156 research outputs found

    Calcium-induced calcium release and type 3 ryanodine receptors modulate the slow afterhyperpolarising current, sIAHP, and its potentiation in hippocampal pyramidal neurons

    Get PDF
    The slow afterhyperpolarising current, sIAHP, is a Ca2+-dependent current that plays an important role in the late phase of spike frequency adaptation. sIAHP is activated by voltage-gated Ca2+ channels, while the contribution of calcium from ryanodine-sensitive intracellular stores, released by calcium-induced calcium release (CICR), is controversial in hippocampal pyramidal neurons. Three types of ryanodine receptors (RyR1-3) are expressed in the hippocampus, with RyR3 showing a predominant expression in CA1 neurons. We investigated the specific role of CICR, and particularly of its RyR3-mediated component, in the regulation of the sIAHP amplitude and time course, and the activity-dependent potentiation of the sIAHP in rat and mouse CA1 pyramidal neurons. Here we report that enhancement of CICR by caffeine led to an increase in sIAHP amplitude, while inhibition of CICR by ryanodine caused a small, but significant reduction of sIAHP. Inhibition of ryanodine-sensitive Ca2+ stores by ryanodine or depletion by the SERCA pump inhibitor cyclopiazonic acid caused a substantial attenuation in the sIAHP activity-dependent potentiation in both rat and mouse CA1 pyramidal neurons. Neurons from mice lacking RyR3 receptors exhibited a sIAHP with features undistinguishable from wild-type neurons, which was similarly reduced by ryanodine. However, the lack of RyR3 receptors led to a faster and reduced activity-dependent potentiation of sIAHP. We conclude that ryanodine receptor-mediated CICR contributes both to the amplitude of the sIAHP at steady state and its activity-dependent potentiation in rat and mouse hippocampal pyramidal neurons. In particular, we show that RyR3 receptors play an essential and specific role in shaping the activity-dependent potentiation of the sIAHP. The modulation of activity-dependent potentiation of sIAHP by RyR3-mediated CICR contributes to plasticity of intrinsic neuronal excitability and is likely to play a critical role in higher cognitive functions, such as learning and memory

    Nedd4-2 haploinsufficiency causes hyperactivity and increased sensitivity to inflammatory stimuli

    Get PDF
    Nedd4-2 (NEDD4L in humans) is a ubiquitin protein ligase best known for its role in regulating ion channel internalization and turnover. Nedd4-2 deletion in mice causes perinatal lethality associated with increased epithelial sodium channel (ENaC) expression in lung and kidney. Abundant data suggest that Nedd4-2 plays a role in neuronal functions and may be linked to epilepsy and dyslexia in humans. We used a mouse model of Nedd4-2 haploinsufficiency to investigate whether an alteration in Nedd4-2 levels of expression affects general nervous system functions. We found that Nedd4-2 heterozygous mice are hyperactive, have increased basal synaptic transmission and have enhanced sensitivity to inflammatory pain. Thus, Nedd4-2 heterozygous mice provide a new genetic model to study inflammatory pain. These data also suggest that in human, SNPs affecting NEDD4L levels may be involved in the development of neuropsychological deficits and peripheral neuropathies and may help unveil the genetic basis of comorbidities

    Bone metastases are associated with worse prognosis in patients affected by metastatic colorectal cancer treated with doublet or triplet chemotherapy plus bevacizumab: a subanalysis of the TRIBE and TRIBE2 trials

    Get PDF
    Background: Colorectal cancer (CRC) is one of the most common cancers; w20% of patients have metastases at diagnosis, and 50%-60% subsequently develop metachronous metastases. Bone involvement, despite being rare, is usually associated with higher disease burden, worse prognosis, impaired quality of life, and significant health -related cost. In the last few years, following the positive results of the TRIBE and TRIBE2 trials, the association of FOLFOXIRI plus bevacizumab has become the new standard of care for metastatic CRC. Despite being highly efficacious in all subgroups, little is known about the activity of this regimen in patients with bone metastases. Patients and methods: We carried out a pooled analysis of TRIBE and TRIBE2 studies focusing on patients with skeletal deposits.Results: Our analyses on the whole population showed that patients with baseline bone involvement reported shorter overall survival [OS; 14.0 versus 26.2 months; hazard ratio (HR) 2.04, 95% confidence interval (CI) 1.46-2.87; P < 0.001] and progression-free survival (PFS; 6.2 versus 11.1 months; HR 1.96, 95% CI 1.42-2.69; P < 0.001) compared with those without bone metastases; no significant interaction with the treatment was reported for PFS (P = 0.094) and OS (P = 0.38). Bone metastases had a negative prognostic implication in the multivariate analysis (HR 2.24, 95% CI 1.54-3.26; P < 0.001). Furthermore, patients with bone lesions at first radiological progression (including those with baseline bone metastases) had a shorter OS compared with those who progressed in other sites (10.4 versus 13.2 months; HR 1.48, 95% CI 1.15-1.91; P = 0.002). A trend toward inferior OS (7.5 versus 11 months, HR 1.50, 95% CI 0.92-2.45; P = 0.10) appeared in patients with basal skeletal deposits compared with those with bone involvement at first radiological progression. Conclusions: Our study confirmed the negative prognostic impact of bone metastases in CRC. Furthermore, we demonstrated for the first time that the survival advantage of triplet chemotherapy plus bevacizumab is maintained even in this prognostically unfavorable subgroup

    Hormone replacement therapy enhances IGF-1 signaling in skeletal muscle by diminishing miR-182 and miR-223 expressions: a study on postmenopausal monozygotic twin pairs

    Get PDF
    MiRNAs are fine-tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co-twin case-control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen-based hormone replacement therapy (HRT) to explore estrogen-dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54-62-years-old monozygotic female twin pairs discordant for HRT (median 7 years). MCF-7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR-182, miR-223 and miR-142-3p expressions in HRT using than in their nonusing co-twins. Insulin/IGF-1 signaling emerged one common pathway targeted by these miRNAs. IGF-1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR-182 and miR-223 on IGF-1R and FOXO3A mRNA as well as a dose-dependent miR-182 and miR-223 down-regulations concomitantly with up-regulation of FOXO3A and IGF-1R expression. Novel finding is the postmenopausal HRT-reduced miRs-182, miR-223 and miR-142-3p expression in female skeletal muscle. The observed miRNA-mediated enhancement of the target genes' IGF-1R and FOXO3A expression as well as the activation of insulin/IGF-1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women

    The instrumented magnets for the OPERA experiment: construction and commissioning

    Get PDF
    The design and construction of the 990-ton gapless iron magnets for the OPERA experiment represent a major challenge from the point of view of mechanics, electric and heat engineering. Two of such magnets have been built in a deep underground hall of the Gran Sasso laboratories between 2003 and 2006 and they have been switched on for the first time in March 2006. In this paper we discuss the construction and characterization of these devices. First experience with the CNGS beam are also reported. © 2007 Elsevier B.V. All rights reserved

    The treatment paradigm of right-sided metastatic colon cancer: harboring BRAF mutation makes the difference

    Get PDF
    Purpose: BRAF mutations represent the main negative prognostic factor for metastatic colorectal cancer and a supposed negative predictive factor of response to standard chemotherapy. We have explored survival difference in right-sided colon cancer (RCC) patients according to BRAF mutations, with the aim to identify any predictive factors of response to targeted-based therapy. Methods: A retrospective study of RCC patients, with BRAF known mutation status, treated with chemotherapy (CT) from October 2008 to June 2019 in 5 Italian centers, was conducted. Results: We identified 207 advanced RCC patients: 20.3% BRAF mutant and 79.7% BRAF wild type (wt). BRAF-mutant cancers were more likely to be pT4 (50.0% v 25.7%, p = 0.016), undifferentiated (71.4% v 44.0%, p = 0.004), KRAS wt (90.5% v 38.2%, p < 0.001), and MSI-H (41.7% v 16.2%, p = 0.019) tumors, with synchronous (52.4% v 31.5%, p = 0.018) and peritoneal metastases (38.1% v 22.4%, p = 0.003). Median overall survival (OS) was 16 v 27 months in BRAF mutant and BRAF wt (P = 0.020). In first-line setting, BRAF-mutant showed a 2ys OS of 80% in clinical trials, 32% in anti-VEGF, 14% in epidermial growth factor receptor (EGFR), and 0% in chemotherapy alone regimens (P = 0.009). BRAF-mutant patients demonstrated worse survival, regardless of targeted therapy administered. However, survival difference was statistically significant in the anti-EGFR-treated subgroup (16 v 28 months, P = 0.005 in BRAF mutant v BRAF wt, respectively). Conclusions: Our study demonstrated that BRAF status makes the difference in treatment’s outcome. Therefore, the anti-EGFR should not be excluded in all advanced RCC but considered on a case-by-case basis

    Identification of lenvatinib prognostic index via recursive partitioning analysis in advanced hepatocellular carcinoma

    Get PDF
    Background: After the advent of new treatment options for advanced hepatocellular carcinoma (HCC), the identification of prognostic factors is crucial for the selection of the most appropriate therapy for each patient. Patients and methods: With the aim to fill this gap, we applied recursive partitioning analysis (RPA) to a cohort of 404 patients treated with lenvatinib. Results: The application of RPA resulted in a classification based on five variables that originated a new prognostic score, the lenvatinib prognostic index (LEP) index, identifying three groups: low risk [patients with prognostic nutritional index (PNI) >43.3 and previous trans-arterial chemoembolization (TACE)]; medium risk [patients with PNI >43.3 but without previous TACE and patients with PNI <43.3, albumin-bilirubin (ALBI) grade 1 and Barcelona Clinic Liver Cancer stage B (BCLC-B)]; high risk [patients with PNI <43.3 and ALBI grade 2 and patients with PNI <43.3, albumin-bilirubin (ALBI) grade 1 and Barcelona Clinic Liver Cancer stage C (BCLC-C)]. Median overall survival was 29.8 months [95% confidence interval (CI) 22.8-29.8 months] in low risk patients (n = 128), 17.0 months (95% CI 15.0-24.0 months) in medium risk (n = 162) and 8.9 months (95% CI 8.0-10.7 months) in high risk (n = 114); low risk hazard ratio (HR) 1 (reference group), medium risk HR 1.95 (95% CI 1.38-2.74), high risk HR 4.84 (95% CI 3.16-7.43); P < 0.0001. The LEP index was validated in a cohort of 127 Italian patients treated with lenvatinib. While the same classification did not show a prognostic value in a cohort of 311 patients treated with sorafenib, we also show a possible predictive role in favor of lenvatinib in the low risk group. Conclusions: LEP index is a promising, easy-to-use tool that may be used to stratify patients undergoing systemic treatment of advanced HCC

    The role of P2X7 in pain and inflammation

    Get PDF
    The P2X7 purinoceptor is unique amongst the P2X receptor family in that its activation is able to stimulate the release of mature, biologically active interleukin-1β (IL-1β), as well as a variety of other proinflammatory cytokines. Coupled with the predominate localisation of this receptor to immunocytes of haemopoetic origin, this receptor is an obvious candidate to play a major and pivotal role in processes of pain and inflammation. Using genetically modified animals that lack the P2X7 receptor, several investigators have shown that these mice do indeed demonstrate a blunted inflammatory response, and fail to develop pain following both inflammatory and neuropathic insult. These animals also show altered cytokine production in response to inflammatory stimulus, which is far broader than merely modulation of IL-1β release. In this short article, we review the role of the P2X7 receptor in modulating the release of cytokines and other mediators, and discuss the findings made from P2X7 receptor-deficient animals. As well as highlighting outstanding questions regarding this intriguing receptor, we also speculate as to the potential therapeutic benefit of P2X7 receptor modulation
    • …
    corecore