Roche, respectively.
Phosphorylation-specific antibodies for JNK (Thr183 and Tyr185) and p38
(Thr180 and Tyr182) MAPKs were purchased from Cell Signaling. Anti-JNK
rabbit polyclonal antibody (JNK1-FL) and anti-p38 goat polyclonal antibody were
purchased from Santa Cruz Biotechnology. Anti-GST goat polyclonal antibody
was purchased from GE Healthcare. Phosphorylation-specific antibodies to Thr838
of human ASK1 was used for monitoring Drosophila ASK1 activity as previously
described (Kuranaga et al., 2002). The p38 inhibitor SB203580 and the JNK
inhibitor SP600125 were purchased from Calbiochem.

Fly stocks and generation of transgenic flies

Driver strains and hs-GAL4 (Bloomington Drosophila Stock Center) were used for
the ectopic expression of Drosophila ASK1WT and ASK1DN. UAS-Dp38a-DN

Fig. 8. ClustalW alignment of the amino acid

sequences of NR4A nuclear receptors (human

NR4A2, NR4A1 and NR4A3 and Drosophila

HR38). Residues identical among three or four

proteins are shown on a yellow background.

Potential phosphorylation sites targeted by p38 (Ser-

Pro or Thr-Pro) are shown in red letters. The 15

potential phosphorylation sites in NR4A2 are

indicated as red arrowheads with their amino acid

positions given. The four clusters of the potential

phosphorylation sites that we designated I, II, III

and IV are indicated with the black lines. The DNA-

binding domain (DBD) and ligand-binding domain

(LBD) are indicated as blue and green

lines, respectively.
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(Adachi-Yamada et al., 1999), UAS-ebony (Wittkopp et al., 2002), UAS-GFPS65T,
and UAS-LacZ-IR (Kennerdell and Carthew, 2000) strains and hep1 (Glise et al.,
1995), and y1w1 (Wittkopp et al., 2002) mutant strains were used for genetic
interaction assays. Other IR strains, UAS-Dp38a-IR (5475R-2), UAS-Dp38b-IR
(7393R-1), UAS-hep-IR (CG4153R-2), UAS-dMKK4-IR (9738R-1), and UAS-Ddc-

IR (10697R-1) were provided by NIG-FLY stock center, and UAS-lic-IR (20166)
and UAS-Dp38c-IR (105173) were provided by Vienna Drosophila RNAi Center.
Mutant strains of p38a (Crag et al., 2004) and p38b (Shinzawa et al., 2009) were
used for characterization of phosphorylated Drosophila p38 bands (see
supplementary material Fig. S1). For generation of transgenic flies harboring
UAS-DASK1DN, UAS-DASK1-IR, UAS-DTH-IR, and UAS-DHR38-IR, each
pUAST plasmid was injected into w1118; Dr/TMS, Sb P[ry+, D2–3] embryos as
described previously (Kuranaga et al., 2002). We carried out crosses between
Drosophila strains at 25 C̊ by standard procedures.

Cell culture and transfection

S2 cells were cultured in Schneider’s Drosophila medium (Gibco) containing 10%
fetal bovine serum (FBS), 100 units/ml penicillin G and 5 mg/ml Bacto Pepton
(BD Difco) at 26 C̊. PC12 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% FBS, 10% heat-inactivated horse serum and
100 units/ml penicillin G under a 5% CO2 atmosphere at 37 C̊. HEK-293 cells
were cultured in DMEM containing 10% FBS, 4.5 mg/ml glucose and 100 units/ml
penicillin G under a 5% CO2 atmosphere at 37 C̊. Transfection of expression
plasmids into S2 cells, PC12 cells and HEK293 cells was performed with
Cellfectin (Invitrogen), Lipofectamine 2000 (Invitrogen) and FuGENE6 (Roche),
respectively, according to the manufacturers’ instructions. We differentially used
PC12 cells and HEK-293 cells for the NBRE-dependent promoter assays and the
transfection-based phosphorylation assays, respectively; the former assays have
been shown to depend upon cell types (Iwawaki et al., 2000) and worked well in
PC12 cells, but not in HEK-293 cells, whereas the latter assays require a high
transfection efficiency, which was achieved in HEK-293 cells, but not in PC12
cells.

Immunoblotting analysis

Cells or flies were lysed with a lysis buffer [1% Nonidet P-40, 0.5% deoxycholate,
0.1% SDS, 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM phenylmethylsulfonyl
fluoride (PMSF) and 5 mg/ml aprotinin]. In Fig. 7F, another lysis buffer [1%
Triton X-100, 1% deoxycholate, 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 mM
EDTA, 1 mM PMSF, 5 mg/ml Leupeptin and PhosSTOP (Roche)] was used. Cell
or fly extracts were clarified by centrifugation, and the supernatants were resolved
by SDS-PAGE and electroblotted onto PVDF membranes. After blocking with 5%
skimmed milk powder in TBS-T (50 mM Tris-HCl pH 8.0, 150 mM NaCl and
0.05% Tween 20), the membranes were probed with antibodies. The antibody–
antigen complexes were detected using the ECL system (GE Healthcare).

qRT-PCR analysis

UAS-GFPS65T/+; hs-GAL4/+ and UAS-DASK1DN/+; hs-GAL4/+ pupae were
maintained at 25 C̊, at which only leaky expression from the heat-shock promoter
was induced. Total RNA was isolated at 36–48 hours after puparium formation
using TRIzol (Invitrogen) and reverse transcribed with the QuantiTect Reverse
Transcript Kit (QIAGEN). Quantitative PCR was performed with Power SYBR
Green PCR Master Mix using the ABI PRISM 7000 Sequence Detection System
(Applied Biosystems). The following oligonucleotides were used: rp49 forward,
59-CGGATCGATATGCTAAGCTGT-39; rp49 reverse, 59-GCGCTTGTTCGAT-
CCGTA-39; ASK1 forward, 59-CCCCCTCCATAATATCACTCAC-39; ASK1

reverse, 59-AACCCCTTTATTCTCCCTCTTAA-39; TH forward, 59-TTCGG-
AGGCGGCATTG-39; TH reverse, 59-ACAGCCGACCAAGAACGATT-39; Ddc
forward, 59-TCTGGAGAATATACGCGAAAGG-39; Ddc reverse, 59-CACTTCT-
CCGGCTTCTCG-39; HR38 forward, 59-GCGTTCTGTGATCAGGGTTAGG-39;
HR38 reverse, 59-GCACAACCTGGAGATCGACAT-39. The expression value of
each gene was normalized to that of the control rp49 gene and represented as relative
mRNA expression by setting the value of hs.GFP as 1.

Luciferase reporter assays

PC12 cells seeded in 12-well plates were transiently transfected with expression
and reporter plasmids using Lipofectamine 2000 (Invitrogen). Each transfection
included 0.2 mg of pGL4.70 [hRluc] (Promega) for normalization of transfection
efficiency and 0.3 mg of a reporter plasmid. The total amount of plasmid DNA was
kept at 1 mg/well by supplementation with empty pcDNA3. At 24 hours after the
transfection, cell extracts were analyzed for firefly luciferase and Renilla activities
using the dual luciferase kit (Promega).

In vitro kinase assays

GST–NR4A2-NT, GST–NR4A2-DC WT and GST–NR4A2-DC II were prepared
as described previously (Saitoh et al., 1998). At 24 hours after the transfection,
HEK-293 cells were lysed with a lysis buffer (1% Triton X-100, 1% deoxycholate,
12 mM b-glycerophosphate, 20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM

EDTA, 1 mM dithiothreitol (DTT), 1 mM NaF, 1 mM Na3VO4, 1 mM PMSF and
5 mg/ml aprotinin). Cell extracts were clarified by centrifugation, and the
supernatants were immunoprecipitated with anti-Flag antibody gel (M2 gel,
Sigma). The immune complex was incubated in a kinase buffer containing 50 mM
Tris-HCl pH 8.0, 20 mM MgCl2, 1 mM DTT, 100 mM ATP and 0.3 mCi of
[c-32P]ATP together with GST–NR4A2-NT at 25 C̊ for 20 minutes. Kinase
reactions were stopped by adding SDS sample buffer and samples were subjected
to SDS-PAGE. Phosphorylation of substrate proteins was analyzed by storage
phosphor screen autoradiography using the STORM imaging system 840 (GE
Healthcare).

Phosphatase treatment
Cell lysate was treated with 2 units/ml l protein phosphatase (lPPase, New
England Biolabs) in a buffer containing 50 mM Hepes pH 7.5, 5 mM DTT,
0.1 mM EDTA, 0.01% Brij-35 and 2 mM MnCl2 at 30 C̊ for 30 minutes.
Reactions were stopped by adding SDS sample buffer.
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