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A New Perspective on the Geometry of the San Andreas
Fault in Southern California and Its Relationship

to Lithospheric Structure

by Gary S. Fuis, Daniel S. Scheirer, Victoria E. Langenheim, and Monica D. Kohler’

Abstract The widely held perception that the San Andreas fault (SAF) is vertical or
steeply dipping in most places in southern California may not be correct. From studies
of potential-field data, active-source imaging, and seismicity, the dip of the SAF is
significantly nonvertical in many locations. The direction of dip appears to change
in a systematic way through the Transverse Ranges: moderately southwest (55°-75°)
in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep
in the Mojave Desert; and moderately northeast (37°-65°) in a region extending from
San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Trans-
verse Ranges. The shape of the modeled SAF is crudely that of a propeller. If con-
firmed by further studies, the geometry of the modeled SAF would have important
implications for tectonics and strong ground motions from SAF earthquakes. The
SAF can be traced or projected through the crust to the north side of a well documented
high-velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The
north side of this HVB may be an extension of the plate boundary into the mantle, and
the HVB would appear to be part of the Pacific plate.

Introduction

In the Southern California Earthquake Center Commu-
nity Fault Model (CFM; Plesch et al., 2007), the dip of the
San Andreas fault (SAF) is 90° in all but one location, as there
is little subsurface data to modify this default value. The one
exception is the San Gorgonio Pass SGP area of the eastern
Transverse Ranges (Fig. 1), where surface constraints and
seismicity have been used to justify a nonvertical dip in the
model. In this study, we constrain the dip of the SAF by ana-
lyzing near-surface and subsurface data, including potential
field, seismic-imaging, and seismicity observations, from a
number of locations in southern California. Surprisingly,
the SAF is significantly nonvertical in most places, dipping
away from the bends at either end of its stretch through the
Transverse Ranges, where it is oblique to plate motion. The
overall shape of the SAF is similar to that of a propeller. The
fault appears to extend or project through the crust to join the
north side of the well known upper-mantle high-velocity
body (HVB) beneath the Transverse Ranges that has been
imaged with teleseismic tomography and Rayleigh waves.
These findings, if confirmed in further studies, would have
important implications for understanding the tectonics and
strong- ground-motion potential from SAF earthquakes, such
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as the scenario M 7.8 earthquake of ShakeOut (Perry
et al., 2008).

Tectonic Setting

Through the Transverse Ranges, the SAF strikes obli-
quely to relative plate motion with bends at either end of
the oblique stretch (Fig. 1). The Los Angeles Region Seismic
Experiment (LARSE) transects (Fig. 1, profiles 4 and 5),
which were recorded across this oblique section of the
SAF, reveal interpreted fluid-lubricated midcrustal decolle-
ments originating at the SAF and extending southward into
the Pacific plate. Reverse faults that splay upward from these
decollements have given rise to destructive earthquakes in
the Los Angeles region, including the 1971 M,, 6.7 San
Fernando and 1987 M, 5.9 Whittier Narrows earthquakes
(Fuis et al., 2001, 2003). A crustal root is observed beneath
the Transverse Ranges centered, or nearly centered, on the
SAF (Kohler and Davis, 1997; Fuis et al., 2001; Godfrey
et al., 2002; Fuis et al., 2007). The tectonic interpretation of
this crustal structure is that the upper crust, above the decol-
lements, responds to convergence in this oblique section of
the SAF by vertical and lateral motion, whereas the lower
crust is compressed into the crustal root (Houseman et al.,



The San Andreas Fault in Southern California and Its Relationship to Lithospheric Structure 237

Big Bend

Distance (km)

5

0
Distance (km)

17°w

10 North Palm Springs
10 20
Distance (km)

35N NE
5]
o
34 N
95 100
Distance (km)
NE SW NE SwW NE
57° \5?° 59°
33°N 530 WA SR S
- S g e
13 14 15
B 4 8 0 a 8 0 4 8
o Distance (km)
32 N creeping section
Figure 1.  Fault map of southern California and cross sections showing dipping San Andreas fault (SAF). Black and green lines, profiles

discussed in paper; green dots, additional locations discussed. Profiles and locations are numbered sequentially from northwest to southeast,
1-15. Cross sections along black lines (1, 4, 5, 8, 10, 12, 13, 14, and 15) are shown as satellite diagrams with geographic location labels.
Cross section 10 is reproduced with interpreted SAF (red line) from Jones ez al. (1986; their fig. 3a). Cross sections 13—15 are reproduced with
interpreted SAF (red lines) from Lin et al. (2007; their fig. 14). Green lines 2, 6, and 9 are locations of seismicity cross sections of Figure 9.
Green line 7 is location of seismic-imaging profile through San Bernardino Valley (see text). Green dots 3 and 11 are locations, Three Points
and Desert Hot Springs (see text). Heavy red line, San Andreas fault; reddish brown lines, other active faults (Jennings, 1994). Blue body,
horizontal slice through upper-mantle high-velocity body at 110-km depth (see Kohler et al., 2003, their fig. 7A). Colors in cross sections 1,
8, and 12 are explained in Figure 3. Colors and symbols in cross sections 4 and 5 are explained in Figure 10. Abbreviations: CV, Coachella
Valley; LAB, Los Angeles basin; SGP, San Gorgonio Pass; SS, Salton Sea.

2000; Fuis et al., 2001; Godfrey et al., 2002; Fuis
et al., 2007).

throughout the crust, geophysical observations generally
constrain the SAF geometry in only the upper 5-15 km of
the crust. For simplicity, we assume a constant dip as a
function of depth for the SAF at the location of every

Data Constraining Fault Dip constraint along its trace, except in the San Gorgonio Pass

At a number of locations in southern California, we
estimate the dip of the SAF from analysis of potential field,
seismicity, and seismic-imaging observations (Fig. 1). Where
possible, we assign an uncertainty to the dip values. Except
for the LARSE observations that constrain the geometry

area where shallower indicators suggest a very gentle dip
but deeper indicators suggest a steeper dip. In addition,
we linearly interpolate these dip values along the SAF trace
between the constraint locations (Fig. 2), with interpolation
distances that range from about 15 to 120 km. Because of the
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(a) Plan view of dipping SAF model surface colored by depth; gray colors, unconstrained projections. Mountain ranges within

Transverse Ranges (see Fig. 1): SGM, San Gabriel Mountains; SBM, San Bernardino Mountains; LSBM, Little San Bernardino Mountains;
SAFOD, San Andreas Fault Observatory at Depth. (b) Oblique view of SAF surface from southeast.

heterogeneous nature of our constraining observations and
because of the simplifications and interpolations required
to generate this dipping SAF model, we view the strength
of this model to be simply its depiction of systematic and
significant dip variations along the SAF.

Potential Field

A published model of gravity data across the SAF in the
vicinity of the Big Bend in the western Transverse Ranges
(Griscom and Jachens, 1990) indicates a southwestward dip
as shallow as 55° (Fig. 1, profile 1; Fig. 3a). The SAF is mod-
eled to a depth as great as 5 km. At 120—180 km northwest of
this model location (at Cholame and the San Andreas Fault
Observatory at Depth [SAFOD]); Fig. 2a], a steeper south-
west dip is seen in the upper few kilometers of the crust,
70°-90°from gravity data at Cholame (Griscom and Jachens,
1990) and 83° from drilling observations at SAFOD (Zoback
et al., 2010). About 50 km southeast of the Big Bend cross

section (at Three Points; Fig. 1; Fig. 2a), gravity and
magnetic data also suggest a southwestward dip (30°-75°),
but uncertainty is greater. In the San Gorgonio Pass area,
approximately 250 km southeast of the Big Bend cross sec-
tion, gravity modeling indicates that the Banning strand of
the SAF dips very gently (10°~15°) to the northeast in the
upper few kilometers (Griscom and Jachens, 1990; Langen-
heim et al., 2005) (Fig. 2a). In this study we model two
additional profiles of magnetic data, at San Bernardino
and at Indio (Fig. 1, profiles 8 and 12), that indicate dips
of 37° and 65°, respectively (Fig. 3b,c).

A nearly continuous magnetic anomaly extends along
the SAF from the northwestern San Bernardino Mountains
to Indio, averaging 200—500 nT at a nominal height of 300 m
above terrain (Fig. 4; Griscom and Jachens, 1990). This
magnetic anomaly is predominantly positive and is spatially
associated with outcrop of units labeled as Precambrian
igneous and metamorphic rock complex in the portions of
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Figure 3. Block models for three sites along SAF. (a) Model of gravity data at the Big Bend of SAF (Griscom and Jachens, 1990).
Location is profile 1 on Figure 1. D, density differences (kg/m?) of upper crustal rocks of North American plate (NAM) compared
with Pacific plate (PAC, density 2670 kg/m?®). (See also modeling of combined gravity and aeromagnetic data at Big Bend in
Appendix A.) (b, ¢) Block models of magnetic data at San Bernardino and Indio sites on SAF from this study. Locations are profiles 8
and 12 on Figure 1. S, magnetic susceptibility (1073 cgs units).
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the San Bernardino and Little San Bernardino Mountains
that lie adjacent to the SAF (Rogers, 1965, 1967; Jennings,
1977). Subsequent work in the Little San Bernardino Moun-
tains has shown that these rocks are largely Jurassic and Cre-
taceous foliated igneous rocks (Wooden et al., 1994, 2001).
This magnetic anomaly arises because the magnetic rocks are
truncated on their southwest side by the SAF and juxtaposed
against nonmagnetic rocks.

Modeling of these magnetic data reveals a surprisingly
shallow northeast dip of 37 £ 5° at San Bernardino (Figs. 3b,
5) and a moderate northeast dip of 65 £ 8° (Figs. 3c, 6) at
Indio. The positions and shapes of the magnetic anomaly
along both profiles allow us to constrain the dip of the SAF.
In modeling the magnetic data, we assume a planar contact
between rocks having differing susceptibilities that intersects
the land surface at the Holocene trace of the SAF. Physical-
property measurements of basement rocks in these areas
(Anderson et al., 2004; Langenheim and Powell, 2009) are
used in our analysis.
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The observed magnetic anomaly along the San Bernar-
dino profile consists largely of a single, ~400 nT magnetic
high that lies to the east of the trace of the SAF on the north-
eastern edge of San Bernardino Valley (Fig. 5). If the SAF
were a vertical contact between nonmagnetic rocks of the
San Gabriel Mountains-type basement (which includes the
Pelona Schist) and magnetic rocks of the San Bernardino—
Little San Bernardino Mountains-type basement, the resulting
magnetic anomaly would be more dipolar than observed, with
an anomaly peak about 2 km southwest of the observed
magnetic peak (Fig. 5a). Modeling this contact dipping 37°
to the northeast produces a good match of both the placement
of the magnetic peak and the monopolar shape of the anomaly
(Fig. 5b). We determined the trade-off between the modeled
SAF dip and the fit to the observed magnetic anomaly by
calculating anomalies at a variety of dip values (Fig. 5¢). This
curve shows the best fit at 37° with misfits that are statistically
similar within a few degrees of that optimal dip value.
By about 5° on either side of that minimum, the predicted
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Figure 4. Aeromagnetic map of southern California from San Bernardino to Indio (from Bankey ez al., 2002). Black lines, potential-field
modeling profiles 8 and 12 of Figure 1 (dashed for northeast segment of profile 8§ where data are not modeled; see Fig. 5); green line and green
dot, seismic-imaging profiles 7 and 11 of Figure 1 (Catchings et al., 2008, 2009, respectively); thick magenta line, trace of SAF; and thin red
lines, other Quaternary active faults (from http://earthquake.usgs.gov/hazards/qfaults/). BF, Banning fault; DHS, Desert Hot Springs; I, Indio;
MilICF, Mill Creek fault; MissionCF, Mission Creek fault; PS, Palm Springs; R, Redlands; SB, San Bernardino; SGP, San Gorgonio Pass.
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Figure 5. (a, b) Block models of San Bernardino site with SAF
dips of 90° and 37°. Location is profile 8 on Figure 1. Curves above
block models are observed and calculated magnetic anomalies.
(c) Curve showing trade-off between fault dip and standard deviation
of difference between observed and calculated magnetic anomalies;
dip of 37° northeast is optimal. PRM, Peninsular Ranges-type base-
ment; SGM, San Gabriel Mountains-type basement; SBM, San
Bernardino Mountains-type basement; seds, sedimentary deposits.
S, magnetic susceptibility (1073 cgs units). Red stars are located
where observed and calculated curves are constrained to agree.

magnetic anomalies are significantly worse than the optimal
case. In this model, the magnetic boundary extends to 15 km
depth, but this depth extent is not well constrained by the ob-
served magnetic anomaly. If the depth extent is smaller, then
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Figure 6. Magnetic modeling results for Indio site, presented in
the same fashion as in Figure 5. Location is profile 12 on Figure 1.
Optimal SAF dip is 65° northeast.

the susceptibility would need to be proportionally higher to
produce the same aeromagnetic anomaly; in cases of extre-
mely high susceptibilities, the optimal SAF dip value might
be less than previously discussed.

The observed magnetic anomaly on the Indio profile is
about 250 nT in magnitude and again lies just to the east
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of the trace of the SAF (Fig. 6). Basement rocks on the south-
west side of the SAF are nonmagnetic rocks of the eastern
Peninsular Ranges, and rocks on the northeast side are part
of the magnetic San Bernardino-Little San Bernardino
Mountains basement (see previous text). In this model, a
dip of 65° to the northeast produces a good match between
the observed and modeled anomalies, with significantly
worse fits beyond +7-8°.

In the San Bernardino and Indio areas, the gravity
anomalies are governed primarily by the shape of the basins
immediately to the southwest of the SAF (see Fig. 3b,c) and
are not sensitive to the dip of the SAF. We have, therefore, not
shown gravity modeling in Figures 5 and 6. In contrast, in the
Big Bend area, the aeromagnetic data are primarily sensitive
to the structure of the Eagle Rest Peak Gabbro, and are not
sensitive to the dip of the SAF at our model location (see
Appendix A).

It is important to note that the structural discontinuities
modeled from potential-field data do not necessarily
represent the currently active surface of the SAF; they could
represent older faults. However, if such postulated older
faults do not have exactly the same strike as the modern SAF,
they should outcrop somewhere along strike, either north-
west or southeast of our profiles, making a low angle with
the SAF and paralleling a magnetic anomaly that diverges
from the Holocene SAF. At San Bernardino, our modeled
profile (Figs. 4, 5) approximately crosses the low-angle map-
view junction between the late Quaternary Mill Creek fault
and Holocene SAF (see Jennings, 1994). To the southeast of
the modeled profile, the magnetic high follows the Holocene
SAF rather than the Mill Creek fault (Fig. 4), indicating that
the modeled magnetic boundary most likely is the Holocene
SAF. At Indio, our modeled profile (Figs. 4, 6) crosses the
SAF again at a low-angle junction between two branches
of the SAF, the Mission Creek and Banning faults, both of
which have had Holocene activity. To the northwest, the
magnetic high follows the Mission Creek fault rather than
the Banning fault, indicating that the modeled magnetic
boundary is most likely the Mission Creek fault. We note
that approximately 25 km northeast of our modeled profile,
at Desert Hot Springs (Figs. 1, 4, location 11), the Mission
Creek fault appears to dip steeply (85°) southwest in the
upper 500 m, based on the seismic-imaging results of Catch-
ings et al. (2009), and it loses evidence for Holocene dis-
placement (Jennings, 1994). Here, the Mission Creek fault
appears to be in the hanging wall of the seismically active
Banning fault (see next section).

Seismicity

The use of seismicity to define the SAF cannot be done
in a simple, uniform way. Where the SAF is locked, from the
northern Coachella Valley to Cholame, seismicity appears to
be largely off the SAF. In the San Gabriel Mountains, for
example, seismicity occurs largely in clusters on opposite
sides of the SAF (Hauksson, 2000, pl. 3, panel d; Lin et al.,
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2007, their fig. 13). Where the SAF is creeping, along the
northeast side of the Salton Sea (see Data and Resources),
relocated microseismicity aligns along a moderately north-
east-dipping (57°-59°) plane that projects to the surface at
the SAF trace (Fig. 1, profiles 13, 14, and 15; Fig. 7; Lin
et al., 2007). The tight planar distribution of hypocenters in
this location resembles that commonly seen on other creep-
ing faults (e.g., Rubin et al., 1999; Waldhauser and Ells-
worth, 2002). Some focal mechanisms in this area support
right lateral displacement on a dipping SAF. In addition,
Fialko’s (2006) InSAR observations of asymmetric strain
accumulation across the SAF trace in this area support a
northeast-dipping (~60°) fault, if the crustal rigidity does
not vary across the fault.

Between the locked and creeping sections of the SAF, in
the northern Coachella Valley, two large earthquakes with
aftershock sequences that extend through the seismogenic
crust (upper 15 km) are interpreted to outline the active
surface of the SAF: the 1948 M; 6.3 Desert Hot Springs
earthquake (Nicholson, 1996) and the 1986 M, 6.1 North
Palm Springs earthquake (Jones er al., 1986). The North
Palm Springs sequence (Fig. 1, profile 10) provides the better
constraints; the focal mechanism and aftershocks agree on a
moderate northeast dip of 45° and 52°, respectively (Fig. 8).
The Desert Hot Springs sequence provides poorer con-
straints; the focal mechanism indicates a northeast dip of
65°-70°, but no clear fault dip is apparent from the after-
shocks, most likely because of sparser seismic coverage at
that time. These two aftershock sequences abut one another.

The SAF is not illuminated by seismicity between
the North Palm Springs sequence and central California
(Cholame). Significantly, however, our model SAF surface
(Fig. 2) does separate areas with different seismicity charac-
teristics on the North American and Pacific plates (NAM and
PAC, respectively; Fig. 9). At the Big Bend, in the western
Transverse Ranges (Fig. 1, profile 2), our model SAF surface
separates moderate seismicity in crust of the NAM from
sparser and shallower seismicity in the PAC crust (Fig. 9a).
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Figure 7. Seismicity cross sections across creeping section of
SAF (Lin et al., 2007, their fig. 14). Locations are from profiles
(a) 13, (b) 14, and (c) 15 on Figure 1. Compressional quadrants
of far hemispheres of focal mechanisms are blackened.
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Figure 8. (a) Aftershocks of the 1986 M,, 6.1 North Palm

Springs earthquake (Jones et al., 1986, their fig. 3A). Location
is profile 10 on Figure 1. (b) Plan view of mainshock focal mecha-
nism (Jones et al., 1986, their fig. 4). GH, Garnet Hill fault; B,
Banning fault; MC, Mission Creek fault. GH, B, and MC are
branches of SAF (Jennings, 1994). Cracks were observed along
Banning fault after the 1986 earthquake but were not interpreted
as surface rupture (Sharp ef al., 1986).

Conversely, in the eastern San Gabriel Mountains (Fig. 1,
profile 6), the model surface separates moderate seismicity
in crust of the PAC from very sparse activity in NAM crust
(Fig. 9b). In the San Gorgonio Pass area (Fig. 1, profile 9),
our model SAF surface passes through or near the step in the
base of seismicity described by Nicholson et al. (1986) and
Magistrale and Sanders (1996) (Fig. 9c). Other authors have
proposed that the SAF surface passes through this seismicity
step (Yule and Sieh, 2003; Carena et al., 2004). Seismicity
on the insides of both of the major bends in the SAF trace is
deeper and extends beyond the surface trace of the SAF to
locations beneath the opposing plate.

Seismic Imaging

The SAF can be traced into the lower crust as a velocity
and reflectivity discontinuity in the crustal-scale images from
the Los Angeles Region Seismic Experiment (LARSE;
Ryberg and Fuis, 1998; Fuis et al., 2001; Godfrey et al., 2002;
Fuis et al., 2003, 2007) (Fig. 1, profiles 4, 5; Fig. 10). Reflec-
tivity includes wide-angle reflections (Fig. 10a,b, heavy black
lines), near-vertical-incidence reflections (Fig. 10a, blue
lines), or near-vertical-incidence reflective zones (Fig. 10b,
blue zones A and B) (Ryberg and Fuis, 1998; Fuis et al.,
2001,2003, 2007). Reflectivity south of the SAF is interpreted
to constitute one or more active decollements that originate at
the SAF and splay upward into active reverse faults (including
blind reverse faults) beneath the Los Angeles region. The
1971 M, 6.7 San Fernando and 1987 M, 5.9 Whittier Nar-
rows earthquakes occurred on two such faults. The dip of the
SAF through the crust is 90° on LARSE line II (LARSE II;
Fig. 10a) and 83°-90° on LARSE line I (LARSE I; Fig. 10b).
On both lines the uncertainty in dip is approximately 5°-7°.
On LARSE I, reflectivity (Fig. 10b, blue zone A and the
adjacent heavy black lines) extends north of the surface trace,

leading to an interpretation of an 83° northeastward dip, but
the northward termination of the reflectivity is uncertain with-
in a few km. Modeling of gravity and magnetic data
suggests that the SAF dip on LARSE I is 90°, with an
uncertainty of a few degrees (Langenheim, 1999).

Upper-Mantle High-Velocity Body

A number of authors have imaged a prominent body in
the upper mantle of southern California with <3% higher
P-wave velocity than average (Hadley and Kanamori,
1977; Raikes, 1980; Humphreys et al., 1984; Humphreys
and Clayton, 1990; Kohler, 1999; Kohler er al, 2003;
Schmandt and Humphreys, 2010). In Figures 1 and 11, we
reproduce the HVB image of Kohler er al. (2003), obtained
from a study of teleseisms recorded both on regional stations
of the southern California seismic network and on temporary
stations deployed along or near the LARSE lines. The HVB
extends ~250 km east—west through the Transverse Ranges
(Fig. 1; horizontal slice [blue patch] is at 110-km depth; see
also Kohler et al., 2003, their fig. 7a). It appears to cross the
surface trace of the SAF obliquely, and it extends to more
than 200-km depth. Tests show that horizontal resolution
of this tomographic model is good at a length scale of
15-20 km (Kohler, 1999; Kohler et al., 2003). The vertical
resolution is less well known, with smearing expected from
the steeply traveling imaging rays; however, smearing is
probably not extreme because features with various dips
can be seen in cross sections (Fig. 11). A shear-wave HVB
image has also been produced from Rayleigh-wave tomogra-
phy (Yang and Forsyth, 2006), although the model indicates
a depth extent for the HVB of only 150 km. Schmandt and
Humphreys (2010) have imaged this body with both teleseis-
mic P and S waves using approximate 3D sensitivity kernels
in three frequency bands. The HVBs imaged by both P and S
waves are very similar to one another, and the Vp/V ¢ image
is also similar to the P- and S-wave images, with the HVB
showing a Vp/ V¢ ratio that is 2%-3% lower than the average
of the regional 1D velocity model they are using (see refer-
ences for this model in Schmandt and Humphreys, 2010).
Cross sections through their P-wave model near the cross
sections of Figure 1, show the same basic features as in
Figure 11 (B. Schmandt, written commun., 2009). Their
image shows a base of the HVB at approximately 200 km.

In Figure 11, we fit by eye planar zones (shown by a
horizontally ruled pattern) along the boundary between high-
and low-velocity contours on the north side of the HVB. We
ignore short-wavelength features (< 15-20 km), given the
horizontal resolution length scale for P-wave tomography
described previously. We also speculate that there may be
a similar zone extending northward and downward into
the mantle from the Garlock fault (Fig. 11a). The HVB ter-
minates westward in the Big Bend region (Fig. 1, blue
patch), giving rise to an irregular cross section in Figure 11a,
but the overall impression is of a southwest dip of the veloc-
ity transition zone. The planar zones we have interpreted may
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Figure 10. Velocity models for LARSE lines I (a) and I (b)
(Fuis et al., 2007). Locations are profiles 4 and 5 on Figure 1. Heavy
black lines, wide-angle reflections, dashed where inferred; blue
lines, near-vertical-incidence reflections (LARSE II); blue patches
(“A” and “B”) near-vertical-incidence reflectivity zones (LARSE
I). SAF is delineated by discontinuities in both velocity and reflec-
tivity. Reflectivity is interpreted to reveal active midcrustal decolle-
ments south of SAF (Fuis et al., 2001, 2003).

denote mantle shear zones similar to the SAF in the crust or
they may arise from gradients of material flow within the
mantle.

‘When SAF and Moho features of LARSE I and II (Fig. 10)
are superimposed on slices through the tomographic model of
the HVB (Fig. 11b,c), the SAF intersects the Moho at the north
side of the HVB (Fuis ef al., 2007). In three other locations
(Fig. 1, profiles 1, 8, and 10), where the SAF is characterized
only in the upper crust, the SAF projects downward to intersect
the Moho at or near the north side of the HVB (Fig. 11a,d,e).
The largest mismatch is for the North Palm Springs cross sec-
tion (Fig. 11e), where the SAF projection is ~15 km south of
the north boundary of the HVB. One can estimate the prob-
ability that in five cases, the SAF should fall within ~15 km
of the north side of the HVB as follows: the probability that
the SAF projects by random chance into the ~15-km-wide
bin nearest the northern edge of the ~60-km-wide HVB is
1 in 4 at a single site. The probability that it projects in this
manner in all five cases is ~1 in 1000 (1/4°). This argument
assumes a causal connection between the SAF and footprint
of the HVB. If there is no such connection, then the correla-
tion of the SAF and north side of the HVB in these five cases is
even less probable. This argument also assumes that the five
profiles yield measures of SAF structure that are independent
of one another, which is difficult to quantify with profile
models derived from heterogeneous data. Notwithstanding
the difficulty in quantifying a probability value, the spatial
correlation of the crustal SAF with the north side of the
HVB is likely real.

(a) San Ar|1dreas Fault

crust Moh 557 (Garlock F.?)

LARSEII

(©

(d)

Vp (%)

(e)

Figure 11. Cross sections through crust and upper-mantle of
California showing SAF in crust (red lines, dotted where projected
downward) and north side of HVB (horizontal ruling). Locations are
along profiles (a) 1, (b) 4, (¢) 5, (d) 8, and (e) 10 on Figure 1. North
side of HVB was determined by eye to lie along transition from
positive to negative, long-wavelength (100 km) seismic velocity
anomalies. Color changes represent perturbations from background
velocity model (Kohler, 1999; Kohler et al., 2003). In most cases,
north side of HVB is also marked by high P-wave velocity gradient.
Moho, heavy black lines; alternate Moho depths are shown for lo-
cations other than LARSE I and II. Note that SAF in crust intersects
north side of HVB at Moho to within 15 km or less. PAC, Pacific
plate; NAM, North America plate. Zero on color scale is
Vp = 7.8 km/s at 40-km depth and Vp = 8.2 km/s at 200-km
depth. No vertical exaggeration.
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Discussion

Supporting Data from the San Bernardino Region

The dip of 37 £5  at San Bernardino (Fig. 5) was a
surprising result of this study. To further test this result, we
modeled magnetic data along the seismicity profile of
Figure 9b in the eastern San Gabriel Mountains (Fig. 1, profile
6), between the LARSE I and San Bernardino locations.
The magnetic data support a northeast dip of 60°-80°
(Appendix A) as predicted by our dipping SAF model (Fig. 2).
Seismicity along this profile shows thrust mechanisms, likely
related to the Cucamonga thrust fault, that occur directly
below the trace of the SAF, supporting the interpretation that
the SAF dips northeast here (Fig. 9b). Surficial geology also
supports a northeast dip in this area, including studies by
Meisling and Weldon (1989) and a trench study shown by
McGill et al. (2008). Meisling and Weldon (1989) map a
northeast dip in outcrops in this area. In addition, they appeal
to a northeast step or bulge of the SAF at depth to explain a
northwestward migration of mid-Pleistocene uplift of crystal-
line rocks in the westernmost San Bernardino Mountains
(hanging wall) adjacent to the SAF. The geometric effects
of such a step or bulge are not significantly different from
those of a fault whose dip decreases from vertical to shallower
values from the Mojave Desert to San Bernardino. Catchings
et al. (2008) observe a possible expression of the SAF near the
northeastern end of their San Bernardino Valley seismic re-
flection profile, which crosses the SAF near our magnetic
model (Fig. 1, profile 7; Fig. 4). While the seismic reflection
imaging is poorly resolved near the northeast end of their seis-
mic line, Catchings et al. (2008) interpret a shallow, northeast
dip of the SAF consistent with our magnetic model results.
Finally, Dair and Cook (2009) simulate geologic deformation
in the San Gorgonio Pass area, southeast of San Bernardino,
with 3D numerical models of the SAF. They conclude that in
this area a north-dipping fault matches observations of strike-
slip and uplift rates better than a vertical SAF.

Paleoseismic Investigations

Most paleoseismic trenching investigations are not
ideally suited for providing a definitive dip for the SAF. First,
trenches are usually dug in areas of high sedimentation, where
the fault commonly diverges into numerous branches as it
approaches the surface. Also trenches are commonly dug
in structurally complex graben areas, where the bounding
faults dip in opposite directions. For example, at Indio (near
our Indio profile, Fig. 1), two breaks of the SAF on opposite
sides of a reverse graben, in a step-over region, dip in opposite
directions: 50°-65° southwest on the southwest side of the
graben and 60°-65° northeast on the northeast side of the
graben (Philibosian et al., 2009). In the San Bernardino area,
trenching reported by McGill er al. (2008) and S. McGill
(written commun., 2010), reveals two sets of northeast-
dipping Holocene faults within a few-meter interval in the
trench, with dips of 25° northeast for the southwest set and
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70° northeast for the northeast set. In the Big Bend area, tren-
ching has produced ambiguous data on the dip of the SAF,
although most of the early trenching by Davis (1983) tends
to support a moderate southwest dip (Appendix B).

Tomographic Images of the Crust from Earthquakes

Tomographic velocity models of the crust produced
chiefly from earthquake data do not currently have the reso-
lution to provide information on the dip of the SAF, where it
is defined by a velocity contrast. Horizontal node spacing for
P-wave models range from 10 to 15 km (Lin et al., 2010 and
Hauksson, 2000, respectively), and the minimum horizontal
scale length for an S-wave model that covers a significant
segment of the SAF is 20 km (Tape et al., 2010). It is inter-
esting that the S-wave velocity model of Tape et al. (2010)
does suggest a vertical/steep SAF in the Mojave Desert area,
similar to our model.

Origin of the HVB

The apparent connection of the SAF to the north side of
the HVB suggests that features of the plate boundary can be
traced into the mantle and that the HVB belongs chiefly or
wholly to the PAC (Fuis et al., 2007). If so, then the HVB may
represent oblique downwelling of the PAC along the plate
boundary, such as that seen in finite-element-modeling of
continent-continent collisions (Pysklywec et al., 2000).
Seismic properties of the HVB, including possible anisotro-
py, may be used to evaluate the hypothesis that the HVB
represents oblique downwelling of the PAC along the plate
boundary, but at this time, this hypothesis cannot be con-
firmed or dismissed (Appendix C).

Seismic Hazard

The propeller shape of the SAF proposed in this study
has implications for seismic hazards. In models of peak
ground acceleration (PGA) and peak ground velocity (PGV)
that have been produced for the Next Generation Attenuation
project (Stewart et al., 2008), the distance from an earth-
quake rupture to a given land-surface site is, of course, smal-
ler on the side toward which the rupture surface dips, that is,
in the hanging wall of the fault. Because PGA and PGV vary
inversely with distance, these values are larger on the hang-
ing wall than on the footwall of the fault. This observation is
born out for both the 1986 M|, 6.1 North Palm Springs earth-
quake, which involved strike-slip rupture on a dipping fault
plane, and the 1989 M, 6.9 Loma Prieta earthquake, which
involved oblique rupture on a dipping fault plane. In both
cases, ground motion was markedly asymmetric about the
surface projection of the rupture, with the greatest motions
on the hanging wall. For both the North Palm Springs event
(dip 45°-50° northeast; see Data and Resources) and the
Loma Prieta event (Plafker and Galloway, 1989; their fig. 17;
dip 70° southwest), PGA on the hanging wall was about dou-
ble that at sites an approximately equal distance from the
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fault trace on the footwall. Thus, if our model of the southern
SAF is accurate, it will be important to recalculate shaking
from ShakeOut (Jones er al., 2008; Perry et al, 2008)
and other scenario earthquakes given the systematic and
significant dip variations of the SAF presented here.

Summary

The SAF is significantly nonvertical near its bends in the
Transverse Ranges. It dips away from the bends, resulting
in a propeller-like shape. The SAF in the crust appears to
connect with the north side of the HVB at the Moho, and
the north side of the HVB is potentially a continuation of the
plate boundary into the mantle. The HVB may be an oblique
downwelling of PAC lithosphere, but this hypothesis cannot
be confirmed or dismissed at this time. While most of the
southern SAF is not illuminated in seismicity catalogs, our
dipping SAF model separates differing seismicity regimes
in the NAM and PAC better than does a vertical SAF.

Future research would benefit from more seismic-
imaging and potential-field modeling of the SAF. Numerical
deformation modeling of the SAF and related faults would
provide insight to how the plates move past one another along
this propeller-shaped boundary. Ground-motion calculations
based on our interpreted SAF geometry throughout southern
California would be useful to compare with existing calcula-
tions that are based on a vertical SAF in most places.

Data and Resources

Documentation of creep on the southern SAF was found
at Cooperative Institute for Research in Environmental
Sciences, University of Colorado; Roger Bilham’s web site
for Durmid Creepmeters, along the northeast shore of the
Salton Sea, southern California (http://cires.colorado.edu/
~bilham/creepmeter; last accessed August 2011).

PGA came from COSMOS Strong Motion Program Mem-
bers, Consortium of Organizations for Strong-Motion Obser-
vation Systems Virtual Data Center (http://db.cosmos-eq.org/
scripts/event.plx 7evt=40; last accessed August 2011).

Faults in Figure 4 came from U.S. Geological Survey
and California Geological Survey, 2006, Quaternary fault
and fold database for the United States (http://earthquake.
usgs.gov/regional/qfaults; last accessed June 2010).
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Appendix A

Model of Combined Gravity and Magnetic Field
Data in the Big Bend and Eastern San Gabriel
Mountains

See Figure Al and Figure A2.

Appendix B

Dip of the SAF in the Big Bend Region, Evidence
from Trenching

At Smith Flat site (Davis, 1983; northwestern end of the
Big Bend area), the main branch of the SAF, at the north end of
the trench, dips approximately 65°-70° southwest, but a
branch on the south end of the trench is steep. In Cuddy
Valley trench (Davis, 1983; central part of the Big Bend area),
the main branch, located in the central part of the trench, dips
55° southwest, but adjacent branches dip 75°-90° southwest.
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A secondary fault at the south end of the trench dips 80° north-
east. The most modern trench, still under investigation by
Kate Scharer, Thomas Fumal, Ray Weldon, and others
(Thomas Fumal, written commun., 2009), at Frazier Park
(near the junction of the SAF and Garlock fault), shows contra-
dictory indications of dip. In the west wall of this trench, two
primary breaks are seen that dip 55°-85° southwest. On the
east wall of the same trench, the two main breaks are more
diffuse, and, along with numerous minor breaks, appear to
dip consistently 65° northeast. It is probably significant that
in cross sections extending to several kilometers depth in the
Big Bend area, Davis (1983) defers to the preliminary gravity
modeling results of Griscom and Oliver (1980; similar to the
results of Griscom and Jachens, 1990) for the dip of the SAF
(Figs. 1, 3a).

Appendix C
Origin of the HVB

Seismic properties of the HVB, including possible ani-
sotropy, may be used to evaluate the hypothesis that the HVB
represents oblique downwelling of the PAC along the plate-
boundary. The new tomographic models of Schmandt and
Humphreys (2010) indicate that P- and S-wave velocities
are each increased in the HVB by 2-3 % relative to a regional
1D velocity model of the southwestern United States, with
the largest increase for the S-wave velocity. Vp/V is corre-
spondingly lower in the HVB. Explanations for these velocity

perturbations are differences in temperature, partial melt
fraction, composition (due to prior melt extraction), hydra-
tion, and transverse anisotropy. They favor differences in
temperature (<500 °K), partial melt (< 1%), and (or) trans-
verse anisotropy.

There is some support for a density origin of the HVB
from detailed 2D gravity and isostatic modeling by Roma-
nyuk et al. (2007), although the gravity expression of this
deep body is weak. Biasi (2009) has interpreted the origins
of high-velocity mantle anomalies in California, concluding,
based on volumetric arguments, that they do not have local
sources (they are too big), but are possibly downwelled litho-
spheric roots of the Sierra Nevada and Peninsular Ranges
batholiths. In particular, the HVB could be the downwelled
root of the Peninsular Ranges batholith, although this inter-
pretation is straightforward only for the eastern half of the
HVB, where the Peninsular Ranges batholith is adjacent to
the HVB on the south (Fig. 1).

The relatively low velocities of the upper-mantle of the
Mojave Desert region, north of the HVB, may have originated
from Cenozoic episodes of asthenospheric upwelling and vol-
canism. Humphreys (1995) has postulated that the flat seg-
ment of the Farallon slab subducted in the Laramide was
removed by gravitational buckling (downwelling) along an
east-west axis through southern Nevada and the southern
Sierra Nevada, as evidenced by migration of volcanism
toward this axis from both sides—northward through the
southern Basin and Range/Mojave Desert region, southward
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Figure C1. Alternate tectonic diagrams for HVB, showing dif-
ferent preferred orientations for olivine and seismic velocities (blue,
P wave; red, S wave). (a) Diagram for subducting oceanic plate
(adapted from McKenzie, 1979, his fig. 10b) that shows, with small
ellipse, orientation of velocities for expected preferred orientation of
olivine (a-axis oriented down-dip) in mantle wedge immediately
above slab (orientation results from shear). Note that in Transverse
Ranges, slab (HVB) would be nearly vertical. Laboratory velocities
for single-crystal olivine are shown (Babuska and Cara, 1991); aver-
age velocities for homogenized mantle outside of plate-boundary re-
gion are shown in upper right. In real mantle, velocity magnitudes
would be modified from those in this diagram because (1) olivine
is only statistically oriented as shown, (2) nonolivine crystalline
phases are also present, and (3) mantle outside of plate-boundary
region may well have preferred crystal orientations (may not be
isotropic). This orientation of olivine correctly predicts observed
relative velocity magnitudes of P and S waves separately, but not ob-
served Vp/V (see text). (b) This diagram assumes pure strike-slip
between plates and assumes that olivine a-axis orientation (long axis
of ellipse) is parallel to shear direction. This orientation of olivine
does not give observed relative velocity magnitudes in many cases
(see text).

through the Great Basin region. Asthenospheric upwelling
associated with this slab removal presumably gave rise to
increased heat flow, partial melt, and the observed vol-
canism. Subsequent events in the Mojave Desert include re-
establishment of subduction west of the Mojave Desert
region, followed by slab removal again in the wake of the sub-
ducted Mendocino fracture zone and associated volcanism
(Wilson et al., 2005). Thus, at least two episodes of Cenozoic
volcanism and inferred asthenospheric upwelling occurred in
the Mojave Desert region; either or both may have contributed
to the observed low upper-mantle velocities in this region.
On the south side of the HVB, middle and late Cenozoic
extension of the crust and volcanism associated with the
formation of the Los Angeles basin and inner Continental
Borderland (Wright, 1991; Crouch and Suppe, 1993) may
have also been associated with slab removal and upwelling
asthenosphere (Nicholson et al., 1994; Wilson et al., 2005).

Thus, asthenospheric upwellings with somewhat different
histories on either side of the HVB may account for the ob-
served velocity differences. A final mechanism for achieving
a contrast between the HVB and mantle on either side is simply
local mantle upwellings on either side of a downwelling that is
expected from mantle dynamics (see e.g., Houseman and
Molnar, 1997; Houseman et al., 2000).

Anisotropy may be partly involved in the origin of the
HVB. It is clear that uppermost-mantle compressional veloc-
ities (Pn) beneath southern California are anisotropic, with a
west northwest fast direction (Hearn, 1984). This effect is not
well resolved spatially, but could originate chiefly in the
Transverse Ranges, which are central to the Pn study area
of Hearn (1984). If the fast direction of mantle olivine grains
(a-axes) is oriented downward in steeply dipping shear zones
in the mantle beneath the Transverse Ranges due to downwel-
ling PAC, then: (1) the HVB would be apparent both from stee-
ply inclined P and S imaging rays and from Rayleigh waves
(Sv) (see images of Humphreys and Clayton, 1990; Yang and
Forsyth, 2006; and Schmandt and Humphreys, 2010) ; (2) Pn
anisotropy would be developed as observed (Hearn, 1984);
and (3) SKS splitting would not change from outside to inside
the footprint of the HVB, as is observed (e.g., Polet and
Kanamori, 2002), because both vibration directions for
steeply emergent S waves would have the same speed in the
model shown (Fig. Cla). This postulated orientation of oli-
vine does not, however, explain the 1%—2% anisotropy mod-
eled from Rayleigh-wave tomography (Yang and Forsyth,
2006). Significantly, however, Vp/V for this orientation
of olivine would be relatively high (~2.0; Fig. Cla) rather than
low as observed (Schmandt and Humphreys, 2010).

In contrast, Davis (2003) models the olivine a-axes
in the HVB as pointing predominantly horizontally and north-
west (Fig. C1b). This model would explain some of the pre-
viously discussed observations (Pn anisotropy, neutral
Vp/Vs) but not others (high relative P-wave and S-wave ve-
locity of the HVB, no SKS change from outside to inside the
HVB). Further studies, including detailed Pn tomography and
forward modeling of various anisotropies will aid in determin-
ing the role of anisotropy in producing the HVB.

In summary, the HVB appears to be part of the PAC from
our studies of the SAF in the crust and the geometry of the north
side of the HVB. Interpretations of its origin as a downwel-
ling of the PAC cannot be confirmed or dismissed at this time.
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