149 research outputs found

    Advanced glycation end products are associated with pulse pressure in type 1 diabetes: the EURODIAB Prospective Complications Study

    Get PDF
    We investigated the associations of pulse pressure (a measure of arterial stiffness) with the early glycation products hemoglobin A1c (HbA1c) and Amadori albumin and the advanced glycation end products pentosidine, Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine in a large group of type 1 diabetic individuals of the EURODIAB Prospective Complications Study. We did a cross-sectional nested case-control study from the EURODIAB Prospective Complications Study of 543 (278 men) European individuals with type 1 diabetes diagnosed at <36 years of age. We used linear regression analyses to investigate the association of pulse pressure with glycation products. Pulse pressure was significantly associated with plasma levels of Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine but not with HbA1c, Amadori albumin, and urinary levels of pentosidine. Regression coefficients adjusted for age, sex, mean arterial pressure, and duration of diabetes were 0.09 mm Hg (P=0.003) per 1 microM/M lysine Nepsilon-(carboxymethyl)lysine; 0.24 mm Hg (P=0.001) and -0.03 mm Hg (P=0.62) per 1 microM/M lysine Nepsilon-(carboxyethyl)lysine (in individuals with and without complications, respectively; P interaction=0.002); and 0.50 mm Hg (P=0.16) per 1% HbA1c; 0.07 mm Hg (P=0.12) per 1 U/mL Amadori albumin; and 0.77 mm Hg (P=0.48) per 1 nmol/mmol creatinine pentosidine. In young type 1 diabetic individuals, arterial stiffness is strongly associated with the advanced glycation end products Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine. These findings suggest that the formation of advanced glycation end products is an important pathway in the development of arterial stiffness in young type 1 diabetic individuals

    Unmasking the tail of the cosmic ray spectrum

    Get PDF
    A re-examination of the energy cosmic ray spectrum above 102010^{20} eV is presented. The overall data-base provides evidence, albeit still statistically limited, that non-nucleon primaries could be present at the end of the spectrum. In particular, the possible appearance of superheavy nuclei (seldom discussed in the literature) is analysed in detail.Comment: To appear in Phys. Lett. B with the title ``Possible explanation for the tail of the cosmic ray spectrum'

    Anticipated improvements to river surface elevation profiles from the surface water and ocean topography mission

    Get PDF
    Existing publicly available digital elevation models (DEMs) provide global-scale data but are often not precise enough for studying processes that depend on small-scale topographic features in rivers. For example, slope breaks and knickpoints in rivers can be important in understanding tectonic processes, and riffle-pool structures are important drivers of riverine ecology. More precise data (e.g., lidar) are available in some areas, but their spatial extent limits large-scale research. The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is planned to launch in 2021 and will provide measurements of elevation and inundation extent of surface waters between 78° north and south latitude on average twice every 21 days. We present a novel noise reduction method for multitemporal river water surface elevation (WSE) profiles from SWOT that combines a truncated singular value decomposition and a slope-constrained least-squares estimator. We use simulated SWOT data of 85–145 km sections of the Po, Sacramento, and Tanana Rivers to show that 3–12 months of simulated SWOT data can produce elevation profiles with mean absolute errors (MAEs) of 5.38–12.55 cm at 100–200 m along-stream resolution. MAEs can be reduced further to 4–11 cm by averaging all observations. The average profiles have errors much lower than existing DEMs, allowing new advances in riverine research globally. We consider two case studies in geomorphology and ecology that highlight the scientific value of the more accurate in-river DEMs expected from SWOT. Simulated SWOT elevation profiles for the Po reveal convexities in the river longitudinal profile that are spatially coincident with the upward projection of blind thrust faults that are buried beneath the Po Plain at the northern termination of the Apennine Mountains. Meanwhile, simulated SWOT data for the Sacramento River reveals locally steep sections of the river profile that represent important habitat for benthic invertebrates at a spatial scale previously unrecognizable in large-scale DEMs presently available for this river

    The first ultracompact Roche lobe-filling hot subdwarf binary

    Get PDF
    We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane named the Zwicky Transient Facility and exhibits a period of Porb=39.3401(1) min, making it the most compact hot subdwarf binary currently known. Spectroscopic observations are consistent with an intermediate He-sdOB star with an effective temperature of Teff=42,400±300 K and a surface gravity of log(g)=5.77±0.05. A high-signal-to noise GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the sdOB star and an eclipse of the sdOB by an accretion disk. We infer a low-mass hot subdwarf donor with a mass MsdOB=0.337±0.015 M⊙ and a white dwarf accretor with a mass MWD=0.545±0.020 M⊙. Theoretical binary modeling indicates the hot subdwarf formed during a common envelope phase when a 2.5−2.8 M⊙ star lost its envelope when crossing the Hertzsprung Gap. To match its current Porb, Teff, log(g), and masses, we estimate a post-common envelope period of Porb≈150 min, and find the sdOB star is currently undergoing hydrogen shell burning. We estimate that the hot subdwarf will become a white dwarf with a thick helium layer of ≈0.1 M⊙ and will merge with its carbon/oxygen white dwarf companion after ≈17 Myr and presumably explode as a thermonuclear supernova or form an R CrB star

    Accounting for nature: assessing habitats in the UK countryside.

    Get PDF
    Countryside Survey 2000 (CS2000) and the Northern Ireland Countryside Survey 2000 (NICS2000) have been designed to provide detailed information about the habitats and landscape features that are important elements of our countryside. They can tell us about the ‘stock’ of these resources, that is how much of them we have and where they are to be found, and they can give us an insight into their condition based on the variety and abundance of the plant species associated with them. Using information from previous surveys, we can also gain an understanding of how the stock and condition of these habitats and landscape features are changing over time. We can build up a sort of balance sheet or an account of natural assets in the UK countryside. In this report we look in particular at the period between the last two surveys, 1990 and 1998

    Orientation of Galaxies in the Local Supercluster: A Review

    Full text link
    The progress of the studies on the orientation of galaxies in the Local Supercluster (LSC) is reviewed and a summary of recent results is given. Following a brief introduction of the LSC, we describe the results of early studies based on two-dimensional analysis, which were mostly not conclusive. We describe next the three-dimensional analysis, which is used widely today. Difficulties and systematic effects are explained and the importance of selection effects is described. Then, results based on the new method and modern databases are given, which are summarized as follows. When the LSC is seen as a whole, galaxy planes tend to align perpendicular to the LSC plane with lenticulars showing the most pronounced tendency. Projections onto the LSC plane of the spin vectors of Virgo cluster member galaxies, and to some extent, those of the total LSC galaxies, tend to point to the Virgo cluster center. This tendency is more pronounced for lenticulars than for spirals. It is suggested that 'field' galaxies, i.e., those which do not belong to groups with more than three members, may be better objects than other galaxies to probe the information at the early epoch of the LSC formation through the analysis of galaxy orientations. Field lenticulars show a pronounced anisotropic distribution of spin vectors in the sense that they lay their spin vectors parallel to the LSC plane while field spirals show an isotropic spin-vector distribution.Comment: 21 pages, 10 figures; Accepted for publication in Astrophysics and Space Scienc

    A new class of Roche lobe–filling hot subdwarf binaries

    Get PDF
    We present the discovery of the second binary with a Roche lobe–filling hot subdwarf transferring mass to a white dwarf (WD) companion. This 56 minute binary was discovered using data from the Zwicky Transient Facility. Spectroscopic observations reveal an He-sdOB star with an effective temperature of T eff = 33,700 ± 1000 K and a surface gravity of log(g) = 5.54 ± 0.11. The GTC+HiPERCAM light curve is dominated by the ellipsoidal deformation of the He-sdOB star and shows an eclipse of the He-sdOB by an accretion disk as well as a weak eclipse of the WD. We infer a He-sdOB mass of M sdOB = 0.41 ± 0.04 M ⊙ and a WD mass of M WD = 0.68 ± 0.05 M ⊙. The weak eclipses imply a WD blackbody temperature of 63,000 ± 10,000 K and a radius R WD = 0.0148 ± 0.0020 R ⊙ as expected for a WD of such high temperature. The He-sdOB star is likely undergoing hydrogen shell burning and will continue transferring mass for ≈1 Myr at a rate of 10−9 M ⊙ yr−1, which is consistent with the high WD temperature. The hot subdwarf will then turn into a WD and the system will merge in ≈30 Myr. We suggest that Galactic reddening could bias discoveries toward preferentially finding Roche lobe–filling systems during the short-lived shell-burning phase. Studies using reddening-corrected samples should reveal a large population of helium core–burning hot subdwarfs with T eff ≈ 25,000 K in binaries of 60–90 minutes with WDs. Though not yet in contact, these binaries would eventually come into contact through gravitational-wave emission and explode as a subluminous thermonuclear supernova or evolve into a massive single WD

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl
    corecore