The instrumented magnets for the OPERA experiment: construction and commissioning

- Construction (2003-2005)
- Characterization of the iron
- Electric and magnetic characterization
- Thermal behaviour
- First run: August 2006
- Conclusion

R. Adinolfi Falcone, A. Bergnoli, A. Cazes, A. Cecchetti, B. Dulach, A. Garfagnini, F. Grianti, M. Incurvati, A. Mengucci, D. Orecchini, L. Pellegrino, C. Sanelli, M. Spinetti, <u>F. Terranova</u>, M. Ventura, L. Votano

Magnetic spectrometer

Its role in OPERA: muon charge identification to suppress charm background; muon momentum measurement and hadron calorimetry (complete the kinematic reconstruction of tau candidates); beam spectrum reconstruction, physics of cosmic rays etc.

Why a gapless dipolar magnet?

- Uniform field along the slabs
- 1dim high precision trackers
- A very robust structure to hold the neutrino target (bricks and scintillators)
- Dead zones (return yokes) with strongly varying field
- Relatively high fringe field in the surrounding area (PMT's!!)

Construction

Start of the works in Hall C: summer 2003

END OF MAGNET INSTALLATION: June 2005

END OF INFRASTRUCTURE INSTALLATION: February 2006

FIRST SWITCHING ON: MARCH 2006

END OF COOLING SYSTEM INSTALLATION: MAY 2006

Steel properties

Element	Spec.	Slab steel	Yoke steel
С	< 0.080	0.08 ± 0.01	0.004 ± 0.002
Р	< 0.025	0.011 ± 0.003	0.003 ± 0.001
S	< 0.010	0.005 ± 0.003	0.005 ± 0.002
Mn		1.24 ± 0.13	0.24 ± 0.02
Si		0.20 ± 0.03	0.84 ± 0.03
В	$<\!0.0005$	< 0.0001	0.00016 ± 0.00005

Mechanical specs played a crucial role to determine the magnetic response of the steel

Driving coils and power supplies

Current: 1600A

Coil: copper bar 100x20 mm² [careful machining, golden deposition to assure proper electric connections, R=8 m Ω at T=55 deg], 20x2 turns, 800m

Power supplies: 2 quadrant AC \rightarrow DC, current stable below 0.1%, max 1700A 20V, designed and built by EEI Vicenza

Inductive response

During ramp-up the inductance (L÷dB/dH) changes by order of magnitudes

E

The power supplies cannot change continuously the sign of the voltage, hence during rampdown (di/dt<0) they miss di/dt=const at time T when Ri+Ldi/dt becomes negative. For t>T the circuit discharged at its natural speed (L/R)

Measurement of magnetic field

Techniques:

 ✓ Pick up coils along the height and the slabs ⇒ absolute calibration

$$V = -\frac{d\Phi(t)}{dt} = -SN\frac{d}{dt}\langle B \rangle$$
$$\frac{-1}{SN} = \int_{0}^{t} dt' V(t') = \langle B(t) \rangle - \langle B(0) \rangle$$

 ✓ Hall probes in air to monitor relative variations and validate the simulation

Results:

- ✓ Field uniformity within specs
- ✓ Flux deficit of about 4% (machining and air gaps)
- ✓ Two magnets identical within 1%

Water cooling system

Standalone system with:

- A primary circuit connected to an external chiller (outside the experimental hall): 80 kW cooling power
- Secondary circuit to water cool the coils (20 kW per magnet)
- \bullet Secondary circuit with DEMI water (<10 $\mu S/cm)$ to cool PS

• Water cooling of electronics racks

Temperature measurement

August run with CNGS

- Livetime of magnets: 100% (magnet1), 95% (magnet 2)
- Coil temperature stable after 40 hours, RPC after 7 days
- Reconstructed events: mainly μ (obviously...). Reconstructed CNGS spectrum still not released by the Collaboration...

Conclusions

- The two ~1 kton magnets for OPERA are fully operative since July 2006
- No anomalies observed in the load (resistence and inductive response during ramp-up): we can run at nominal current and measure the field using pickup coils.
- Minimum field (center of the slab) is 1.49±0.01 T (Average 1.52 T) Expected for ideal mechanical contacts: 1.55 T (Average 1.575 T) The two magnets are equal within 1%
- August run:
 - (a) Livetime: 100% (magnet1), 95% (magnet 2)
 - (b) Coil temperature stable in 40 h. Cooling seems appropriate to keep RPC temperature below 25 degree.
 - (c) First look at momentum reconstruction seems OK (in progress)

All in all, a pretty good success