9,377 research outputs found

    Historical contingency in species interactions: towards niche-based predictions.

    Get PDF
    The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar-inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted

    Improved Crystalline Quality of Si\u3csub\u3e1-x\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3e Formed by Low-temperature Germanium Ion Implantation

    Get PDF
    Improvement of crystalline quality in Si1-xGex formed by germanium ion implantation has been found. End‐of‐range defects were drastically reduced in number by lowering the substrate temperature during implantation with doses on the order of 1016 cm−2. This improvement was confirmed by electrical characterization of p‐n junctions formed in the SiGe layer as well as by transmission electron microscopy

    Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress

    Get PDF
    The temporal evolution of the magnetization vector of a single-domain magnetostrictive nanomagnet, subjected to in-plane stress, is studied by solving the Landau-Lifshitz-Gilbert equation. The stress is ramped up linearly in time and the switching delay, which is the time it takes for the magnetization to flip, is computed as a function of the ramp rate. For high levels of stress, the delay exhibits a non-monotonic dependence on the ramp rate, indicating that there is an {\it optimum} ramp rate to achieve the shortest delay. For constant ramp rate, the delay initially decreases with increasing stress but then saturates showing that the trade-off between the delay and the stress (or the energy dissipated in switching) becomes less and less favorable with increasing stress. All of these features are due to a complex interplay between the in-plane and out-of-plane dynamics of the magnetization vector induced by stress

    Spatiotemporal Mapping of Photocurrent in a Monolayer Semiconductor Using a Diamond Quantum Sensor

    Full text link
    The detection of photocurrents is central to understanding and harnessing the interaction of light with matter. Although widely used, transport-based detection averages over spatial distributions and can suffer from low photocarrier collection efficiency. Here, we introduce a contact-free method to spatially resolve local photocurrent densities using a proximal quantum magnetometer. We interface monolayer MoS2 with a near-surface ensemble of nitrogen-vacancy centers in diamond and map the generated photothermal current distribution through its magnetic field profile. By synchronizing the photoexcitation with dynamical decoupling of the sensor spin, we extend the sensor's quantum coherence and achieve sensitivities to alternating current densities as small as 20 nA per micron. Our spatiotemporal measurements reveal that the photocurrent circulates as vortices, manifesting the Nernst effect, and rises with a timescale indicative of the system's thermal properties. Our method establishes an unprecedented probe for optoelectronic phenomena, ideally suited to the emerging class of two-dimensional materials, and stimulates applications towards large-area photodetectors and stick-on sources of magnetic fields for quantum control.Comment: 19 pages, 4 figure

    Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Get PDF
    Composite film of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS) bipolar plates of the proton exchange membrane fuel cell (PEMFC) as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA) of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion

    Investigation on The Monitoring of Brick Structure in Yokosuka City

    Get PDF
    Art and Design Research for the Future: Innovation and Art & Design ; September 26, 2017Conference: Tsukuba Global Science Week 2017Date: September 25-27, 2017Venue: Tsukuba International Congress CenterSponsored: University of Tsukub
    corecore