418 research outputs found

    Dilute Multi Alpha Cluster States in Nuclei

    Full text link
    Dilute multi α\alpha cluster condensed states with spherical and axially deformed shapes are studied with the Gross-Pitaevskii equation and Hill-Wheeler equation, where the α\alpha cluster is treated as a structureless boson. Applications to self-conjugate 4N4N nuclei show that the dilute NαN\alpha states of 12^{12}C to 40^{40}Ca with Jπ=0+J^\pi=0^+ appear in the energy region from threshold up to about 20 MeV, and the critical number of α\alpha bosons that the dilute NαN\alpha system can sustain as a self-bound nucleus is estimated roughly to be Ncr∌10N_{cr}\sim10. We discuss the characteristics of the dilute NαN\alpha states with emphasis on the NN dependence of their energies and rms radii.Comment: 44 pages, 8 figure

    Measurement of forward neutral pion transverse momentum spectra for s\sqrt{s} = 7TeV proton-proton collisions at LHC

    Full text link
    The inclusive production rate of neutral pions in the rapidity range greater than y=8.9y=8.9 has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC s=7\sqrt{s}=7\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.Comment: 18 Pages, 10 figures, submitted to Phys. Rev.

    A Multicenter Observer Performance Study of 3D JPEG2000 Compression of Thin-Slice CT

    Get PDF
    The goal of this study was to determine the compression level at which 3D JPEG2000 compression of thin-slice CTs of the chest and abdomen–pelvis becomes visually perceptible. A secondary goal was to determine if residents in training and non-physicians are substantially different from experienced radiologists in their perception of compression-related changes. This study used multidetector computed tomography 3D datasets with 0.625–1-mm thickness slices of standard chest, abdomen, or pelvis, clipped to 12 bits. The Kakadu v5.2 JPEG2000 compression algorithm was used to compress and decompress the 80 examinations creating four sets of images: lossless, 1.5 bpp (8:1), 1 bpp (12:1), and 0.75 bpp (16:1). Two randomly selected slices from each examination were shown to observers using a flicker mode paradigm in which observers rapidly toggled between two images, the original and a compressed version, with the task of deciding whether differences between them could be detected. Six staff radiologists, four residents, and six PhDs experienced in medical imaging (from three institutions) served as observers. Overall, 77.46% of observers detected differences at 8:1, 94.75% at 12:1, and 98.59% at 16:1 compression levels. Across all compression levels, the staff radiologists noted differences 64.70% of the time, the resident’s detected differences 71.91% of the time, and the PhDs detected differences 69.95% of the time. Even mild compression is perceptible with current technology. The ability to detect differences does not equate to diagnostic differences, although perception of compression artifacts could affect diagnostic decision making and diagnostic workflow

    A PET Study of Memory for Future Plan

    Get PDF
    é–‹ć§‹ăƒšăƒŒă‚žă€ç”‚äș†ăƒšăƒŒă‚ž: ć†Šć­äœ“ăźăƒšăƒŒă‚žä»˜

    Measurement of zero degree single photon energy spectra for sqrt(s) = 7TeV proton-proton collisions at LHC

    Get PDF
    In early 2010, the Large Hadron Collider forward (LHCf) experiment measured very forward neutral particle spectra in LHC proton-proton collisions. From a limited data set taken under the best beam conditions (low beam-gas background and low occurance of pile-up events), the single photon spectra at sqrt(s)=7TeV and pseudo-rapidity (eta) ranges from 8.81 to 8.99 and from 10.94 to infinity were obtained for the first time and are reported in this paper. The spectra from two independent LHCf detectors are consistent with one another and serve as a cross check of the data. The photon spectra are also compared with the predictions of several hadron interaction models that are used extensively for modeling ultra high energy cosmic ray showers. Despite conservative estimates for the systematic errors, none of the models agree perfectly with the measurements. A notable difference is found between the data and the DPMJET 3.04 and PYTHIA 8.145 hadron interaction models above 2TeV where the models predict higher photon yield than the data. The QGSJET II-03 model predicts overall lower photon yield than the data, especially above 2TeV in the rapidity range 8.81<eta<8.99

    First results from LHCf for forward physics in √s = 7TeV proton-proton interactions

    Get PDF
    The LHCf Collaboration has completed the first step of its scheduled physics program for the study of emission of neutral particles in the forward region of proton-proton (pp) interactions at LHC. Between 2009 and 2010 the LHCf experiment has successfully taken data at 900 GeV and 7TeV total energy in the center-of-mass frame of reference (CM). After a short presentation of the experimental apparatus, the results for the γ-ray spectrum at √s = 7TeV are presented in this paper

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies
    • 

    corecore