31 research outputs found

    A tribute to George Plafker

    Get PDF
    In a long and distinguished career, George Plafker has made fundamental advances in understanding of megathrust tectonics, tsunami generation, paleoseismology, crustal neotectonics, and Alaskan geology, all by means of geological field observations. George discovered that giant earthquakes result from tens of meters of seismic slip on subduction thrusts, and he did this before the theory of plate tectonics had become a paradigm. The discovery was founded on George's comprehensive mapping of land-level changes in the aftermath of the 1964 earthquake in Alaska, and on his similar mapping in the region of the 1960 earthquakes in Chile. The mapping showed paired, parallel belts of coseismic uplift largely offshore and coseismic subsidence mostly onshore -- a pattern now familiar as the initial condition assumed in computer simulations of subduction-zone tsunamis. George recognized, moreover, that splay faulting can play a major role in tsunami generation, and he also distinguished carefully between tectonic and landslide sources for the multiple tsunamis that accounted for nearly all the fatalities associated with the 1964 Alaska earthquake. George's classic monographs on the 1964 earthquake include findings about subduction-zone paleoseismology that he soon extended to include stratigraphic evidence for cyclic vertical deformation at the Copper River delta, as well as recurrent uplift evidenced by flights of marine terraces at Middleton Island. As a geologist of earthquakes, George also clarified the tectonics and hazards of crustal faulting in Alaska, California, and overseas. All the while, George was mapping bedrock geology in Alaska, where he contributed importantly to today's understanding of of how terranes were accreted and modified

    Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex

    Get PDF
    Author Posting. © American Geophysical Union, 2000. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 105 (2000): 5835-5857, doi:10.1029/1999JB900318.We use new seismic and gravity data collected during the 1994 Los Angeles Region Seismic Experiment (LARSE) to discuss the origin of the California Inner Continental Borderland (ICB) as an extended terrain possibly in a metamorphic core complex mode. The data provide detailed crustal structure of the Borderland and its transition to mainland southern California. Using tomographic inversion as well as traditional forward ray tracing to model the wide-angle seismic data, we find little or no sediments, low (#6.6 km/s) P wave velocity extending down to the crust-mantle boundary, and a thin crust (19 to 23 km thick). Coincident multichannel seismic reflection data show a reflective lower crust under Catalina Ridge. Contrary to other parts of coastal California, we do not find evidence for an underplated fossil oceanic layer at the base of the crust. Coincident gravity data suggest an abrupt increase in crustal thickness under the shelf edge, which represents the transition to the western Transverse Ranges. On the shelf the Palos Verdes Fault merges downward into a landward dipping surface which separates “basement” from low-velocity sediments, but interpretation of this surface as a detachment fault is inconclusive. The seismic velocity structure is interpreted to represent Catalina Schist rocks extending from top to bottom of the crust. This interpretation is compatible with a model for the origin of the ICB as an autochthonous formerly hot highly extended region that was filled with the exhumed metamorphic rocks. The basin and ridge topography and the protracted volcanism probably represent continued extension as a wide rift until ;13 m.y. ago. Subduction of the young and hot Monterey and Arguello microplates under the Continental Borderland, followed by rotation and translation of the western Transverse Ranges, may have provided the necessary thermomechanical conditions for this extension and crustal inflow.The LARSE experiment was funded by NSF EAR-9416774, the U.S. Geological Survey’s Earthquake Hazards and Coastal and Marine Programs, and by the Southern California Earthquake Center (SCEC)

    A New Perspective on the Geometry of the San Andreas Fault in Southern California and Its Relationship to Lithospheric Structure

    Get PDF
    The widely held perception that the San Andreas fault (SAF) is vertical or steeply dipping in most places in southern California may not be correct. From studies of potential-field data, active-source imaging, and seismicity, the dip of the SAF is significantly nonvertical in many locations. The direction of dip appears to change in a systematic way through the Transverse Ranges: moderately southwest (55°–75°) in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep in the Mojave Desert; and moderately northeast (37°–65°) in a region extending from San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Transverse Ranges. The shape of the modeled SAF is crudely that of a propeller. If confirmed by further studies, the geometry of the modeled SAF would have important implications for tectonics and strong ground motions from SAF earthquakes. The SAF can be traced or projected through the crust to the north side of a well documented high-velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The north side of this HVB may be an extension of the plate boundary into the mantle, and the HVB would appear to be part of the Pacific plate

    Three-Dimensional Basin and Fault Structure From a Detailed Seismic Velocity Model of Coachella Valley, Southern California

    Get PDF
    The Coachella Valley in the northern Salton Trough is known to produce destructive earthquakes, making it a high seismic hazard area. Knowledge of the seismic velocity structure and geometry of the sedimentary basins and fault zones is required to improve earthquake hazard estimates in this region. We simultaneously inverted first P wave travel times from the Southern California Seismic Network (39,998 local earthquakes) and explosions (251 land/sea shots) from the 2011 Salton Seismic Imaging Project to obtain a 3‐D seismic velocity model. Earthquakes with focal depths ≤10 km were selected to focus on the upper crustal structure. Strong lateral velocity contrasts in the top ~3 km correlate well with the surface geology, including the low‐velocity (<5 km/s) sedimentary basin and the high‐velocity crystalline basement rocks outside the valley. Sediment thickness is ~4 km in the southeastern valley near the Salton Sea and decreases to <2 km at the northwestern end of the valley. Eastward thickening of sediments toward the San Andreas fault within the valley defines Coachella Valley basin asymmetry. In the Peninsular Ranges, zones of relatively high seismic velocities (~6.4 km/s) between 2‐ and 4‐km depth may be related to Late Cretaceous mylonite rocks or older inherited basement structures. Other high‐velocity domains exist in the model down to 9‐km depth and help define crustal heterogeneity. We identify a potential fault zone in Lost Horse Valley unassociated with mapped faults in Southern California from the combined interpretation of surface geology, seismicity, and lateral velocity changes in the model

    A comparison between the transpressional plate boundaries of South Island, New Zealand, and Southern California, USA: the Alpine and San Andreas fault systems

    Get PDF
    There are clear similarities in structure and tectonics between the Alpine Fault system (AF) of New Zealand’s South Island and the San Andreas Fault system (SAF) of southern California, USA. Both systems are transpressional, with similar right slip and convergence rates, similar onset ages (for the current traces), and similar total offsets. There are also notable differences, including the dips of the faults and their plate-tectonic histories. The crustal structure surrounding the AF and SAF was investigated with active and passive seismic sources along transects known as South Island Geophysical Transect (SIGHT) and Los Angeles Region Seismic Experiment (LARSE), respectively. Along the SIGHT transects, the AF appears to dip moderately southeastward (~50 deg.), toward the Pacific plate (PAC), but along the LARSE transects, the SAF dips vertically to steeply northeastward toward the North American plate (NAM). Away from the LARSE transects, the dip of the SAF changes significantly. In both locations, a midcrustal decollement is observed that connects the plate-boundary fault to thrust faults farther south in the PAC. This decollement allows upper crust to escape collision laterally and vertically, but forces the lower crust to form crustal roots, reaching maximum depths of 44 km (South Island) and 36 km (southern California). In both locations, upper-mantle bodies of high P velocity are observed extending from near the Moho to more than 200-km depth. These bodies appear to be confined to the PAC and to represent oblique downwelling of PAC mantle lithosphere along the plate boundaries

    Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    Get PDF
    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust

    Data Report for the 1993 Los Angeles Region Seismic Experiment (LARSE93), Southern California: A Passive Study From Seal Beach Northeastward through the Mojave Desert

    Get PDF
    This report contains a description of the first part of the Los Angeles Region Seismic Experiment (LARSE). To date, LARSE has consisted of two experiments: passive, which took place in fall, 1993 (LARSE93), and active, which took place in fall, 1994 (LARSE94). The goal of the 1993 experiment was to collect waveform data from local and distant earthquakes to obtain three-dimensional images of lower crust and upper mantle structure in Southern California, particularly under the San Gabriel Mountains and across the San Andreas fault. During LARSE93, approximately 88 stations were deployed in a 175-km-long, linear array across the Los Angeles basin, San Gabriel Mountains, and Mojave Desert northeast of Los Angeles by scientists from the U.S. Geological Survey, University of California at Los Angeles, California Institute of Technology, and University of Southern California. Reftek recorders were deployed one km apart through the San Gabriel Mountains, and two km apart in the Mojave Desert. This data set has since been complemented by the results of LARSE94 comprising land refraction and deep-crustal seismic reflection profiles from offshore airgun and onshore explosion sources. These additional data sets will be useful in distinguishing crustal structures from adjacent upper mantle structures. During the four weeks of continuous recording, over 150 teleseismic and over 450 local (ML ≥ 2.0) events were recorded at each site. Both teleseismic and local sources provided a wide range of raypath azimuths. The teleseismic events include a number of earthquakes with epicenters in the Aleutian Island, Kamchatka, Kuril Island, mid-Atlantic Ridge, Solomon Island, Japan, Fiji Island, Peru, and Chile regions. The local events include aftershocks of recent Southern California earthquakes. The final products of data processing are 1) half-hour files containing the continuous wavefonn data recorded at each station for each day of the experiment, 2) 150-second time-windowed waveform segments containing local, regional, and teleseismic event arrivals, and 3) one-hour time-windowed waveform segments containing regional and teleseismic event arrivals. Array instrumentation, recorded events, and data processing will be described in this report

    A comparison between the transpressional plate boundaries of the South Island, New Zealand, and southern California, USA: the Alpine and San Andreas Fault systems

    Get PDF
    There are clear similarities in structure and tectonics between the Alpine Fault system (AF) of New Zealand’s South Island and the San Andreas Fault system (SAF) of southern California, USA. Both systems are transpressional, with similar right slip and convergence rates, similar onset ages (for the current traces), and similar total offsets. There are also notable differences, including the dips of the faults and their plate-tectonic histories. The crustal structure surrounding the AF and SAF was investigated with active and passive seismic sources along transects known as South Island Geophysical Transect (SIGHT) and Los Angeles Region Seismic Experiment (LARSE), respectively. Along the SIGHT transects, the AF appears to dip moderately southeastward (~50 deg.), toward the Pacific plate (PAC), but along the LARSE transects, the SAF dips vertically to steeply northeastward toward the North American plate (NAM). Away from the LARSE transects, the dip of the SAF changes significantly. In both locations, a midcrustal decollement is observed that connects the plate-boundary fault to thrust faults farther south in the PAC. This decollement allows upper crust to escape collision laterally and vertically, but forces the lower crust to form crustal roots, reaching maximum depths of 44 km (South Island) and 36 km (southern California). In both locations, upper-mantle bodies of high P velocity are observed extending from near the Moho to more than 200-km depth. These bodies appear to be confined to the PAC and to represent oblique downwelling of PAC mantle lithosphere along the plate boundaries

    Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    Get PDF
    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17–18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12–18 km depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism

    Subsurface Geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and Strong Ground Motion Expectations

    Get PDF
    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault
    corecore