215 research outputs found

    Spatial-temporal responses of Louisiana forests to climate change and hurricane disturbance

    Get PDF
    This dissertation research focused on three questions: (1) what is the current carbon stock in Louisiana’s forest ecosystems? (2) how will the biomass carbon stock respond to future climate change? and (3) how vulnerable are the coastal forest resources to natural disturbances, such as hurricanes? The research utilized a geographic information system, remote sensing techniques, ecosystem modeling, and statistical approaches with existing data and in-situ measurements. Future climate changes were adapted from predictions by the Community Climate System Model on the basis of low (B1), moderate (A1B), and high (A2) greenhouse gas emission scenarios. The study on forest carbon assessment found that Louisiana’s forests currently store 219.2 Tg of biomass carbon, 90% of which is stored in wetland and evergreen forests. Spatial variation of the carbon storage was mainly affected by forest biomass distribution. No correlation was identified between carbon storage in watersheds with the average watershed slope and drainage density. The modeling study on growth response to future climate found that forest net primary productivity (NPP) would decline from 2000 to 2050 under scenario B1, but may increase under scenarios A1B and A2 due primarily to minimum temperature and precipitation changes. Uncertainties of the NPP prediction were apparent, owing to spatial resolution of the climate variables. The remote sensing study on hurricane disturbance to coastal forests found that increases in the intensity of severe weather in the future would likely increase the turn-over rate of coastal forest carbon stock. Forest attributes and site conditions had a variety of effects on the vulnerability of forests to hurricane disturbance and thereby, spatial patterns of disturbed landscape. Soil groups and stand factors, including forest types, forest coverage, and stand density contributed to 85% of accuracy in the modeling probability of Hurricane Katrina disturbance to forests. In conclusion, this research demonstrated that quantification of forest biomass carbon, using geo-referenced datasets and GIS techniques, provides a credible approach to increase accuracy and constrain the uncertainty of large-scale carbon assessment. A combination of ecosystem modeling and GIS/Remote Sensing techniques can provide insight into future climate change effects on forest carbon change at the landscape scale

    Synthesis of carbon-11-labeled 5-HT6R antagonists as new candidate PET radioligands for imaging of Alzheimer’s disease

    Get PDF
    Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT6R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[11C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[11C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[11C]methyl-1-piperazinyl)methyl]-1H-indole (N-[11C]2a), 5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[11C]2b) and 5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[11C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[11C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1H-indole (N-[11C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[11C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[11C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[11C]methylpiperazin-1-yl)methyl)-1H-indole (N-[11C]2d), were prepared from their O- or N-desmethylated precursors with [11C]CH3OTf through O- or N-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370–740 GBq/μmol with a total synthesis time of ∼40-min from EOB

    Synthesis of N-(3-(4-[11C]methylpiperazin-1-yl)−1-(5-methylpyridin-2-yl)−1H-pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide as a new potential PET agent for imaging of IRAK4 enzyme in neuroinflammation

    Get PDF
    The reference standard N-(3-(4-methylpiperazin-1-yl)−1-(5-methylpyridin-2-yl)−1H-pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (9) and its demethylated precursor N-(1-(5-methylpyridin-2-yl)−3-(piperazin-1-yl)−1H-pyrazol-5-yl)pyrazolo[1,5-α]pyrimidine-3-carboxamide (8) were synthesized from pyrazolo[1,5-a]pyrimidine-3-carboxylic acid and ethyl 2-cyanoacetate with overall chemical yield 13% in nine steps and 14% in eight steps, respectively. The target tracer N-(3-(4-[11C]methylpiperazin-1-yl)−1-(5-methylpyridin-2-yl)−1H-pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide ([11C]9) was prepared from its precursor with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 50–60% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the specific activity at EOB was 370–1110 GBq/μmol

    Facile synthesis of carbon-11-labeled sEH/PDE4 dual inhibitors as new potential PET agents for imaging of sEH/PDE4 enzymes in neuroinflammation

    Get PDF
    To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25–35% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370–740 GBq/μmol with a total synthesis time of 35–40-minutes from EOB

    Radiosynthesis of carbon-11 labeled PDE5 inhibitors as new potential PET radiotracers for imaging of Alzheimer's disease

    Get PDF
    To develop PET tracers for imaging of Alzheimer's disease, new carbon-11 labeled potent and selective PDE5 inhibitors have been synthesized. The reference standards (5) and (12), and their corresponding desmethylated precursors (6) and (13) were synthesized from methyl 2-amino-5-bromobenzoate and (4-methoxyphenyl)methanamine in multiple steps with 2%, 1%, 1% and 0.2% overall chemical yield, respectively. The radiotracers ([11C]5) and ([11C]12) were prepared from their corresponding precursors 6 and 13 with [11C]CH3OTf through O–11C-methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the molar activity (Am) at EOB was in a range of 370–740 GBq/μmol

    Solving a Class of Singular Fifth-Order Boundary Value Problems Using Reproducing Kernel Hilbert Space Method

    Get PDF
    We use the reproducing kernel Hilbert space method to solve the fifth-order boundary value problems. The exact solution to the fifth-order boundary value problems is obtained in reproducing kernel space. The approximate solution is given by using an iterative method and the finite section method. The present method reveals to be more effective and convenient compared with the other methods
    corecore