8,452 research outputs found

    Physical and chemical differentiation of the luminous star-forming region W49A - Results from the JCMT Spectral Legacy Survey

    Get PDF
    The massive and luminous star-forming region W49A is a well known Galactic candidate to probe the physical conditions and chemistry similar to those expected in external starburst galaxies. We aim to probe the physical and chemical structure of W49A on a spatial scale of ~0.8 pc based on the JCMT Spectral Legacy Survey, which covers the frequency range between 330 and 373 GHz. The wide 2x2 arcminutes field and the high spectral resolution of the HARP instrument on JCMT provides information on the spatial structure and kinematics of the cloud. For species where multiple transitions are available, we estimate excitation temperatures and column densities. We detected 255 transitions corresponding to 60 species in the 330-373 GHz range at the center position of W49A. Excitation conditions can be probed for 16 molecules. The chemical composition suggests the importance of shock-, PDR-, and hot core chemistry. Many molecular lines show a significant spatial extent across the maps including high density tracers (e.g. HCN, HNC, CS, HCO+) and tracers of UV-irradiation (e.g. CN and C2H). Large variations are seen between the sub-regions with mostly blue-shifted emission toward the Eastern tail, mostly red-shifted emission toward the Northern clump, and emission peaking around the expected source velocity toward the South-west clump. A comparison of column density ratios of characteristic species observed toward W49A to Galactic PDRs suggests that while the chemistry toward the W49A center is driven by a combination of UV-irradiation and shocks, UV-irradiation dominates for the Northern Clump, Eastern tail, and South-west clump regions. A comparison to a starburst galaxy and an AGN suggests similar C2H, CN, and H2CO abundances (with respect to the dense gas tracer 34CS) between the ~0.8 pc scale probed for W49A and the >1 kpc regions in external galaxies with global star-formation.Comment: Proposed for acceptance in A&A, abstract abridge

    Presupernova collapse models with improved weak-interaction rates

    Get PDF
    Improved values for stellar weak interaction rates have been recently calculated based upon a large shell model diagonalization. Using these new rates (for both beta decay and electron capture), we have examined the presupernova evolution of massive stars in the range 15-40 Msun. Comparing our new models with a standard set of presupernova models by Woosley and Weaver, we find significantly larger values for the electron-to-baryon ratio Ye at the onset of collapse and iron core masses reduced by approximately 0.1 Msun. The inclusion of beta-decay accounts for roughly half of the revisions, while the other half is a consequence of the improved nuclear physics. These changes will have important consequences for nucleosynthesis and the supernova explosion mechanism.Comment: 4 pages, 2 figure

    Shell model calculations of stellar weak interaction rates: I. Gamow-Teller distributions and spectra of nuclei in the mass range A=45-65

    Get PDF
    Electron capture and beta-decay rates on nuclei in the mass range A=45-65 play an important role in many astrophysical environments. The determination of these rates by large-scale shell model calculations is desirable, but it requires to reproduce the Gamow-Teller strength distributions and spectra of the pf shell nuclei. We show in this paper that large-scale shell model calculations, employing a slightly monopole-corrected version of the wellknown KB3 interaction, fulfill these necessary requirements. In particular, our calculations reproduce the experimentally available GT+ and GT- strength distributions and the nuclear halflives, and describe the nuclear spectra appropriately.Comment: 11 pages, 5 figure

    Comment on "Elasticity Model of a Supercoiled DNA Molecule"

    Full text link
    We perform simulations to numerically study the writhe distribution of a stiff polymer. We compare with analytic results of Bouchiat and Mezard (PRL 80 1556- (1998); cond-mat/9706050).Comment: 1 page, 1 figure revtex

    Electron fraction constraints based on Nuclear Statistical Equilibrium with beta equilibrium

    Full text link
    The electron-to-nucleon ratio or electron fraction is a key parameter in many astrophysical studies. Its value is determined by weak-interaction rates that are based on theoretical calculations subject to several nuclear physics uncertainties. Consequently, it is important to have a model independent way of constraining the electron fraction value in different astrophysical environments. Here we show that nuclear statistical equilibrium combined with beta equilibrium can provide such a constraint. We test the validity of this approximation in presupernova models and give lower limits for the electron fraction in type Ia supernova and accretion-induced collapse.Comment: 10 pages, 9 figures, Astronomy and Astrophysic

    Alignments of the Dominant Galaxies in Poor Clusters

    Get PDF
    We have examined the orientations of brightest cluster galaxies (BCGs) in poor MKW and AWM clusters and find that, like their counterparts in richer Abell clusters, poor cluster BCGs exhibit a strong propensity to be aligned with the principal axes of their host clusters as well as the surrounding distribution of nearby (< 20/h Mpc) Abell clusters. The processes responsible for dominant galaxy alignments are therefore independent of cluster richness. We argue that these alignments most likely arise from anisotropic infall of material into clusters along large-scale filaments.Comment: 8 pages, 5 figure

    Generalized Heisenberg algebras and k-generalized Fibonacci numbers

    Full text link
    It is shown how some of the recent results of de Souza et al. [1] can be generalized to describe Hamiltonians whose eigenvalues are given as k-generalized Fibonacci numbers. Here k is an arbitrary integer and the cases considered by de Souza et al. corespond to k=2.Comment: 8 page

    An Iterative and Toolchain-Based Approach to Automate Scanning and Mapping Computer Networks

    Full text link
    As today's organizational computer networks are ever evolving and becoming more and more complex, finding potential vulnerabilities and conducting security audits has become a crucial element in securing these networks. The first step in auditing a network is reconnaissance by mapping it to get a comprehensive overview over its structure. The growing complexity, however, makes this task increasingly effortful, even more as mapping (instead of plain scanning), presently, still involves a lot of manual work. Therefore, the concept proposed in this paper automates the scanning and mapping of unknown and non-cooperative computer networks in order to find security weaknesses or verify access controls. It further helps to conduct audits by allowing comparing documented with actual networks and finding unauthorized network devices, as well as evaluating access control methods by conducting delta scans. It uses a novel approach of augmenting data from iteratively chained existing scanning tools with context, using genuine analytics modules to allow assessing a network's topology instead of just generating a list of scanned devices. It further contains a visualization model that provides a clear, lucid topology map and a special graph for comparative analysis. The goal is to provide maximum insight with a minimum of a priori knowledge.Comment: 7 pages, 6 figure

    Pulsar Kicks With Sterile Neutrinos and Landau Levels

    Full text link
    We use a model with two sterile neutrinos obtained by fits to the MiniBoone and LSND experiments. Using formulations with neutrinos created by URCA Processes in a strong magnetic field, so the lowest Landau level has a sizable probability, we find that with known paramenters the assymetric sterile neutrino emissivity might account for large pulsar kicks.Comment: 3 pages, 1 figur
    • 

    corecore