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Abstract

Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The
function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on
the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of
nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed
a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a
hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35u rotation of the helical
protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to
the closed lid state is responsible for the approximately 35u rotation of the helical protrusion.
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Introduction

Chaperonins are ubiquitous molecular chaperones that form

double-ring assemblies of about 60 kDa subunits. The resulting

structure has a large central cavity in which non-native proteins

can undergo productive folding in an ATP-dependent manner

[1,2]. There are two phylogenic groups of chaperonins [3,4]:

Group I chaperonins, which are present in bacteria (GroEL),

mitochondria (mitochondrial 60-kDa heat-shock protein,

mtHsp60), chloroplasts (Rubisco subunit binding protein, RBP),

and some archaea, consist of double heptameric rings; Group II

chaperonins, which are present in archaea (referred to as

thermosomes) and the eukaryotic cytosol [known as TCP1 ring

complex (TRiC) or chaperonin-containing TCP1 (CCT)] are

assembled in two octameric or nonameric rings. The group I and

II chaperonins share a similar domain arrangement [5,6]. Each

subunit comprises three distinct domains: equatorial, intermediate,

and apical (Figure 1A). The equatorial domain contains the ATP

binding site and is involved in intra- and inter-ring contacts. The

apical domain is involved in binding to substrate proteins. The

intermediate domain connects the equatorial and apical domains

of each subunit, and transfers the ATP-induced conformational

changes from the equatorial to the apical domain.

The most striking structural difference between the group I and

II chaperonins is the lid of the central cavity of the chaperonin

complex. In GroEL, the cofactor GroES interacts with one or both

of GroEL rings in an ATP-regulated fashion, thereby sealing the

cavity from the outside. In contrast, the group II chaperonins do

not require the cofactor; the helical protrusion at the tip of the

apical domain substitutes for the cofactor as a built-in lid on the

central cavity [6–10] (Figure 1A). It has been shown that ATP

drives the conformational change of the group II chaperonins,

from the open lid, substrate-binding conformation to the closed lid

conformation, to encapsulate unfolded protein in the central cavity

[7,8,10]. The group II chaperonin-mediated protein folding is

critically dependent on the lid closure [8,10,11]. Until date, most

of the available structural information on the group II chaperonins

has been obtained from ‘‘static’’ structural analyses, such as X-ray

crystallography [6,12–14], electron microscopy [7,15–22], and

small angle X-ray scattering [8,10,23]. To understand further how

the local changes in the nucleotide-binding site lead to lid closure,

it is necessary to directly observe the conformational change from

an open lid to a closed lid state during the functional cycle.

Therefore, we studied the rotational dynamics of the helical

protrusion by single-molecule fluorescence polarization microsco-

py using a chaperonin from a hyperthermophilic archaeum,

Thermococcus sp. strain KS-1 (T. KS-1) [9–11,23–26]. We then

demonstrated that the conformational change from an open lid to

closed lid state can be achieved by approximately 35u rotation of

the helical protrusion.
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Results

Polarization of light that is used to excite a single molecule

provides a means to probe the orientation dynamics of individual

molecules [27,28]. We used a single-molecule polarization

modulation method to probe the rotation of the helical protrusion

of T. KS-1 a chaperonin [29–32] (Figure 1A–C). The principle is

as follows: Under the rotating polarized excitation, fluorescence

intensity from an immobile fluorophore is expected to be

proportional to a quadratic cosine function (see Materials and

Methods). The intensity reaches maximum and minimum when

the excitation polarization becomes parallel and orthogonal,

respectively, to the absorption dipole of the fluorophore, enabling

the determination of the orientation of the fluorophore. Thus, the

change in the orientation of the fluorophore can be detected as the

change in phase of the cosine curve (Figure 1C).

For polarization studies, it is quite helpful to use a

bifunctional fluorophore, which significantly reduces the fluor-

ophore wobble. Therefore, we used a bifunctional thiol reactive

rhodamine derivative, bis-((N-iodoacetyl)piperazinyl) sulfoner-

hodamine (BSR) (Figure 1D). The transition dipole moment of

BSR is aligned along the long axis of three coplanar rings of the

fluorophore [33]. Hence, the average orientation of the

fluorescence dipole is expected to be parallel to a line joining

the cysteines. In conjunction with BSR, we created the double-

cysteine mutant of T. KS-1 a chaperonin with internal

hexahistidine tags (Figure 1A). The target residues for

replacement with cysteines, Asp-263 and Gln-271, are located

at the tip of the helical protrusions (Figure 1A). Site-directed

mutagenesis was used to prepare the mutant by substituting an

endogenous cysteine at the 366th position with serine, and by

introducing two cysteine residues at the 263th and 271th

positions. The double-cysteine mutant was able to undergo

nucleotide-dependent conformational changes (Figure S1A).

The mutant was also able to facilitate the refolding of GFP in

an ATP-dependent manner despite the yield being less than half

Figure 1. Model for the conformational transition from the open lid to the closed lid state in group II chaperonins and experimental
design. (A) Subunit structure of T. KS-1 a chaperonin. The subunit has three distinct domains: equatorial (red), intermediate (blue), and apical (green
and yellow). The helical protrusion is color-coded in yellow. Asp-263 and Gln-271 (black arrowheads) were mutated to cysteines, and were crosslinked
with a bifunctional fluorophore. A His-tag was inserted into the loop, connecting the equatorial and intermediate domains (white arrowhead). The
coordinates are from the Protein Data Bank code 1Q3S [12], and figures were drawn with the PyMOL program (http://pymol.sourceforge.net/). (B)
Model for the conformational transition from the open lid to the closed lid state in the group II chaperonins [13,14,22]. ATP drives the conformational
change from the open lid to the closed lid state. At this point, the counterclockwise rotation of the apical domains (green) orients the helical
protrusions (yellow) toward the center of the cavity. (C) Expected intensity time courses for a single fluorophore bound to the helical protrusion.
When a fluorophore is immobile, the fluorescence intensity oscillates as the excitation polarization is rotated (red curve). A phase shift is expected
after reorientation of the fluorophore as a result of the rotation of the helical protrusion. (D) Structure of bis-((N-iodoacetyl)piperazinyl)sulfonerho-
damine (BSR).
doi:10.1371/journal.pone.0022253.g001
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that of the wild-type (aWT) (Figure S1B). In the BSR-labeled

double-cysteine mutant (BSR-CPN), the dipole of BSR was

expected to be almost parallel to the axis of the helical

protrusion.

We tested several methods to immobilize BSR-CPN suitable for

single-molecule polarization modulation experiments. Among

these, the direct immobilization onto the coverslip was the most

effective. In addition, the coverslips were used immediately after

cleaning with an oxygen plasma asher. The plasma-treated

coverslips had extremely flat surfaces, whereas the commercial

coverslips had patterned indented surfaces (data not shown). The

orientation of BSR-CPN immobilized onto the coverslip surface

was investigated with an electron microscope (Figure 2). The

specimen was treated using the low-angle rotary shadowing

method. On the coverslip with immobilized chaperonin, most of

the single particles were found to be ring-shaped (Figure 2A, black

arrowheads), corresponding to end-on views of the chaperonin

complex. On the other hand, such particles were not observed on

the coverslip without immobilized chaperonin (Figure 2B). Thus,

BSR-CPN was considered to be orientationally immobilized on

the glass surface because of hydrophobic interaction.

BSR-CPN immobilized on the coverslip was excited with

continuously modulated polarized light (20.01u/s) using an epi-

illumination configuration (Figure 3). Because T. KS-1 a
chaperonin has reduced activity at ,50uC temperatures [24–

26], it is necessary to perform microscopic experiments at $50uC.

Therefore, the microscopic specimen was incubated at 50uC with

a cooling–heating stage and an objective heater (Figure 3). We

confirmed that the temperature of the specimen reached 50uC
from the thermal quenching of fluorescence (Figure S2). To our

knowledge, the results presented here are the first demonstration

of single-molecule fluorescence observation at 50uC. The confor-

mational change in BSR-CPN was induced by the photorelease of

ATP from caged ATP, which was photolyzed by a 500-ms pulse of

UV light from a Hg–Xe lamp (Figure 3). Approximately 60% of

the caged ATP (100 mM) was split to produce ATP at 23uC (data

not shown). T. KS-1 a chaperonin incubated with approximately

60 mM ATP exists in an asymmetric conformation: one open ring

and one closed ring (Iizuka et al., unpublished data).

We then monitored changes in the dipole orientation of BSR

attached to the helical protrusion at 50uC. Figure 4A shows a

typical time trajectory of BSR fluorescence in the absence of caged

ATP. The UV flash occurred at 30 s. The resulting trajectories of

BSR fluorescence were fitted to a quadratic cosine function (see

Materials and Methods), and the angle h between the polarization

axis of the excitation light and that of the fluorophore dipole was

determined. The angular displacement between the values of h
before and after the UV flash was defined as Dh. The positive and

negative angles are equivalent to the counterclockwise and

clockwise rotation of the helical protrusion, respectively. The

angular distribution of 75 molecules corresponded to a Gaussian

function with a peak at –0.42u, reflecting the well-defined

orientation of BSR in the absence of ATP (Figure 4B). Among

the molecules observed in the presence of 100 mM caged ATP

(136 molecules), most did not exhibit angular changes after the

photorelease of ATP from caged ATP. A significant fraction of the

molecules did not exhibit the angular changes, possibly because

the molecules were functionally inactive as a result of the direct

interaction with the hydrophobic glass surface. However, in

approximately 10% of these molecules, changes in the orientation

of BSR were observed immediately after photorelease of ATP

(within 1 s), indicating the ATP-induced rotation of the helical

protrusion (Figure 4C). A similar result has been reported in a

previous single-molecule study, where the enzyme molecules are

directly immobilized onto the glass surface [34]. The resulting

distribution of Dh, i.e., the rotational angle of the helical

protrusion, showed discrete peaks that can be fitted by a sum of

three Gaussian functions with peaks of 1.8u, 34u, and 235u

Figure 2. Rotary-shadowed electron micrograph of chaperonin immobilized onto the coverslip surface. (A) With immobilized
chaperonin. The boxed area in the upper panel is enlarged in the lower panel. The particles comprise almost exclusively ring-shaped end-on views
(black arrowheads). The white arrowhead indicates a cluster of glycerol. (B) Without immobilized chaperonin. The scale bars represent 100 nm.
doi:10.1371/journal.pone.0022253.g002
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(Figure 4D). Considering the previous findings that the apical

domain and helical protrusion rotate counterclockwise [13,14,22],

a rotation through a positive angle of 34u is considered to be a

counterclockwise rotation of the helical protrusion within the

upper ring (Figure 3). A negative angular displacement of 235u
would correspond to the counterclockwise rotation of the helical

protrusion within the lower ring (Figure 3).

Discussion

For further evaluation of the conformational change from the

open lid to the closed lid state, we used a single-molecule to probe

the rotation of the helical protrusion of the archaeal group II

chaperonin. Our observation showed that the helical protrusion

rotates approximately 35u to seal off the central cavity (Figure 5).

Recently, three high-resolution structures of the group II

chaperonins in the open lid state have been determined

[13,14,22]. The apical domain and helical protrusion are found

to rotate 30u–40u in a counterclockwise direction relative to the

closed lid state. Our observations complement these structural

studies. Interestingly, Pereira et al. and Zhang et al. indicated that

three domains of each subunit reorient as a single rigid body,

undergoing a counterclockwise rotation in the group II chaper-

onins [13,22]. There is a completely distinct closing mechanism in

the group II chaperonins as compared with the group I

chaperonins. In a GroEL–GroES complex, GroES caps GroEL

rings, and large structural changes are observed in GroEL. The

apical domain rotates 90u along its axis and 60u upwards, and the

intermediate domain closes down at approximately 25u to the

equatorial domain [35]. This difference between the two groups is

not really surprising, because the group II chaperonins are

independent of the GroES-like cofactor.

It is believed that the domain rotation alone is not enough to

complete the lid closure. Kanzaki et al. suggested that ATP causes

the independent conformational change of the subunit, and

further structural transition for the complete closure of the lid is

induced and stabilized by the interaction between the helical

protrusions [11]. As a result, the cavity switches from a

hydrophobic to hydrophilic environment, where productive

folding occurs [6,12,13,14].

X-ray crystallography and cryo-electron microscopy provide

high spatial resolution, but they cannot measure changes in a

functioning sample over time. Spectroscopy and small-angle X-ray

scattering of bulk samples have temporal resolution, but are

Figure 3. Schematic drawing of the microscopic system for modulating the excitation polarization. Optical paths for different
wavelengths are distinguished by their colors. The polarization of excitation laser (green) was continuously modulated by a polarizer mounted on a
motorized rotary holder. The polarizer was rotated at 20.01u/s. Fluorescence (orange) was collected through an objective, and detected with an
electron multiplying charge-coupled device camera. Caged ATP was photolyzed by UV light from a Hg–Xe lamp (purple). BSR-CPN was directly
immobilized onto the surface. ND, neutral density filter; BE, beam expander; P, polarizer; l/4, quarter wave plate; RP, rotating polarizer; DM, dichroic
mirror; EF, emission filter; UVF, UV sharp-cut filter. The figure in the ellipse connotes a specimen for microscopic observation. BSR (pink star) was
excited using an epi-illumination configuration.
doi:10.1371/journal.pone.0022253.g003
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difficult to quantify and interpret structurally because averaging

among unsynchronized populations of molecules reduces the

signal changes. Polarization-analyzed single-molecule imaging is a

powerful tool for monitoring real-time conformational changes in

proteins. Our experimental system, in which the specimen

temperature is controllable, should be useful for elucidating

conformational changes in other proteins at single-molecule

resolution.

Materials and Methods

Materials and reagents
Apyrase, glucose oxidase from Aspergillus niger, and catalase from

bovine liver were obtained from Sigma. Bis-((N-iodoacetyl)piper-

azinyl)sulfonerhodamine (BSR) and adenosine 59-triphosphate, P3-

(1-(4,5-dimethoxy-2-nitrophenyl)ethyl) ester, and disodium salt

(caged ATP) were purchased from Invitrogen. Caged ATP was

treated with apyrase before use to remove contaminating ATP.

Other reagents were obtained from Wako Pure Chemicals.

Coverslips were obtained from Matsunami Glass. The coverslips

were placed in an oxygen plasma asher (FEMTO; Diener

electronic) to clean their surfaces before use.

Construction of chaperonin mutant
For insertion of the hexa-histidine sequence between amino

acids at positions 146 (Val) and 147 (Asp) of T. KS-1 chaperonin a
subunit (aWT-His), a two-step PCR was performed. The N-

terminal fragment (amino acids 1–146) was amplified with the

following primer sets: primer A [59- GGAATTCCATATGGCA-

CAGCTTAGTGGACAG-39 (Nde I site underlined)]; primer B

(59-CAACCCTTATGGCTATCTCGTC-39). Similarly, a C-

terminal fragment (amino acids 142–548) was amplified by primer

Figure 4. Time trajectories of the fluorescence intensity and calculated fluorophore angles. (A, C) Time trajectory of BSR intensity in the
absence (A) and presence of caged ATP (C). The UV flash occurred at 30 s (arrow). The trajectories of BSR intensities after subtracting the background
signals were averaged over every five frames, and fitted to a quadratic cosine function (solid lines). Black, fluorescence intensity before UV flash; blue,
fluorescence intensity after UV flash. (B, D) Distributions of Dh in the absence (B) and presence of caged ATP (D). Positive angle, angular displacement
measured counterclockwise; negative angle, angular displacement measured clockwise. In the absence of caged ATP (B), the distribution
corresponded to a Gaussian distribution with a peak of 20.42u. In the presence of caged ATP (D), the distribution can be fitted by a sum of three
Gaussian functions, with peaks of 1.8u, 34u, and 235u.
doi:10.1371/journal.pone.0022253.g004

Figure 5. Conformational change of T. KS-1 a chaperonin
subunits. ATP induces the conformational change from the open lid to
the closed lid state, which is responsible for a approximately 35u
counterclockwise rotation of the helical protrusion.
doi:10.1371/journal.pone.0022253.g005
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C [59- ATAGCCATAAGGGTTCACCATCACCATCACCAT-
GACCCGGACGACGAGGAGACCC-39 (regions encoding ami-

no acids 142–146 underlined)] to incorporate six histidine residues

(bold) and a region to overlap with the N-terminal fragment, and

primer D [59-CGGAATTCTCACATGCCCATGTCCATTCC-

39 (EcoR I site underlined)]. PCR amplification was conducted

with KOD –Plus– (Toyobo) using the plasmid pK1Ea2 as a

template [25]. The amplified fragments were purified by agarose

gel electrophoresis and used together to amplify the entire

modified a subunit using primers A and D. The amplified

fragment was excised with Nde I/EcoR I, and then introduced into

the Nde I/EcoR I-digested pET23b vector. The resultant plasmid

was designated pTKSaWT-His.

The double-cysteine mutant, aD263C/Q271C/C366S-His,

was obtained using the QuikChange site-directed mutagenesis kit

(Stratagene) using pTKSaWT-His as a template. The oligonucle-

otides used for mutagenesis are listed in Table S1.

Purification of chaperonins
Chaperonin complexes with hexahistidine tags were overex-

pressed in E. coli, as described previously [9]. The harvested cells

were suspended in buffer A (25 mM HEPES-NaOH (pH 7.5), and

500 mM NaCl) and disrupted by sonication on ice. The

supernatant after centrifugation (25,000 g, 60 min, 4uC) was

applied to a HiTrap chelating HP column (GE Healthcare UK

Ltd.) equilibrated with buffer A. Proteins were eluted with a linear

gradient of 20–400 mM imidazol in the same buffer. MgCl2,

glycerol, and dithiothreitol (DTT) were added to the fractions

containing chaperonin complexes to 25 mM, 5% (v/v), and

1 mM, respectively, and the mixture was subjected to heat

treatment at 70uC for 30 min. After denatured proteins were

removed by centrifugation (25,000 g, 30 min, 4uC), the superna-

tant was concentrated by ultrafiltration. The concentrated

fractions were loaded onto a gel filtration column (HiLoad 26/

60 Superdex 200 prep grade; GE Healthcare UK Ltd)

equilibrated with Buffer B [20 mM HEPES-NaOH (pH 7.5),

5 mM MgCl2, 150 mM NaCl, and 1 mM DTT]. Chaperonin

complexes without hexahistidine tags were expressed and purified

as described previously [9]. Purified chaperonin complexes were

concentrated by ultrafiltration, and stored in 20% (v/v) glycerol at

280uC before use. Their concentrations were determined with a

Bradford assay kit (Bio-Rad) using bovine serum albumin as the

standard, and are expressed as molar concentrations of hexade-

camer in this study.

Rotary shadowing
The flow chamber was constructed from a bottom coverslip

(18 mm 618 mm) and a top coverslip (4.5 mm 64.5 mm)

separated by two spacers made of a coverslip. aD263C/

Q271C/C366S-His (50 mg/mL) was directly immobilized on the

surface of the coverslips. The chamber was washed with three

volumes of HKM buffer [25 mM HEPES-KOH (pH 7.4),

100 mM KCl, and 5 mM MgCl2], and then with three volumes

of 50% (v/v) glycerol. The chamber without immobilized

chaperonins served as a negative control. The top coverslips were

dried by vacuum evaporation, and shadowed at an angle of 5u
with platinum and carbon (BAF060; Bal-Tec and EM-19500

JFDII; JEOL). The replicas were detached from the coverslip with

hydrofluoric acid, washed with distilled water, applied to electron

microscope specimen grids, and observed under a transmission

electron microscope (Tecnai G2 Spirit; FEI Company and JEM-

1400; JEOL) at an accelerating voltage of 120 kV. Images were

recorded by a charge-coupled device camera (Ultrascan; Gatan

and Veleta; Olympus Soft Imaging Solutions) at a magnification of

50,000.

Sample preparation for microscopy
The double-cysteine mutant was labeled with BSR in HK buffer

[25 mM HEPES-KOH (pH 7.4) and 100 mM KCl]. The labeled

double-cysteine mutant (BSR-CPN) was separated from unreacted

reagents by a NAP-5 column (GE Healthcare UK Ltd.)

equilibrated with HK buffer. Labeling resulted in a stoichiometry

of approximately 0.3 BSR dye molecules per chaperonin

hexadecamer to reduce multiple labeling. The labeled proteins

were flash frozen in liquid nitrogen and stored at 280uC until use.

The flow chamber was constructed from a bottom coverslip

(25 mm 660 mm) and a top coverslip (18 mm 618 mm)

separated by two spacers of 50 mm thickness (Lumirror #50-

S10; Toray Industries Inc.). BSR-CPN was directly immobilized

on the surface of the coverslips. Experimental results shown in this

paper were obtained in HKM buffer containing an oxygen

scavenger system (25 mM glucose, 50 units/mL glucose oxidase,

50 units/mL catalase, and 10 mM DTT) and 100 mM caged ATP.

The specimen was used for microscopic observation after a 5-min

incubation at 23uC to reduce molecular oxygen from the solution

prior to observation (Figure S3).

Microscopic system for modulating the excitation
polarization

A schematic drawing of the microscopic system for modulating

the excitation polarization is shown in Figure 3. The surface-

immobilized BSR-CPN was excited using an epi-illumination

configuration with a 532-nm laser (approximately 1.5 mW,

COMPASS315M-100; Coherent) through an oil-immersion

objective (PlanApo 1006, NA 1.4; Olympus). The incident beam

from the laser was passed through a neutral density filter (Sigma

Koki), a beam expander (Sigma Koki), a polarizer (Sigma Koki), a

quarter-wave plate (Suruga Seiki), and a rotating polarizer, and

the beam was focused on the back focal plane of the objective lens

using a focusing lens and a mirror. The polarizer was rotated at

20.01u/s by a motorized rotary holder (Suruga Seiki). Fluores-

cence was collected through an objective on a microscope (IX-70;

Olympus) equipped with a custom-made unpolarized dichroic

mirror (Shigma Koki) and emission filters (593DF40; Semrock).

For photolysis of caged ATP, the specimens were illuminated by a

500-ms pulse of UV light from a Hg–Xe lamp (UVF-203S; San-Ei

Electric Co., Ltd.) after passing through a UV sharp-cut filter

(UTF-50S-30U; Sigma Koki). Approximately 60% of the caged

ATP was split to produce ATP. Fluorescence images were

captured every 200 ms for 1 min with an electron multiplying

charge-coupled device camera (C9100-13; Hamamatsu Photon-

ics). Observations were carried out at 50uC using a cooling–

heating stage (LK-600PM; Japan High Tech Co., Ltd., Japan) and

an objective heater (Tokai Hit Co., Ltd.).

Data analysis
The recorded images were analyzed using a homemade

program on a Halcon image processor (MVTec Software GmbH)

to obtain the time trajectories of BSR fluorescence intensity. The

trajectories before and after UV flash were averaged over every

five frames, and were fitted using the following equation:

I tð Þ~A:cos2(v:tzh)

Where, I(t) is the fluorescence intensity at time t, A is the

amplitude, v is the angular rate of rotation (20.01u/s), and h is the

Conformational Change of Archaeal Chaperonin
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orientation of BSR. Rotational angles of the helical protrusion (Dh)

were determined by subtracting the value of h after UV flash from

the value of h before UV flash. The possible angles are ambiguous;

they can be au and (180 2 a)u. Based on previous structural studies

[13,14,22], the smaller angles were adopted. Data fitting was

carried out using the Kaleidagraph program (version 3.6, Synergy

Software).

Supporting Information

Figure S1 Characterization of chaperonin mutants. (A–
C) Protease sensitivity assay. aWT, aWT-His, and aD263C/

Q271C/C366S-His (50 nM) were preincubated with or without 1

mM of the different nucleotides (ATP, AMP-PNP, and ADP) for

10 min at 60uC. Digestion with thermolysin (1 ng/mL) was carried

out for 10 min at 60uC. The reaction mixtures were precipitated

using 30% (w/v) trichloroacetic acid, and then analyzed on 12%

polyacrylamide gels containing SDS and stained with Coomassie

brilliant blue. Lane M, molecular weight marker; lane 1, without

addition of thermolysin; lane 2, without addition of nucleotides;

lane 3, incubated with ATP; lane 4, incubated with AMP-PNP;

lane 5, incubated with ADP. (D) GFP refolding assay. The

recovery of GFP fluorescence was continuously monitored at 510

nm at 60uC. At 0 min, acid-denatured GFP (5 mM) was diluted

100-fold in the folding buffer containing 100 nM chaperonins (red

circles, aWT; blue circles, aWT-His; yellow circles, aD263C/Q271C/

C366S-His). At 5 min after the dilution, 1 mM ATP was added.

Spontaneous refolding of GFP was observed upon dilution of

denatured GFP into the folding buffer without chaperonins (black

circles). The amount recovered is expressed as a percentage of the

fluorescence intensity of native GFP.

(TIF)

Figure S2 The dependence of the fluorescence intensity
on temperature. (A) Relative fluorescence intensity of BSR as a

function of temperature. The fluorescence intensity at 23uC was

taken as 100. The change in fluorescence intensity is well fitted to a

single exponential function (solid line). Inset, fluorescence spectra of

BSR at 20uC 270uC. (B and C) Distributions of fluorescence

intensity from single BSR molecules. The surface-immobilized

BSR-CPN was observed by epifluorescence microscopy at 23uC
and 50uC. The distributions of fluorescence intensity at 23uC (B)

and 50uC (C) were fitted with a single Gaussian function (solid

lines). The average intensity at 23uC and 50uC (arrows) are

estimated to be 170 and 86, respectively.

(TIF)

Figure S3 Distributions of time before photobleaching
of a single BSR molecule. The surface-immobilized BSR-CPN

was observed by epifluorescence microscopy at 23uC and 50uC.

The distributions of time before photobleaching of single BSR

molecules at 23uC (A) and 50uC (B) were fitted with a single

exponential function (solid lines), which yields the rate constants of

0.052 s21 and 0.051 s21, respectively.

(TIF)

Table S1 Primer sequences used for mutagenesis.

(DOC)
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