29 research outputs found

    Excretion and Perception of a Characteristic Odor in Urine after Asparagus Ingestion: a Psychophysical and Genetic Study

    Get PDF
    The urine of people who have recently eaten asparagus has a sulfurous odor, which is distinct and similar to cooked cabbage. Using a 2-alternative forced-choice procedure, we examined individual differences in both the production of the odorants and the perception of this asparagus odor in urine. We conclude that individual differences exist in both odorant production and odor perception. The biological basis for the inability to produce the metabolite in detectable quantities is unknown, but the inability to smell the odor is associated with a single nucleotide polymorphism (rs4481887) within a 50-gene cluster of olfactory receptors

    The perception of quinine taste intensity is associated with common genetic variants in a bitter receptor cluster on chromosome 12

    Get PDF
    The perceived taste intensities of quinine HCl, caffeine, sucrose octaacetate (SOA) and propylthiouracil (PROP) solutions were examined in 1457 twins and their siblings. Previous heritability modeling of these bitter stimuli indicated a common genetic factor for quinine, caffeine and SOA (22ā€“28%), as well as separate specific genetic factors for PROP (72%) and quinine (15%). To identify the genes involved, we performed a genome-wide association study with the same sample as the modeling analysis, genotyped for approximately 610 000 single-nucleotide polymorphisms (SNPs). For caffeine and SOA, no SNP association reached a genome-wide statistical criterion. For PROP, the peak association was within TAS2R38 (rs713598, A49P, P = 1.6 Ɨ 10āˆ’104), which accounted for 45.9% of the trait variance. For quinine, the peak association was centered in a region that contains bitter receptor as well as salivary protein genes and explained 5.8% of the trait variance (TAS2R19, rs10772420, R299C, P = 1.8 Ɨ 10āˆ’15). We confirmed this association in a replication sample of twins of similar ancestry (P = 0.00001). The specific genetic factor for the perceived intensity of PROP was identified as the gene previously implicated in this trait (TAS2R38). For quinine, one or more bitter receptor or salivary proline-rich protein genes on chromosome 12 have alleles which affect its perception but tight linkage among very similar genes precludes the identification of a single causal genetic variant

    Age modifies the genotype-phenotype relationship for the bitter receptor <it>TAS2R38</it>

    No full text
    Abstract Background The purpose of this study was to investigate the effect of TAS2R38 haplotypes and age on human bitter taste perception. Results Children (3 to 10 yrs), adolescents (11 to 19 yrs) and adults (mostly mothers, 20 to 55 yrs (N = 980) were measured for bitter taste thresholds for 6-n-propylthiouracil (PROP) and genotyped for three polymorphisms of the AS2R38 gene (A49P, V262A, I296V). Subjects were grouped by haplotype and age, as well as sex and race/ethnicity, and compared for PROP thresholds. Subjects with the same haplotype were similar in bitter threshold regardless of race/ethnicity (all ages) or sex (children and adolescents; all p-values > 0.05) but age was a modifier of the genotype-phenotype relationship. Specifically, AVI/PAV heterozygous children could perceive a bitter taste at lower PROP concentrations than could heterozygous adults, with the thresholds of heterozygous adolescents being intermediate (p 0.05) perhaps because there is less variation in taste perception among these homozygotes. Conclusions These data imply that the change in PROP bitter sensitivity which occurs over the lifespan (from bitter sensitive to less so) is more common in people with a particular haplotype combination, i.e., AVI/PAV heterozygotes.</p

    Genetic analysis of chemosensory traits in human twins

    No full text
    We explored genetic influences on the perception of taste and smell stimuli. Adult twins rated the chemosensory aspects of water, sucrose, sodium chloride, citric acid, ethanol, quinine hydrochloride, phenylthiocarbamide (PTC), potassium chloride, calcium chloride, cinnamon, androstenone, Galaxolideā„¢, cilantro, and basil. For most traits, individual differences were stable over time and some traits were heritable (h2 from 0.41 to 0.71). Subjects were genotyped for 44 single nucleotide polymorphisms within and near genes related to taste and smell. The results of these association analyses confirmed previous genotypeā€“phenotype results for PTC, quinine, and androstenone. New associations were detected for ratings of basil and a bitter taste receptor gene, TAS2R60, and between cilantro and variants in three genes (TRPA1, GNAT3, and TAS2R50). The flavor of ethanol was related to variation within an olfactory receptor gene (OR7D4) and a gene encoding a subunit of the epithelial sodium channel (SCNN1D). Our study demonstrates that person-to-person differences in the taste and smell perception of simple foods and drinks are partially accounted for by genetic variation within chemosensory pathways

    Data from: Body composition QTLs identified in intercross populations are reproducible in consomic mouse strains

    No full text
    Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL

    Body Composition QTLs Identified in Intercross Populations Are Reproducible in Consomic Mouse Strains.

    No full text
    Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL
    corecore