26 research outputs found

    The coefficient of cyclic variation: a novel statistic to measure the magnitude of cyclic variation.

    Get PDF
    BACKGROUND: PERIODIC OR CYCLIC DATA OF KNOWN PERIODICITY ARE FREQUENTLY ENCOUNTERED IN EPIDEMIOLOGICAL AND BIOMEDICAL RESEARCH: for instance, seasonality provides a useful experiment of nature while diurnal rhythms play an important role in endocrine secretion. There is, however, little consensus on how to analysis these data and less still on how to measure association or effect size for the often complex patterns seen. RESULTS: A simple statistic, readily derived from Fourier regression models, provides a readily-understood measure cyclic variation in a wide variety of situations. CONCLUSION: The coefficient of cyclic variation or similar statistics derived from the variance of a Fourier series could provide a universal means of summarising the magnitude of periodic variation

    Maternal protein-energy supplementation does not affect adolescent blood pressure in The Gambia.

    Get PDF
    BACKGROUND: Birthweight, and by inference maternal nutrition during pregnancy, is thought to be an important determinant of offspring blood pressure but the evidence base for this in humans is lacking data from randomized controlled trials. METHODS: The offspring from a maternal prenatal protein-energy supplementation trial were enrolled into a follow-up study of chronic disease risk factors including blood pressure. Subjects were 11-17 years of age and blood pressure was measured in triplicate using an automated monitor (Omron 705IT). One-thousand two-hundred sixty seven individuals (71% of potential participants) were included in the analysis. RESULTS: There was no difference in blood pressure between those whose mothers had consumed protein-energy biscuits during pregnancy and those whose mothers had consumed the same supplement post-partum. For systolic blood pressure the intention-to-treat regression coefficient was 0.46 (95% CI: -1.12, 2.04). Mean systolic blood pressure for control children was 110.2 (SD +/- 9.3) mmHg and for intervention children was 110.8 (SD +/- 8.8) mmHg. Mean diastolic blood pressure for control children was 64.7 (SD +/- 7.7) mmHg and for intervention children was 64.6 (SD +/- 7.6) mmHg. CONCLUSIONS: We have found no association between maternal prenatal protein-energy supplementation and offspring blood pressure in adolescence amongst rural Gambians. We found some evidence to suggest that offspring body composition may interact with the effect of maternal supplementation on blood pressure

    Influence of intergenerational in utero parental energy and nutrient restriction on offspring growth in rural Gambia.

    Get PDF
    The prenatal environment can alter an individual's developmental trajectory with long-lasting effects on health. Animal models demonstrate that the impact of the early life environment extends to subsequent generations, but there is a paucity of data from human populations on intergenerational transmission of environmentally induced phenotypes. Here we investigated the association of parental exposure to energy and nutrient restriction in utero on their children's growth in rural Gambia. In a Gambian cohort with infants born between 1972 and 2011, we used multiple regression to test whether parental season of birth predicted offspring birth weight (n = 2097) or length (n = 1172), height-for-age z score (HAZ), weight-for-height z score (WHZ), and weight-for-age z score (WAZ) at 2 yr of age (n = 923). We found that maternal exposure to seasonal energy restriction in utero was associated with reduced offspring birth length (crude:-4.2 mm, P = 0.005; adjusted: -4.0 mm, P = 0.02). In contrast, paternal birth season predicted offspring HAZ at 24 mo (crude: -0.21, P = 0.005; adjusted: -0.22, P = 0.004) but had no discernible impact at birth. Our results indicate that periods of nutritional restriction in a parent's fetal life can have intergenerational consequences in human populations. Fetal growth appears to be under matriline influence, and postnatal growth appears to be under patriline intergenerational influences.-Eriksen, K. G., Radford, E. J., Silver, M. J., Fulford, A. J. C., Wegmüller, R., Prentice, A. M. Influence of intergenerational in utero parental energy and nutrient restriction on offspring growth in rural Gambia

    Thymic size is increased by infancy, but not pregnancy, nutritional supplementation in rural Gambian children: a randomized clinical trial.

    Get PDF
    BACKGROUND: Thymic size in early infancy predicts subsequent survival in low-income settings. The human thymus develops from early gestation, is most active in early life and is highly sensitive to malnutrition. Our objective was to test whether thymic size in infancy could be increased by maternal and/or infant nutritional supplementation. METHODS: The Early Nutrition and Immune Development (ENID) Trial was a randomized 2 × 2 × 2 factorial, partially blinded trial of nutritional supplementation conducted in rural Gambia, West Africa. Pregnant women (N = 875) were randomized to four intervention groups (iron-folate (standard care), multiple micronutrients, protein energy or protein energy + multiple micronutrients at 'booking' (mean gestational age at enrolment = 13.6 weeks, range 8-20 weeks) until delivery. The iron-folate and multiple micronutrient arms were administered in tablet form and the protein energy arms as a lipid-based nutritional supplement. All intervention arms contained 60 mg iron and 400 μg folic acid per daily dose. From 24 to 52 weeks of age, infants from all groups were randomized to receive a daily lipid-based nutritional supplement, with or without additional micronutrients. Thymic size was assessed by ultrasonography at 1, 8, 24 and 52 weeks of infant age, and a volume-related thymic index calculated. Detailed data on infant growth, feeding status and morbidity were collected. RESULTS: A total of 724 (82.7%) mother-infant pairs completed the trial to infant age 52 weeks. Thymic size in infancy was not significantly associated with maternal supplement group at any post-natal time point. Infants who received the daily LNS with additional micronutrients had a significantly larger thymic index at 52 weeks of age (equivalent to an 8.0% increase in thymic index [95% CI 2.89, 13.4], P = 0.002). No interaction was observed between maternal and infant supplement groups. CONCLUSIONS: A micronutrient-fortified lipid-based supplement given in the latter half of infancy increased thymic size, a key mediator of immune function. Improving the micronutrient status of infants from populations with marginal micronutrient status may improve immune development and survival. TRIAL REGISTRATION: ISRCTN registry (controlled-trials.com) Identifier: ISRCTN49285450

    Common polymorphic variation in the genetically diverse African insulin gene and its association with size at birth.

    Get PDF
    The insulin variable number of tandem repeats (INS VNTR) has been variably associated with size at birth in non-African populations. Small size at birth is a major determinant of neonatal mortality, so the INS VNTR may influence survival. We tested the hypothesis, therefore, that genetic variation around the INS VNTR in a rural Gambian population, who experience seasonal variation in nutrition and subsequently birth weight, may be associated with foetal and early growth. Six polymorphisms flanking the INS VNTR were genotyped in over 2,500 people. Significant associations were detected between the maternally inherited SNP 27 (rs689) allele and birth length [effect size 17.5 (5.2-29.8) mm; P = 0.004; n = 361]. Significant associations were also found between the maternally inherited African-specific SNP 28 (rs5506) allele and post-natal weight gain [effect size 0.19 (0.05-0.32) z score points/year; P = 0.005; n = 728). These results suggest that in the Gambian population studied there are associations between polymorphic variation in the genetically diverse INS gene and foetal and early growth characteristics, which contribute to overall polygenic associations with these traits

    A randomized trial to investigate the effects of pre-natal and infant nutritional supplementation on infant immune development in rural Gambia: the ENID trial: Early Nutrition and Immune Development.

    Get PDF
    BACKGROUND: Recent observational research indicates that immune development may be programmed by nutritional exposures early in life. Such findings require replication from trials specifically designed to assess the impact of nutritional intervention during pregnancy on infant immune development. The current trial seeks to establish: (a) which combination of protein-energy (PE) and multiple-micronutrient (MMN) supplements would be most effective; and (b) the most critical periods for intervention in pregnancy and infancy, for optimal immune development in infancy. METHODS/DESIGN: The ENID Trial is a 2 x 2 x 2 factorial randomized, partially blind trial to assess whether nutritional supplementation to pregnant women (from < 20 weeks gestation to term) and their infants (from 6 to 12 months of age) can enhance infant immune development. Eligible pregnant women from the West Kiang region of The Gambia (pregnancy dated by ultrasound examination) are randomized on entry to 4 intervention groups (Iron-folate (FeFol = standard care), multiple micronutrients (MMN), protein-energy (PE), PE + MMN). Women are visited at home weekly for supplement administration and morbidity assessment and seen at MRC Keneba at 20 and 30 weeks gestation for a detailed antenatal examination, including ultrasound. At delivery, cord blood and placental samples are collected, with detailed infant anthropometry collected within 72 hours. Infants are visited weekly thereafter for a morbidity questionnaire. From 6 to 12 months of age, infants are further randomized to a lipid-based nutritional supplement, with or without additional MMN. The primary outcome measures of this study are thymic development during infancy, and antibody response to vaccination. Measures of cellular markers of immunity will be made in a selected sub-cohort. Subsidiary studies to the main trial will additionally assess the impact of supplementation on infant growth and development to 24 months of age. DISCUSSION: The proposed trial is designed to test whether nutritional repletion can enhance early immune development and, if so, to help determine the most efficacious form of nutritional support. Where there is evidence of benefit from a specific intervention/combination of interventions, future research should focus on refining the supplements to achieve the optimal, most cost-effective balance of interventions for improved health outcomes

    The dynamics of nasopharyngeal streptococcus pneumoniae carriage among rural Gambian mother-infant pairs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Streptococcus pneumoniae </it>is an important cause of community acquired pneumonia, sepsis, meningitis and otitis media globally and has been incriminated as a major cause of serious childhood bacterial infections in The Gambia. Better understanding of the dynamics of transmission and carriage will inform control strategies.</p> <p>Methods</p> <p>This study was conducted among 196 mother-infant pairs recruited at birth from six villages in the West Kiang region of The Gambia. Nasopharyngeal swabs were collected from mother-infant pairs at birth (within 12 hours of delivery), 2, 5 and 12 months. Standard techniques of culture were used to identify carriage and serotype <it>S. pneumoniae</it>.</p> <p>Results</p> <p>Of 46 serotypes identified, the 6 most common, 6A, 6B, 14, 15, 19F and 23F, accounted for 67.3% of the isolates from infants. Carriage of any serotype among infants rose from 1.5% at birth to plateau at approximately 80% by 2 m (prevalence at 2 m = 77%; 5 m = 86%; 12 m = 78%). Likewise, maternal carriage almost doubled in the first 2 months post-partum and remained elevated for the next 10 m (prevalence at birth = 13%; 2 m = 24%; 5 m = 22%; 12 m = 21%). Carriage was significantly seasonal in both infants and mothers with a peak in December and lowest transmission in August. The total number of different serotypes we isolated from each infant varied and less than would be expected had the serotypes assorted independently. In contrast, this variability was much as expected among mothers. The half-life of a serotype colony was estimated to be 1.90 m (CI<sub>95%</sub>: 1.66-2.21) in infants and 0.75 m (CI<sub>95%</sub>: 0.55-1.19) in mothers. While the odds for a serotype to be isolated from an infant increased by 9-fold if it had also been isolated from the mother, the population attributable fraction (PAF) of pneumococcal carriage in infants due to maternal carriage was only 9.5%. Some marked differences in dynamics were observed between vaccine and non-vaccine serotypes.</p> <p>Conclusions</p> <p>Colonisation of the nasopharynx in Gambian infants by <it>S. pneumoniae </it>is rapid and highly dynamic. Immunity or inter-serotype competition may play a role in the dynamics. Reducing mother-infant transmission would have a minimal effect on infant carriage.</p

    New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.

    Get PDF
    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism

    Statistical modelling of the seasonality of preterm delivery and intrauterine growth restriction in rural Gambia.

    No full text
    We have developed a methodology for comparing the seasonal influences on two outcomes, when those influences may act cumulatively or instantaneously. We have used this to compare the seasonal pattern of intrauterine growth retardation (IUGR, as reflected by weight-for-gestational-age) and preterm delivery (as assessed by Dubowitz scoring) among 1718 infants born in rural Gambia. Both outcomes were analysed as binary variables: small-for-gestational-age (SGA, <10th centile of reference standard) and preterm (<37 weeks) respectively. Percentages of preterm and SGA babies show divergent seasonal patterns that might indicate separate aetiologies. However, seasonal effects influencing intrauterine growth are likely to be cumulative over the last few months of pregnancy. By modelling seasonality with truncated Fourier series we were able to deconvolve the underlying seasonal influences on fetal growth from the pattern for SGA. This enabled us to use seemingly unrelated biprobit regression to compare the underlying seasonal pattern of intrauterine growth with that governing the incidence of preterm delivery. We conclude that, if the seasonal factors affecting intrauterine growth operate over more than the last 2 months of pregnancy, then the seasonal patterns of the factors causing IUGR and preterm delivery are indistinguishable if the factors are assumed to trigger preterm delivery immediately, but differ if preterm delivery is assumed to be programmed by factors acting at conception

    Haplotype association between haptoglobin (Hp2) and Hp promoter SNP (A-61C) may explain previous controversy of haptoglobin and malaria protection.

    Get PDF
    BACKGROUND: Malaria is one of the strongest recent selective pressures on the human genome, as evidenced by the high levels of varying haemoglobinopathies in human populations-despite the increased risk of mortality in the homozygous states. Previously, functional polymorphisms of Hp, coded by the co-dominant alleles Hp1 and Hp2, have been variously associated with several infectious diseases, including malaria susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: Risk of a clinical malarial episode over the course of a malarial transmission season was assessed using active surveillance in a cohort of Gambian children aged 10-72 months. We report for the first time that the major haplotype for the A-61C mutant allele in the promoter of haptoglobin (Hp)-an acute phase protein that clears haemoglobin released from haemolysis of red cells-is associated with protection from malarial infection in older children, (children aged >or=36 months, >500 parasites/ul and temperature >37.5 degrees C; OR = 0.42; [95% CI 0.24-0.73] p = 0.002) (lr test for interaction, or=36 months, p = 0.014). Protection was also observed using two other definitions, including temperature >37.5 degrees C, dipstick positive, plus clinical judgement of malaria blinded to dipstick result (all ages, OR = 0.48, [95% CI 0.30-0.78] p = 0.003; >or=36 months, OR = 0.31, [95% CI 0.15-0.62] p = 0.001). A similar level of protection was observed for the known protective genetic variant, sickle cell trait (HbAS). CONCLUSIONS/SIGNIFICANCE: We propose that previous conflicting results between Hp phenotypes/genotypes and malaria susceptibility may be explained by differing prevalence of the A-61C SNP in the populations studied, which we found to be highly associated with the Hp2 allele. We report the -61C allele to be associated with decreased Hp protein levels (independent of Hp phenotype), confirming in vitro studies. Decreased Hp expression may lead to increased oxidant stress and increased red cell turnover, and facilitate the development of acquired immunity, similar to a mechanism suggested for sickle cell trait
    corecore