170 research outputs found

    A 2000 year record of palaeofloods in a volcanically-reset catchment: Whanganui River, New Zealand

    Get PDF
    Palaeofloods in the Whanganui River, North Island, New Zealand are investigated using floodplain sedimentary archives at two locations in the lower Whanganui catchment. The ca. AD 232 Taupo volcanic eruption transformed the lower valley of the Whanganui River, emplacing a substantial volume of volcanogenic mass flow material and providing a new starting point for subsequent alluvial sedimentation. At Atene a high–resolution archive of flood sediments is preserved in a valley meander cutoff in the lower reaches of the Whanganui Gorge, where a ~9 m core was extracted. At Crowley House further down valley, two ~5 m cores were also extracted from a terrace-confined floodplain. Organic material from these cores allows the timing of floods at these sites to be constrained using 11 radiocarbon dates (ten from Atene, one from Crowley House). Flood magnitudes are reconstructed using XRF core-scanned geochemistry as a proxy for flood unit grain size. An age-depth model at Atene identifies three distinct phases of sedimentation with above average flood activity recorded at 1450–1125, 950, 650–500, and 400–325 cal. yr BP, which can be linked to the El Niño Southern Oscillation (ENSO) and strengthening of the Southern Hemisphere Westerly Wind circulation. Large floods also cluster in the late 1800s, reflecting a combination of enhanced storminess and land cover change, which also resulted in deeper erosion of regolith in the catchment, revealed by cosmogenic analysis at Crowley House. Climatic and non-climatic drivers are responsible for floods in the Whanganui catchment over the past ~2000 years, with the largest floods occurring during La Niña and positive Southern Annular Mode conditions. The timing of the largest single flood in the Whanganui in this period is consistent with the volcanic-resetting event itself of AD 232. This study demonstrates the close relationship between regional climate variability in the south-western Pacific Ocean and the occurrence of extreme floods in New Zealand, and the importance of using multi-centennial length hydrological series for effective flood risk assessment

    Stable isotope (δD–δ¹⁸O) relationships of ice facies and glaciological structures within the mid-latitude maritime Fox Glacier, New Zealand

    Get PDF
    Relationships between stable isotopes (δD–δ¹⁸O), ice facies and glacier structures have hitherto gone untested in the mid-latitude maritime glaciers of the Southern Hemisphere. Here, we present δD–δ¹⁸O values as part of a broader study of the structural glaciology of Fox Glacier, New Zealand. We analyzed 94 samples of δD–δ¹⁸O from a range of ice facies to investigate whether isotopes have potential for structural glaciological studies of a rapidly deforming glacier. The δD–δ¹⁸O measurements were aided by structural mapping and imagery from terminus time-lapse cameras. The current retreat phase was preceded by an advance of 1 km between 1984 and 2009, with the isotopic sampling and analysis undertaken at the end of that advance (2010/11). Stable isotopes from debris-bearing shear planes near the terminus, interpreted as thrust faults, are isotopically enriched compared with the surrounding ice. When plotted on co-isotopic diagrams (δD–δ¹⁸O), ice sampled from the shear planes appears to show a subtle, but distinctive isotopic signal compared with the surrounding clean ice on the lower glacier. Hence, stable isotopes (δD–δ¹⁸O) have potential within the structural glaciology field, but larger sample numbers than reported here may be required to establish isotopic contrasts between a broad range of ice facies and glacier structures

    A review of the benefits and drawbacks to virtual field guides in today’s Geoscience higher education environment

    Get PDF
    Virtual Field Guides are a way for educators to tackle the growing issue of funding pressures in areas of higher education, such as geography. Virtual Field Guides are however underutilised and can offer students a different way of learning. Virtual Field Guides have many benefits to students, such as being more inclusive, building student skills and confidence in a controlled environment pre fieldtrip and can increase engagement in the topic studied. There are also benefits to the educator, such as reduced cost, more efficient students on fieldwork tasks and the ability to tailor and update their field guides to suit their needs. However there are drawbacks in the challenge of creation and their outcome as educational standalone tools. This paper reviews the literature around the benefits and draw backs to the creation and incorporation of virtual field guides in geoscience education. © 2017, The Author(s)

    Modelling Cell Polarization Driven by Synthetic Spatially Graded Rac Activation

    Get PDF
    The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate the partial differential equations by ordinary differential equations for local and global variables. This method helps to analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and stabilize an otherwise unstable polarization

    Tamiflu-Resistant but HA-Mediated Cell-to-Cell Transmission through Apical Membranes of Cell-Associated Influenza Viruses

    Get PDF
    The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to “right next door”: one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors

    A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia

    Get PDF
    We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1), rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL) case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA). Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG)-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA) module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3) was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans
    corecore