62 research outputs found

    安定な三重項カルベンの合成検討

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(理学)Sciencedoctora

    Effects of Sulfonylureas on Peroxisome Proliferator-Activated Receptor γ Activity and on Glucose Uptake by Thiazolidinediones

    Get PDF
    BackgroundSulfonylurea primarily stimulates insulin secretion by binding to its receptor on the pancreatic β-cells. Recent studies have suggested that sulfonylureas induce insulin sensitivity through peroxisome proliferator-activated receptor γ (PPARγ), one of the nuclear receptors. In this study, we investigated the effects of sulfonylurea on PPARγ transcriptional activity and on the glucose uptake via PPARγ.MethodsTranscription reporter assays using Cos7 cells were performed to determine if specific sulfonylureas stimulate PPARγ transactivation. Glimepiride, gliquidone, and glipizide (1 to 500 µM) were used as treatment, and rosiglitazone at 1 and 10 µM was used as a control. The effects of sulfonylurea and rosiglitazone treatments on the transcriptional activity of endogenous PPARγ were observed. In addition, 3T3-L1 adipocytes were treated with rosiglitazone (10 µM), glimepiride (100 µM) or both to verify the effect of glimepiride on rosiglitazone-induced glucose uptake.ResultsSulfonylureas, including glimepiride, gliquidone and glipizide, increased PPARγ transcriptional activity, gliquidone being the most potent PPARγ agonist. However, no additive effects were observed in the presence of rosiglitazone. When rosiglitazone was co-treated with glimepiride, PPARγ transcriptional activity and glucose uptake were reduced compared to those after treatment with rosiglitazone alone. This competitive effect of glimepiride was observed only at high concentrations that are not achieved with clinical doses.ConclusionSulfonylureas like glimepiride, gliquidone and glipizide increased the transcriptional activity of PPARγ. Also, glimepiride was able to reduce the effect of rosiglitazone on PPARγ agonistic activity and glucose uptake. However, the competitive effect does not seem to occur at clinically feasible concentrations

    Rosiglitazone and glimeperide: review of clinical results supporting a fixed dose combination

    Get PDF
    Type 2 diabetes has become a major burden to the health care systems worldwide. Among the drugs approved for this indication, glimepiride and rosiglitazone have gained substantial importance in routine use. While glimepiride stimulates β-cell secretion and leads to reduction of blood glucose values, rosiglitazone activates PPARγ and improves insulin resistance, at the vascular and metabolically active cells. Therefore, the combination of the two drugs may be an interesting approach to improve glycemic control and lower cardiovascular risk. A fixed combination of both drugs has been approved for clinical use in the US and EU. The combination of glimepiride and rosiglitazone is generally well tolerated and the use of a fixed combination may lead to improved adherence of the patients to their therapy. The purpose of this review is to evaluate the clinical data that have been published on this combination, appearing to represent a convenient way to obtain therapeutic targets in patients with type 2 diabetes mellitus

    Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptors (PPARs) have emerged as important drug targets for diabetes. Drugs that activate PPARγ, such as the thiazolidinediones (TZDs), are widely used for treatment of Type 2 diabetes mellitus. PPARγ signaling could also play an anti-neoplastic role in several <it>in vitro </it>models, although conflicting results are reported from <it>in vivo </it>models. The effects of TZDs on cancer risk in humans needs to be resolved as these drugs are prescribed for long periods of time in patients with diabetes.</p> <p>Methods</p> <p>A total of 1003 subjects in community practice settings were interviewed at home at the time of enrolment into the Vermont Diabetes Information System, a clinical decision support program. Patients self-reported their personal and clinical characteristics, including any history of malignancy. Laboratory data were obtained directly from the clinical laboratory and current medications were obtained by direct observation of medication containers. We performed a cross-sectional analysis of the interviewed subjects to assess a possible association between cancer diagnosis and the use of TZDs.</p> <p>Results</p> <p>In a multivariate logistic regression model, a diagnosis of cancer was significantly associated with TZD use, even after correcting for potential confounders including other oral anti-diabetic agents (sulfonylureas and biguanides), age, glycosylated hemoglobin A1C, body mass index, cigarette smoking, high comorbidity, and number of prescription medications (odds ratio = 1.59, <it>P </it>= 0.04). This association was particularly strong among patients using rosiglitazone (OR = 1.89, <it>P </it>= 0.02), and among women (OR = 2.07, <it>P </it>= 0.01).</p> <p>Conclusion</p> <p>These data suggest an association between TZD use and cancer in patients with diabetes. Further studies are required to determine if this association is causal.</p

    Taurine modulates induction of cytochrome P450 3A4 mRNA by rifampicin in the HepG2 cell line

    Get PDF
    AbstractTaurine is not only present in foods, tonics and nutrient drinks but is also used as a medicinal agent mainly for treatment of chronic heart failure and liver disease. However, little is known about its influence on drug-metabolizing enzymes, especially cytochrome P450 (CYP), in human. We examined whether taurine could affect the expression of CYP3A4 mRNA in the presence or absence of rifampicin (RFP), which is a potent inducer of CYPs, with HepG2 cells. Taurine enhanced twice the induction of CYP3A4 mRNA by RFP, but did not affect the expression by itself. This effect was both concentration- and time-dependent. On the other hand, taurine did not affect the induction by phenobarbital. Taurine did not increase intracellular uptake of RFP. Therefore, we conclude that taurine is an enhancer for the induction of CYP3A4 by RFP
    corecore