20 research outputs found

    Cytogenetic analysis of three species of Pseudacteon (Diptera, Phoridae) parasitoids of the fire ants using standard and molecular techniques

    Get PDF
    Pseudacteon flies, parasitoids of worker ants, are being intensively studied as potentially effective agents in the biological control of the invasive pest fire ant genus Solenopsis (Hymenoptera: Formicidae). This is the first attempt to describe the karyotype of P. curvatus Borgmeier, P. nocens Borgmeier and P. tricuspis Borgmeier. The three species possess 2n = 6; chromosomes I and II were metacentric in the three species, but chromosome pair III was subtelocentric in P. curvatus and P. tricuspis, and telocentric in P. nocens. All three species possess a C positive band in chromosome II, lack C positive heterochromatin on chromosome I, and are mostly differentiated with respect to chromosome III. P. curvatus and P. tricuspis possess a C positive band, but at different locations, whereas this band is absent in P. nocens. Heterochromatic bands are neither AT nor GC rich as revealed by fluorescent banding. In situ hybridization with an 18S rDNA probe revealed a signal on chromosome II in a similar location to the C positive band in the three species. The apparent lack of morphologically distinct sex chromosomes is consistent with proposals of environmental sex determination in the genus. Small differences detected in chromosome length and morphology suggests that chromosomes have been highly conserved during the evolutionary radiation of Pseudacteon. Possible mechanisms of karyotype evolution in the three species are suggested

    Sex chromosome evolution in cotton stainers of the genus dysdercus (Heteroptera: Pyrrhocoridae)

    No full text
    The neo-X and neo-Y sex chromosomes of Dysdercus albofasciatus represent a unique model for the study of early stages of sex chromosome evolution since they retained the ability to pair and recombine, in contrast to sex chromosomes in most Heteroptera. Here we examined structure, molecular differentiation, and meiotic behaviour of the D. albofasciatus neo-sex chromosomes. Two related species with the ancestral X0 system, D. chaquensis and D. ruficollis, were used for a comparison. In D. albofasciatus, 2 nucleolar organizer regions (NORs) were identified on the neo-X chromosome using fluorescence in situ hybridization (FISH) with an rDNA probe, whereas a single NOR was found on an autosomal pair in the other 2 species. Genomic in situ hybridization (GISH) differentiated a part of the original X in the neo-X chromosome but not the neo-Y chromosome. The same segment of the neo-X chromosome was identified by Zoo-FISH with a chromosome painting probe derived from the X chromosome of D. ruficollis, indicating that this part is conserved between the species. Immunostaining against the cohesin subunit SMC3 revealed that only terminal regions of the D. albofasciatus neo-Xneo-Y bivalent pair and form a synaptonemal complex, which is in keeping with the occurrence of terminal chiasmata, whereas the interstitial region forms a large loop indicating the absence of homology. These results support the hypothesis that the neo-X chromosome evolved by insertion of the original X chromosome into 1 NOR-bearing autosome in an ancestor carrying the X0 system. As a consequence, the homologue of this NOR-autosome became the neo-Y chromosome. A subsequent inversion followed by transposition of the NOR located on the neo-Y onto the neo-X chromosome resulted in the present neo-sex chromosome system in D. albofasciatus.Fil: Bressa, Maria Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Papeschi, Alba Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Vítková, M.. Institute Of Entomology. Department Of Genetics; Republica ChecaFil: Kubícková, S.. Veterinary Research Institute; República ChecaFil: Fuková, I.. Institute Of Entomology. Department Of Genetics; Republica ChecaFil: Pigozzi, Maria Ines. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marec, F.. Institute Of Entomology. Department Of Genetics; Republica Chec

    Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала

    Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera)

    Get PDF
    We examined chromosomal distribution of major ribosomal DNAs (rDNAs), clustered in the nucleolar organizer regions (NORs), in 18 species of moths and butterflies using fluorescence in situ hybridization (FISH) with a codling moth (Cydia pomonella) 18S rDNA probe. Most species showed one or two rDNA clusters in their haploid karyotype but exceptions with four to eleven clusters also occurred. Our results in a compilation with previous data revealed dynamic evolution of rDNA distribution in Lepidoptera except Noctuoidea, which showed a highly uniform rDNA pattern. In karyotypes with one NOR, interstitial location of rDNA prevailed, whereas two-NOR karyotypes showed mostly terminally located rDNA clusters. A possible origin of the single interstitial NOR by fusion between two NOR-chromosomes with terminal rDNA clusters lacks support in available data. In some species, spreading of rDNA to new, mostly terminal chromosome regions was found. The multiplication of rDNA clusters without alteration of chromosome numbers rules out chromosome fissions as a major mechanism of rDNA expansion. Based on rDNA dynamics in Lepidoptera and considering the role of ordered nuclear architecture in karyotype evolution, we propose ectopic recombination, i.e. homologous recombination between repetitive sequences of non-homologous chromosomes, as a primary motive force in rDNA repatterning
    corecore