113 research outputs found

    Large Population of ALMA Galaxies at z>6 with Very High [OIII]88um to [CII]158um Flux Ratios: Evidence of Extremely High Ionization Parameter or PDR Deficit?

    Full text link
    We present our new ALMA observations targeting [OIII]88um, [CII]158um, [NII]122um, and dust continuum emission for three Lyman break galaxies at z=6.0293-6.2037 identified in the Subaru/Hyper Suprime-Cam survey. We clearly detect [OIII] and [CII] lines from all of the galaxies at 4.3-11.8sigma levels, and identify multi-band dust continuum emission in two of the three galaxies, allowing us to estimate infrared luminosities and dust temperatures simultaneously. In conjunction with previous ALMA observations for six galaxies at z>6, we confirm that all the nine z=6-9 galaxies have high [OIII]/[CII] ratios of L[OIII]/L[CII]~3-20, ~10 times higher than z~0 galaxies. We also find a positive correlation between the [OIII]/[CII] ratio and the Lya equivalent width (EW) at the ~90% confidence level. We carefully investigate physical origins of the high [OIII]/[CII] ratios at z=6-9 using Cloudy, and find that high density of the interstellar medium, low C/O abundance ratio, and the cosmic microwave background attenuation are responsible to only a part of the z=6-9 galaxies. Instead, the observed high [OIII]/[CII] ratios are explained by 10-100 times higher ionization parameters or low photodissociation region (PDR) covering fractions of 0-10%, both of which are consistent with our [NII] observations. The latter scenario can be reproduced with a density bounded nebula with PDR deficit, which would enhance the Lya, Lyman continuum, and C+ ionizing photons escape from galaxies, consistent with the [OIII]/[CII]-Lya EW correlation we find.Comment: 20 pages, 18 figures, Accepted for publication in Ap

    Tumour inoculation site-dependent induction of cachexia in mice bearing colon 26 carcinoma

    Get PDF
    Murine colon 26 carcinoma growing at either subcutaneous (s.c.) or intramuscular (i.m.) inoculation sites causes cachexia in mice. Such animals show extensive loss of body weight, wasting of the muscle and adipose tissues, hypoglycaemia, and hypercalcaemia, even when the tumour weight comprises only about 1.9% of carcass weight. In contrast, the same tumour when inoculated into the liver does not cause any sign of tumour-related cachexia even when the tumour becomes much larger (6.6% of carcass weight). Interleukin 6 (IL-6), a mediator associated with cachexia in this tumour model, is detected at high levels both in the tumour tissues and in the circulating blood of mice bearing colon 26 tumour at the s.c. inoculation site. In contrast, only minute levels of IL-6 are detected in the tumour grown in the liver. The colon 26 tumour grown in the liver does not lose its ability to cause cachexia, because the tumour when re-inoculated s.c. is able to cause extensive weight loss and produce IL-6 as did the original colon 26 cell line. Histological studies revealed differences in the composition of tumour tissues: the tumours grown in the subcutis consist of many polygonal tumour cells, extended-intercellular space, and high vascular density, whereas those grown in the liver consist of spindle-shaped tumour cells. Thus, the environment where tumour cells grow would be a critical factor in determining the cachectic phenotype of cancer cells, including their ability to produce IL-6. 1999 Cancer Research Campaig

    ALMA Observations for CO Emission from Luminous Lyman-break Galaxies at z=6.0293z=6.0293-6.20376.2037

    Get PDF
    We present our new Atacama Large Millimeter/submillimeter Array (ALMA) observations targeting CO(6-5) emission from three luminous Lyman break galaxies (LBGs) at zspec=6.0293z_{\rm spec} = 6.0293-6.20376.2037 found in the Subaru/Hyper Suprime-Cam survey, whose [OIII]88μ88\mum and [CII]158μ158\mum emission have been detected with ALMA. We find a marginal detection of the CO(6-5) line from one of our LBGs, J0235-0532, at the ≃4σ\simeq 4 \sigma significance level and obtain upper limits for the other two LBGs, J1211-0118 and J0217-0208. Our z=6z=6 luminous LBGs are consistent with the previously found correlation between the CO luminosity and the infrared luminosity. The unique ensemble of the multiple far-infrared emission lines and underlying continuum fed to a photodissociation region model reveal that J0235-0532 has a relatively high hydrogen nucleus density that is comparable to those of low-zz (U)LIRGs, quasars, and Galactic star-forming regions with high nHn_{\rm H} values, while the other two LBGs have lower nHn_{\rm H} consistent with local star-forming galaxies. By carefully taking account of various uncertainties, we obtain total gas mass and gas surface density constraints from their CO luminosity measurements. We find that J0235-0532 locates below the Kennicutt-Schmidt (KS) relation, comparable to the previously CO(2-1) detected z=5.7z=5.7 LBG, HZ10. Combined with previous results for dusty starbursts at similar redshifts, the KS relation at z=5z=5-66 is on average consistent with the local one.Comment: 33 pages, 12 figures, accepted for publication in Ap

    ALMA twenty-six arcmin2 survey of GOODS-S at one millimeter (ASAGAO): Millimeter properties of stellar mass selected galaxies

    Get PDF
    We make use of the ASAGAO, deep 1.2 mm continuum observations of a 26 arcmin2^2 region in the GOODS-South field obtained with ALMA, to probe dust-enshrouded star formation in KK-band selected (i.e., stellar mass selected) galaxies, which are drawn from the ZFOURGE catalog. Based on the ASAGAO combined map, which was created by combining ASAGAO and ALMA archival data in the GOODS-South field, we find that 24 ZFOURGE sources have 1.2 mm counterparts with a signal-to-noise ratio >> 4.5 (1σ≃\sigma\simeq 30 - 70 μ\muJy beam−1^{-1} at 1.2 mm). Their median redshift is estimated to be zmedian=z_\mathrm{median}= 2.38 ±\pm 0.14. They generally follow the tight relationship of the stellar mass versus star formation rate (i.e., the main sequence of star-forming galaxies). ALMA-detected ZFOURGE sources exhibit systematically larger infrared (IR) excess (IRX ≡LIR/LUV\equiv L_\mathrm{IR}/L_\mathrm{UV}) compared to ZFOURGE galaxies without ALMA detections even though they have similar redshifts, stellar masses, and star formation rates. This implies the consensus stellar-mass versus IRX relation, which is known to be tight among rest-frame-UV-selected galaxies, can not fully predict the ALMA detectability of stellar-mass-selected galaxies. We find that ALMA-detected ZFOURGE sources are the main contributors to the cosmic IR star formation rate density at zz = 2 - 3.Comment: Accepted for publication in PASJ. A version with a high resolution figure and ALMA fits files are available from https://sites.google.com/view/asagao26

    SILVERRUSH. VII. Subaru/HSC Identifications of 42 Protocluster Candidates at z~6-7 with the Spectroscopic Redshifts up to z=6.574: Implications for Cosmic Reionization

    Get PDF
    We report fourteen and twenty-eight protocluster candidates at z=5.7 and 6.6 over 14 and 19 deg^2 areas, respectively, selected from 2,230 (259) Lya emitters (LAEs) photometrically (spectroscopically) identified with Subaru/Hyper Suprime-Cam (HSC) deep images (Keck, Subaru, and Magellan spectra and the literature data). Six out of the 42 protocluster candidates include 1-12 spectroscopically confirmed LAEs at redshifts up to z=6.574. By the comparisons with the cosmological Lya radiative transfer (RT) model reproducing LAEs with the reionization effects, we find that more than a half of these protocluster candidates are progenitors of the present-day clusters with a mass of > 10^14 M_sun. We then investigate the correlation between LAE overdensity delta and Lya rest-frame equivalent width EW_Lya^rest, because the cosmological Lya RT model suggests that a slope of EW_Lya^rest-delta relation is steepened towards the epoch of cosmic reionization (EoR), due to the existence of the ionized bubbles around galaxy overdensities easing the escape of Lya emission from the partly neutral intergalactic medium (IGM). The available HSC data suggest that the slope of the EW_Lya^rest-delta correlation does not evolve from the post-reionization epoch z=5.7 to the EoR z=6.6 beyond the moderately large statistical errors. There is a possibility that we would detect the evolution of the EW_Lya^rest - delta relation from z=5.7 to 7.3 by the upcoming HSC observations providing large samples of LAEs at z=6.6-7.3

    ALMA Lensing Cluster Survey: an ALMA galaxy signposting a MUSE galaxy group at z=4.3 behind 'El Gordo'

    Get PDF
    We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z=4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z=0.87, associated with a 1.2 mm source which is at a 2.07+/-0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 microns, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z=4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (~ 10^7-10^{10} Msun) and star formation rates (SFRs) of 0.4-24 Msun/yr, resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar-mass doubling times of only ~ 2x10^7 years). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimetre continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR~200-300 Msun/yr) and lies on the star-formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.Comment: 13 pages including 7 figures and 1 table. Accepted for publication at the ApJ. Minor changes with respect to version 1. Figure 6 has been expanded to broaden comparison with the literatur

    ALMA Lensing Cluster Survey: HSTHST and SpitzerSpitzer Photometry of 33 Lensed Fields Built with CHArGE

    Get PDF
    We present a set of multi-wavelength mosaics and photometric catalogs in the ALMA lensing cluster survey (ALCS) fields. The catalogs were built by reprocessing of archival data from the CHArGE compilation, taken by the Hubble Space Telescope\textit{Hubble Space Telescope} (HST\textit{HST}) in the RELICS, CLASH and Hubble Frontier Fields. Additionally we have reconstructed the Spitzer\textit{Spitzer} IRAC 3.6 and 4.5 μ\mum mosaics, by utilising all the available archival IRSA/SHA exposures. To alleviate the effect of blending in such a crowded region, we have modelled the Spitzer\textit{Spitzer} photometry by convolving the HST\textit{HST} detection image with the Spitzer\textit{Spitzer} PSF using the novel golfir\texttt{golfir} software. The final catalogs contain 218,000 sources, covering a combined area of 690 arcmin2^2. These catalogs will serve as an important tool in aiding the search of the sub-mm galaxies in future ALMA surveys, as well as follow ups of the HST\textit{HST} dark - IRAC sources. Coupled with the available HST\textit{HST} photometry the addition of the 3.6 and 4.5 μ\mum bands will allow us to place a better constraint on photometric redshifts and stellar masses of these objects, thus giving us an opportunity to identify high-redshift candidates for spectroscopic follow ups and answer the important questions regarding the epoch of reionization and formation of first galaxies.Comment: 35 pages, 19 figures, 4 tables. Submitted to ApJS. Mosaics and photometric catalogs can be accessed online https://github.com/dawn-cph/alcs-cluster

    ALMA Lensing Cluster Survey: A strongly lensed multiply imaged dusty system at z ≥ 6

    Get PDF
    We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift z = 6.07 viewed through the cluster MACSJ0600.1–2008 (z = 0.46). A ≃ 4σ dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large programme, and the redshift is secured via [C II] 158 μm emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxy’s spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification μ ≳ 30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionization. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of 2.9-2.3+115 7 109 and 4.8-3.4+45 7 106 M☉, respectively, a star formation rate of 9.7-6.6+220 M☉ yr−1, an intrinsic size of 0.54-0.14+026 kpc, and a luminosity-weighted age of 200 \ub1 100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation
    • …
    corecore