155 research outputs found

    Structure of ADAFs in a general large-Scale B-field: The role of wind and thermal conduction

    Full text link
    We have explored the structure of hot flow bathed in a general large-scale magnetic field. The importance of outflow and thermal conduction on the self-similar structure of a hot accretion flows has been investigated. We consider the additional magnetic parameters βr,φ,z[=cr,φ,z2/(2cs2)] \beta_{r,\varphi,z}\big[= c^2_{r,\varphi,z}/(2 c^2_{s}) \big] , where cr,φ,z2 c^2_{r,\varphi,z} are the Alfveˊ\acute{e}n sound speeds in three direction of cylindrical coordinate. In comparison to the accretion disk without winds, our results show that the radial and rotational velocities of the disk become faster however it become cooler because of the angular momentum and energy flux which are taking away by the winds. but thermal conduction opposes the effect of winds not only decrease the rotational velocity but also increase the radial velocity as well as the sound speed of the disk. In addition we study the effect of global magnetic field on the structure of the disk. Our numerical results show that all components of magnetic field can be important and they have a considerable effect on velocities and vertical structure of the disk.Comment: accepted for publication in Research in Astronomy and Astrophysic

    Geometrical Effect of Supercritical Accretion Flows: Observational Implications of Galactic Black-Hole Candidates and Ultraluminous X-ray Sources

    Full text link
    We investigate the dependence of the viewing angle in supercritical accretion flows and discuss the observational implications of galactic black-hole candidates and ultraluminous X-ray sources. When the mass accretion rate exceeds the critical rate, then the shape of the disk is geometrically thick due to the enhanced radiation pressure. The model spectra of supercritical accretion flows strongly depend on the inclination angle. Because the outer disk blocks the emission from the disk inner region for high inclination angle. We also find that the spectral properties of low-inclination angle and low accretion-rate disks are very similar to those of high-inclination and high accretion rate disks. That is, if an object has a high inclination and high accretion rate, such a system suffers from self-occultation and the spectrum will be extremely soft. Therefore, we cannot discriminate these differences from spectrum shapes only. Conversely, if we use the self-occultation properties, we could constrain the inclination angle of the system. We suggest that some observed high temperature ultraluminous X-ray sources have near face-on geometry, i < 40, and Galactic black hole candidate, XTE J1550-564, possesses relatively high-inclination angles, i > 60.Comment: 13 pages, 6 figures, accepted for publication in PAS

    Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    Full text link
    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin parameters and a same black hole mass. Thus, it is practically difficult to determine a spin parameter of a black hole from a size and a shape of a black hole shadow in an accretion disk. We newly introduce a bisector axis of a black hole shadow named a shadow axis. For a rotating black hole a shape and a position of a black hole shadow are not symmetric with respect to a rotation axis of a black hole shadow. So, in this case the minimum interval between a mass center of a black hole and a shadow axis is finite. An extent of this minimum interval is roughly proportional to a spin parameter of a black hole for a fixed inclination angle between a rotation axis of a black hole and a direction of an observer. In order to measure a spin parameter of a black hole, if a shadow axis is determined observationally, it is crucially important to determine a position of a mass center of a black hole in a region of a black hole shadow.Comment: 13 pages, 6 figures, accepted for publication in Ap

    Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping

    Full text link
    The quasi-steady structure of super-critical accretion flows around a black hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD) simulations. The super-critical flow is composed of two parts: the disk region and the outflow regions above and below the disk. Within the disk region the circular motion as well as the patchy density structure are observed, which is caused by Kelvin-Helmholtz instability and probably by convection. The mass-accretion rate decreases inward, roughly in proportion to the radius, and the remaining part of the disk material leaves the disk to form outflow because of strong radiation pressure force. We confirm that photon trapping plays an important role within the disk. Thus, matter can fall onto the black hole at a rate exceeding the Eddington rate. The emission is highly anisotropic and moderately collimated so that the apparent luminosity can exceed the Eddington luminosity by a factor of a few in the face-on view. The mass-accretion rate onto the black hole increases with increase of the absorption opacity (metalicity) of the accreting matter. This implies that the black hole tends to grow up faster in the metal rich regions as in starburst galaxies or star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628, July 20, 2005 issue

    Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes

    Full text link
    We explore isothermal shock formation in non-equatorial, adiabatic accretion flows onto a rotating black hole, with possible application to some active galactic nuclei (AGNs). The isothermal shock jump conditions as well as the regularity condition, previously developed for one-dimensional (1D) flows in the equatorial plane, are extended to two-dimensional (2D), non-equatorial flows, to explore possible geometrical effects. The basic hydrodynamic equations with these conditions are self-consistently solved in the context of general relativity to explore the formation of stable isothermal shocks. We find that strong shocks are formed in various locations above the equatorial plane, especially around a rapidly-rotating black hole with the prograde flows (rather than a Schwarzschild black hole). The retrograde flows are generally found to develop weaker shocks. The energy dissipation across the shock in the hot non-equatorial flows above the cooler accretion disk may offer an attractive illuminating source for the reprocessed features, such as the iron fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference on high energy density laboratory astrophysics in Tucson, Arizona. accepted to Ap

    General Relativistic Hydrodynamic Simulations and Linear Analysis of the Standing Accretion Shock Instability around a Black Hole

    Full text link
    We study the stability of standing shock waves in advection-dominated accretion flows into a Schwarzschild black hole by 2D general relativistic hydrodynamic simulations as well as linear analysis in the equatorial plane. We demonstrate that the accretion shock is stable against axisymmetric perturbations but becomes unstable to non-axisymmetric perturbations. The results of dynamical simulations show good agreement with linear analysis on the stability, oscillation and growing time scales. The comparison of different wave-travel times with the growth time scales of the instability suggests that the instability is likely to be of the Papaloizou-Pringle type, induced by the repeated propagations of acoustic waves. However, the wavelengths of perturbations are too long to clearly define the reflection point. By analyzing the non-linear phase in the dynamical simulations, it is shown that quadratic mode couplings precede the non-linear saturation. It is also found that not only short-term random fluctuations by turbulent motions but also quasi periodic oscillations take place on longer time scales in the non-linear phase. We give some possible implications of the instability for quasi periodic oscillations (QPOs) and the central engine for gamma ray bursts (GRBs).Comment: 34 pages, 11 figures, accepted in Ap

    The role of flow geometry in influencing the stability criteria for low angular momentum axisymmetric black hole accretion

    Full text link
    Using mathematical formalism borrowed from dynamical systems theory, a complete analytical investigation of the critical behaviour of the stationary flow configuration for the low angular momentum axisymmetric black hole accretion provides valuable insights about the nature of the phase trajectories corresponding to the transonic accretion in the steady state, without taking recourse to the explicit numerical solution commonly performed in the literature to study the multi-transonic black hole accretion disc and related astrophysical phenomena. Investigation of the accretion flow around a non rotating black hole under the influence of various pseudo-Schwarzschild potentials and forming different geometric configurations of the flow structure manifests that the general profile of the parameter space divisions describing the multi-critical accretion is roughly equivalent for various flow geometries. However, a mere variation of the polytropic index of the flow cannot map a critical solution from one flow geometry to the another, since the numerical domain of the parameter space responsible to produce multi-critical accretion does not undergo a continuous transformation in multi-dimensional parameter space. The stationary configuration used to demonstrate the aforementioned findings is shown to be stable under linear perturbation for all kind of flow geometries, black hole potentials, and the corresponding equations of state used to obtain the critical transonic solutions. Finally, the structure of the acoustic metric corresponding to the propagation of the linear perturbation studied are discussed for various flow geometries used.Comment: 13 pages. 5 figure

    Mass Outflow Rate From Accretion Discs around Compact Objects

    Full text link
    We compute mass outflow rates from accretion disks around compact objects, such as neutron stars and black holes. These computations are done using combinations of exact transonic inflow and outflow solutions which may or may not form standing shock waves. Assuming that the bulk of the outflow is from the effective boundary layers of these objects, we find that the ratio of the outflow rate and inflow rate varies anywhere from a few percent to even close to a hundred percent (i.e., close to disk evacuation case) depending on the initial parameters of the disk, the degree of compression of matter near the centrifugal barrier, and the polytropic index of the flow. Our result, in general, matches with the outflow rates obtained through a fully time-dependent numerical simulation. In some region of the parameter space when the standing shock does not form, our results indicate that the disk may be evacuated and may produce quiescence states.Comment: 30 Latex pages and 13 figures. crckapb.sty; Published in Class. Quantum Grav. Vol. 16. No. 12. Pg. 387

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation
    corecore