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Abstract—To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been 
synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated 
precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-
(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The 
standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-
(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl 
chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, 
respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-
(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 
and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25-35% radiochemical yield, based on 
[11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB 
was 370-740 GBq/µmol with a total synthesis time of 35-40-minutes from EOB.   

Keywords: Soluble epoxide hydrolase (sEH); Phosphodiesterase 4 (PDE4); Carbon-11-labeled sEH/PDE4 dual inhibitors; 
Radiosynthesis; Positron emission tomography (PET); Neuroinflammation. 

Inflammation is a complex biological process and part 
of the body’s immune response involving immune cells, 
blood vessels, and molecular mediators for self-
protection to remove harmful stimuli, including 
damaged cells, irritants, or pathogens.1 
Neuroinflammation is the inflammation of the nervous 

tissue, and it is associated with central nervous system 
(CNS) diseases including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), 
multiple sclerosis (MS), amyotrophic lateral sclerosis 
(ALS), traumatic brain injury (TBI) and stroke.1-4 
Molecular imaging of neuroinflammation in 
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neurodegenerative diseases by positron emission 
tomography (PET) is one of the most active as well as 
most challenging areas in neuroscience, because PET 
neuroimaging can offer various non- or minimally 
invasive techniques to characterize neuroinflammatory 
processes for the purpose of diagnosis, therapy and 
treatment monitoring.5-8 Many enzyme- or receptor-
based radioligands have been developed for in vivo PET 
visualization of neuroinflammation.9-11 We are 
interested in the development of new PET radioligands 
for neuroinflammation. In our previous work, we have 
synthesized and developed a series of PET 
radiotracers12-20 that target the enzyme or receptor for 
neuroinflammation such as [11C]FMAME for matrix 
metalloproteinase (MMP), carbon-11-labeled celecoxib 
derivatives for cyclooxygenase-2 (COX-2), [11C]PBR28 
for translocator protein (TSPO), [11C]MCFA for 
cannabinoid receptor 2 (CB2), [11C] SB-216763 for 
glycogen synthase kinase 3 (GSK-3), [11C]MABL for 
CX3C chemokine receptor 1 (CX3CR1), 
[11C]GSK1482160 for purinergic receptor (P2X7) and 
[11C]MMPC for interleukin-1 receptor-associated kinase 
4 (IRAK4), as indicated in Figure 1. Traditionally 
drugs including PET drugs have been designed based on 
single-target approach, however, in complex diseases 
where single-target drugs have failed or show severe 
limitations, multi-target drugs have emerged as more 
effective therapeutic approach, since drug molecules 
often interact with multiple targets.21-24 Subsequently, 
PET radioligand design has benefited from the multi-
target approach in drug design and discovery, which 
opens new avenues to rationally develop next 
generation of more effective PET agents. In this 
ongoing study, we first select the dual enzymes soluble 
epoxide hydrolase (sEH)/phosphodiesterase 4 (PDE4) 
as another more specific neuroinflammatory target for 
PET imaging. Both sEH and PDE4 are critical enzymes 
in neuroinflammation and play an important role in the 
progression of various neurodegenerative diseases 
including AD.25 Small drug molecules targeting on 
multiple proteins have attracted tremendous interest for 
developing therapeutics, and dual sEH/PDE4 inhibitors 
for the treatment of inflammatory diseases represent this 
multi-target therapeutic strategy. To improve the 
treatment of complex diseases, multitarget ligands have 
been designed and developed.26 Recently, bioavailable 
sEH/PDE4 dual inhibitors have been developed to treat 
inflammatory pain, the representative compound N-(4-
methoxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4-carboxamide (MPPA, 4) 
displayed good efficacy in in vitro assays with IC50 2.1 
nM (hsEH) and 8.1 nM (PDE4), and a derivative N-(4-
methoxy-2-(trifluoromethyl)benzyl)benzamide (1) 
exhibited similar in vitro efficacy with IC50 2 nM 
(hsEH).25 Radiolabeled PDE4 inhibitors such as [11C]R-
(-)-Rolipram (Figure 1) have been developed and 

evaluated in animal and human PET studies.27 Likewise, 
radiolabeled sEH inhibitors like [18F]FNDP (Figure 1) 
have been developed and evaluated in animals.28 
However, the PubMed search showed no records on 
radiolabeled sEH/PDE4 dual inhibitors. It is clear PET 
imaging modality can accurately measure the protein 
expression in biological process and diseases, but it will 
be still challenging to assess the changes of dual 
proteins expression level using dual proteins target 
radiotracers. The key point is that a sEH/PDE4 dual 
inhibitor should have favorable in vitro biological 
activity for both protein targets first. Here we report the 
design, synthesis and labeling of radiolabeled 
sEH/PDE4 dual inhibitors, N-(4-[11C]methoxy-2-
(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-
[11C]methoxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4-carboxamide ([11C]MPPA, 
[11C]4) (Figure 1), as new candidate PET 
neuroinflammation imaging agents, for the first time.  
 

COO11CH3

N

N

HN

S

S

N
H2N

[11C]MABL (CX3CR1)

[11C]PBR28 (TSPO)

N
N

O
O11CH3

O

NO
O

H
N

Cl
CF3

11CH3

[11C]GSK1482160 (P2X7)

FS
H
N

O

O

O

H3
11CO

[11C]FMAME (MMP)

NN

CF3

H3
11COOC

R

Carbon-11-labeled celecoxib derivatives (COX-2)
R=2-OMe; 3-OMe; 4-OMe; 4-Me

N
H

N
H

F
O

OC5H11

H3
11CO O

[11C]MCFA (CB2)

N
11CH3

H
N

Cl Cl

O O

[11C]SB-216763 (GSK-3)

N

CH3

N
N

N

N

NHO

NN
N

H3
11C

[11C]MMPC (IRAK4)

NH

O

O

H
H3

11CO

[11C]R-(-)-Rolipram (PDE4)

[11C]1

CF3

H3
11CO

N
H

O

H3
11CO

CF3

N
H N

O

O[11C]MPPA, [11C]4

11C-dual sEH/PDE4 inhibitors

N

N
H

O

18F

[18F]FNDP ([18F]JHU12315) (sEH)

 
Figure 1. PET radiotracers for imaging of neuroinflammation. 
 
IC50 values for [11C]MPPA are 2.1 nM (hsEH) and 8.1 
nM (PDE4),25 compared to previously reported 
[18F]FNDP (IC50 8.66 nM for sEH)28 and [11C]R-(-)-
Rolipram (IC50 290 nM for PDE4),29 the results suggest 
the imaging probes developed in this study have 



 
superior in vitro biological data to [11C]R-(-)-Rolipram 
and [18F]FNDP. 
 
Synthesis of the reference standards 1, 4; and their 
corresponding desmethylated precursors N-(4-hydroxy-
2-(trifluoromethyl)benzyl)benzamide (2), N-(4-
hydroxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4-carboxamide (5) is depicted in 
Scheme 1, according to the reported procedures.25,30-34 
Compounds 1 and 4 were prepared by an amidation 
reaction from commercially procured (4-methoxy-2-
(trifluoromethyl)phenyl)methanamine and benzoic acid 
or propionylpiperidine-4-carboxylic acid (3) in the 
presence of 1-ethyl-3-(3-(dimethylamino)-
propyl)carbodiimide (EDC) and 4-(dimethylamino)-
pyridine (DMAP) in 84% and 70% yield, respectively. 
Compound 3 was prepared from 4-
piperidinecarboxylate through an amidation reaction 
with propionyl chloride, and then hydrolyzed with 
aqueous NaOH in 88% yield. The desmethylated 
precursors 2 and 5 were obtained by desmethylation 
reaction of the reference standards 1 and 4 with BBr3 in 
CH2Cl2 at 0 ºC in 59% and 55% yield, respectively.  
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Scheme 1. Synthesis of reference standards 1, 4 and precursors 2, 5.  
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Scheme 2. Synthesis of target tracers [11C]1 and [11C]4.  
 
Synthesis of the target tracers [11C]1 and [11C]4 is 
presented in Scheme 2. The desmethylated precursor 2 
or 5 underwent O-[11C]methylation35 using the reactive 
[11C]methylating agent [11C]methyl triflate 
([11C]CH3OTf)36,37 in acetonitrile at 80 °C under basic 
conditions (2 N NaOH). The product was isolated by 
semi-preparative reverse-phase (RP) high performance 
liquid chromatography (HPLC) with a C-18 column, 
and then concentrated by solid-phase extraction (SPE) 
with a disposable C-18 Plus Sep-Pak cartridge to 
produce the corresponding pure radiolabeled compound 
[11C]1 or [11C]4 in 25-35%  radiochemical yield, decay 

corrected to end of bombardment (EOB), based on 
[11C]CO2. 
 
The radiosynthesis was performed in a home-built 
automated multi-purpose [11C]-radiosynthesis 
module.38-40 Our radiosynthesis module facilitated the 
overall design of the reaction, purification and 
reformulation capabilities in a fashion suitable for 
adaptation to preparation of human doses. The 
radiosynthesis includes three stages: 1) labeling 
reaction; 2) purification; and 3) formulation. The overall 
synthesis time was 35-40 min from EOB. Our module is 
also designed to allow in-process measurement of [11C]-
tracer molar activity (AM, GBq/µmol at EOB) using a 
radiation detector with a UV detector at the outlet of the 
HPLC-portion of the system. At the end of synthesis 
(EOS), the AM of [11C]-tracer was determined again by 
analytical RP-HPLC, calculated, decay corrected to 
EOB, and based on [11C]CO2, which was in agreement 
with the ‘on line’ determined value. The AM of [11C]1 
and [11C]4 produced in our PET chemistry facility was 
in the range of 370-740 GBq/µmol at EOB, using the 
Siemens RDS-111 Eclipse cyclotron 11C-gas target, the 
Eckert & Ziegler Modular Lab C-11 Methyl 
Iodide/Triflate module, and our [11C]-radiosynthesis 
unit.35     
  
Chemical purity and radiochemical purity were 
determined by analytical RP-HPLC.41 The chemical 
purity of the precursor and reference standard was 
>90% determined by RP-HPLC through UV flow 
detector. A representative analytical RP-HPLC 
chromatographic profile for the tracers [11C]1 and 
[11C]4, Radio-HPLC (A) and UV-HPLC (B) traces for 
[11C]1; Radio-HPLC (C) and UV-HPLC (D) traces for 
[11C]4, is shown in Figure 2. The radiochemical purity 
of the target tracer [11C]1 or [11C]4 was >99% 
determined by Radio-HPLC through γ-ray (PIN diode) 
flow detector as indicated in Figure 2, A or C. The 
chemical purity of the target tracer [11C]1 or [11C]4 was 
simultaneously determined by UV-HPLC through UV 
flow detector as indicated in Figure 2, B or D. The 
minor impurities included its corresponding labeling 
precursor 2 or 5 and a few unknown UV peaks from the 
saline used in tracer formulation after HPLC-SPE 
purification. However, there is no chemical purity of the 
tracer release limit in PET tracer production, because 
the radiosynthesis is a micro-scale synthesis, and the 
radiotracer prepared is very trace amount.    
 
The stability of the labeled tracers [11C]1 and [11C]4 was 
evaluated by analytical HPLC from EOS up to 3 h, one 
injection of the tracer solution in EtOH/saline onto 
HPLC column per hour. The HPLC chromatograms 
showed [11C]1 and [11C]4 were stable without 
decomposition. 



 

A.  Analytical radioactive HPLC trace for [11C]1, Retention time (tR) = 6.64 min  
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B. Analytical UV HPLC trace for [11C]1, tR = 6.56 min 
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C. Analytical radioactive HPLC trace for [11C]4, tR = 4.31 min 
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D. Analytical UV HPLC trace for [11C]4, tR = 4.23 min 
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Figure 2. A representative analytical RP-HPLC chromatographic profile for the tracers [11C]1 and 
[11C]4: (A) Radio-HPLC trace for [11C]1 and (B) UV-HPLC trace for [11C]1; (C) Radio-HPLC trace 
for [11C]4 and (D) UV-HPLC trace for [11C]4. Analytical RP-HPLC conditions were a Prodigy 
(Phenomenex) 5 µm C-18 column, 4.6 × 250 mm; mobile phase 65% CH3CN/35% 4.0 mM 
CH3COONa; flow rate 1.0 mL/min; UV (254 nm) and γ-ray (PIN diode) flow detectors.    
 
 
 
 
 



 
 
The experimental details and characterization data for 
compounds 1-5 and for the tracers [11C]1 and [11C]4 are 
given.42  
 
In summary, facile synthetic routes with moderate to 
high yields have been developed to produce the 
reference standards 1 and 4, desmethylated precursors 2 
and 5, and target tracers [11C]1 and [11C]4. The 
radiosynthesis employed [11C]CH3OTf for O-
[11C]methylation at the phenol hydroxyl position of the 
desmethylated precursor, followed by product 
purification and isolation using a semi-preparative RP 
HPLC combined with SPE. [11C]1 and [11C]4 were 
obtained in high radiochemical yield, radiochemical 
purity and chemical purity, with a reasonably short 
overall synthesis time, and high molar activity. This will 
facilitate studies to evaluate [11C]1 and [11C]4 as new 
potential PET agents for imaging of sEH and PDE4 
enzymes in neuroinflammation.    
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NMR) and to the solvent signal (13C NMR), and 
coupling constants (J) are reported in hertz (Hz).  
Liquid chromatography-mass spectra (LC-MS) 
analysis was performed on AB Sciex 4000Q Trap 
instrument, consisting of an 1100 series HPLC 
connected to a diode array detector and a 1946D mass 
spectrometer configured for positive-ion/negative-ion 
electrospray ionization (ESI). The high resolution 
mass spectra (HRMS) were obtained using a 
Waters/Micromass LCT Classic spectrometer. 
Chromatographic solvent proportions are indicated as 
volume : volume ratio. Thin-layer chromatography 
(TLC) was run using HS silica gel GF254 uniplates (5 
× 10 cm2).  Plates were visualized under UV light. 
Normal phase flash column chromatography was 
carried out on Combiflash Rf 150 silica gel 60 (300-
400 mesh) with a forced flow of the indicated solvent 
system in the proportions described below. All 
moisture- and air-sensitive reactions were performed 
under a positive pressure of nitrogen maintained by a 
direct line from a nitrogen source. Analytical RP-
HPLC was performed using a Prodigy (Phenomenex) 
5 µm C-18 column, 4.6 × 250 mm; mobile phase 65% 
CH3CN/35% 4.0 mM CH3COONa; flow rate 1.0 
mL/min; UV (254 nm) and γ-ray (PIN diode) flow 
detectors. Semi-preparative RP-HPLC column was 
performed using a Prodigy (Phenomenex) 5 µm C-18 
column, 10 × 250 mm; 70% CH3CN/30% H2O mobile 
phase; 5 and 4 mL/min flow rate for [11C]1 and [11C]4, 
respectively; UV (254 nm) and γ-ray (PIN diode) flow 
detectors. C18 Plus Sep-Pak cartridges were obtained 
from Waters Corporation (Milford, MA).  Sterile 
Millex-FG 0.2 µm filter units were obtained from 
Millipore Corporation (Bedford, MA).   
(b). N-(4-Methoxy-2-
(trifluoromethyl)benzyl)benzamide (1): To a stirred 
solution of benzoic acid (0.2 g, 0.85 mmol) in 
dichloromethane (CH2Cl2, 10 mL), EDC (320 mg, 
2.00 mmol), and DMAP (40 mg, 0.34 mmol) were 
added at room temperature (RT) under a nitrogen 
atmosphere. After the reaction was continued for 1 h, 
(4-methoxy-2-(trifluoromethyl)phenyl)methanamine 
(160 μL, 0.93 mmol) was added, and the reaction was 
continued at RT for another 24 h. Water (30 mL) was 
added to the reaction mixture, and then the resulted 
solution was extracted with CH2Cl2 (3 × 30 mL). The 
combined organic layer was washed with  1 N NaOH 
(3 × 20 mL), 1 N HCl (3 × 20 mL) and brine (3 × 20 
mL), dried over anhydrous Na2SO4 and filtered. The 
solvent was evaporated under vacuum. The resulted 
crude product was purified by silica gel column 
chromatography with petroleum ether (PE)/EtOAc 
(3:1) as eluent to afford 1 as a white solid (0.22 g, 
84%), mp 106.3-110.7 ºC. 1H NMR (600 MHz, 
CDCl3): δ 7.75 (d, J = 7.7 Hz, 2H), 7.57 (d, J = 8.5 
Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.6 Hz, 
2H), 7.18 (d, J = 2.2 Hz, 1H), 7.03 (dd, J = 8.4, 1.9 
Hz, 1H), 6.48 (s, 1H), 4.74 (d, J = 5.9 Hz, 2H), 3.83 

(s, 3H). (LC-MS, m/z): Calcd for C16H15F3NO2  
([M+H]+) 310.1, found:310.1. 
(c). N-(4-Hydroxy-2-
(trifluoromethyl)benzyl)benzamide (2): To a stirred 
solution of 1 (27 mg, 0.086 mmol) in CH2Cl2 (5 mL), 
BBr3 (50 µL, 0.52 mmol) was added slowly at 0 ºC, 
the reaction mixture was warmed up to RT and 
continued for 20 h. The reaction mixture was poured 
into ice water (10 mL), and then the CH2Cl2 was 
removed under reduced pressure. The resulted 
aqueous solution was extracted with EtOAc (3 × 20 
mL). The combined organic layer was washed with 
water, brine, dried over anhydrous Na2SO4 and 
filtered. The organic solution was evaporated under 
vacuum, and the resulted product was purified by 
silica gel column chromatography with PE/EtOAc 
(1:1) as eluent to afford 2 as a white solid (15 mg, 
59%), mp 122.5-124 ºC. 1H NMR (600 MHz, CDCl3): 
δ 9.97 (s, 1H), 8.96 (t, J = 5.4 Hz, 1H), 7.90 (d, J = 7.3 
Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 8.5 Hz, 
2H), 7.33 (d, J = 8.5 Hz, 1H), 7.07 (d, J = 2.2 Hz, 1H), 
7.01 (dd , J = 8.4, 1.7 Hz, 1H), 4.54 (d, J = 5.4 Hz, 
2H). 13C NMR (100MHz, MeOD): δ 169.28, 157.10, 
155.44, 143.56, 134.01, 131.51, 130.53, 128.21 (2C), 
127.11, 118.42, 116.58, 115.18, 112.56, 40.73. HRMS 
(ESI, m/z): Calcd for C15H13F3NO2 ([M+H]+) 
296.0893, found: 296.0887.  
(d). Propionylpiperidine-4-carboxylic acid (3): To a 
stirred solution of methyl 4-piperidinecarboxylate (4.5 
g, 30 mmol) in CH2Cl2 (10 mL), propionyl chloride 
(3.5 mL, 40 mmol) and triethyl amine (5.6 mL, 37 
mmol) were added slowly at 0 ºC. The reaction was 
continued at 0 ºC for 4 h. Then the reaction was 
quenched by adding water (10 mL), and extracted with 
CH2Cl2 (2 × 20 mL). The combined organic layer was 
washed with water, brine, dried over anhydrous 
Na2SO4 and filtered. After the solvent was removed 
under reduced pressure, methanol (20 mL) and 
aqueous NaOH (5.0 N, 20 mL) were added to the 
residue. The resulted mixture was stirred at RT for 16 
h. The methanol was removed under reduced pressure, 
and pH of the solution was adjusted to 6-7 with 5 N 
aqueous HCl. The mixture was extracted with CH2Cl2 
(3 × 50 mL), and the combined organic layer was 
washed with water, brine, dried over anhydrous 
Na2SO4 and filtered. The solvent was evaporated 
under vacuum, and the crude product was purified by 
silica gel column chromatography with PE/EtOAc 
(3:1) as eluent to afford 3 as a white solid (5.11 g, 
88%), mp 86.5-87.8 ºC. 1H NMR (600MHz , CDCl3): 
δ 4.41 (d, J = 13.3 Hz, 1H), 3.82 (d, J = 13.6 Hz, 1H), 
3.16 - 3.11 (m, 1H) , 2.88 - 2.83 (m, 1H) , 2.60 - 2.56 
(m, 1H), 2.39 - 2.35 (m, 2H), 1.98 - 1.96 (m, 2H), 1.74 
- 1.63 (q, J = 7.4 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H). 
(LC-MS, m/z): Calcd for C9H16NO3 ([M+H]+) 186.2, 
found:186.4 
(e). N-(4-Methoxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4-carboxamide (MPPA, 4): 
Compound 4 was prepared by following the synthesis 



 
procedure of compound 1. The crude product was 
purified by silica gel column chromatography with 
CH2Cl2/CH3OH (10:1) as eluent to afford 4 as a white 
solid (0.26 g, 70%), mp 132.4-136.9 ºC. 1H NMR (600 
MHz, CDCl3): δ 7.45 (d, J = 8.5 Hz, 1H), 7.16 (d, J = 
2.6 Hz, 1H), 7.02 (dd, J = 8.5, 2.6 Hz, 1H), 5.81 (s, 
1H), 4.53 (d, J = 5.6 Hz, 2H), 3.83 (s, 3H), 3.05 - 3.00 
(m, 1H), 2.65 - 2.00 (m, 1H), 2.35 - 2.28 (m, 3H), 1.91 
- 1.81 (m, 2H), 1.70 - 1.57 (m, 4H), 1.13 (t, J = 7.4, 
3H). (LC-MS, m/z): Calcd for C18H24F3N2O3 ([M+H]+) 
373.4, found: 373.2 
(f). N-(4-Hydroxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4carboxamide (5): Compound 5 
was prepared by following the synthesis procedure of 
compound 2. The crude product was purified by silica 
gel column chromatography with CH2Cl2/CH3OH 
(8:1) as eluent to afford 5 as a white solid (17 mg, 
55%), mp 142.5-145.3 ºC. 1H NMR (600 MHz, 
DMSO-d6): δ 8.29 (t, J = 5.5 Hz, 1H), 7.23 (d, J = 
8.5 Hz, 1H), 7.03 (d, J = 2.2 Hz, 1H), 6.98 (dd, J = 
8.5, 1.7 Hz, 1H), 4.29 (d, J = 5.2 Hz, 2H), 3.86 (d, J = 
13.5Hz, 1H), 2.98 (t, J =12.3 Hz, 1H), 2.54 (t, J = 11.4 
Hz, 1H), 2.47 - 2.42 (m, 1H), 2.34 - 2.25 (m, 2H), 1.72 
(t, J = 14.6Hz, 2H), 1.53 - 1.23 (m, 2H), 0.97 (t, J = 
7.4 Hz, 3H). 13C NMR (100 MHz, MeOD): δ 175.63, 
173.32, 156.78, 131.22, 126.49, 124.38, 118.44, 
118.16, 112.46, 44.89, 42.37, 41.08, 39.11, 28.79, 
28.21, 25.88, 8.59. HRMS (ESI, m/z): Calcd for 
C17H22F3N2O3 ([M+H]+) 359.1577, found: 359.1569.  
(g). N-(4-[11C]methoxy-2-
(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-
[11C]methoxy-2-(trifluoromethyl)benzyl)-1-
propionylpiperidine-4-carboxamide ([11C]MPPA, 
[11C]4): [11C]CO2 was produced by the 14N(p,α)11C 
nuclear reaction in the small volume (9.5 cm3) 
aluminum gas target provided with the Siemens RDS-
111 Eclipse cyclotron. The target gas consisted of 1% 
oxygen in nitrogen purchased as a specialty gas from 
Praxair, Indianapolis, IN. Typical irradiations used for 
the development were 58 µA beam current and 20 min 

on target. The production run produced approximately 
37.0 GBq of [11C]CO2 at EOB. The precursor 2 or 5 
(0.1-0.3 mg) was dissolved in CH3CN (500 µL). To 
this solution was added aqueous NaOH (2 N, 2 µL). 
The mixture was transferred to a small reaction vial. 
No-carrier-added (high molar activity) [11C]CH3OTf 
that was produced by the gas-phase production 
method37 within 12 min from [11C]CO2 through 
[11C]CH4 and [11C]CH3Br with AgOTf column was 
passed into the reaction vial at RT until radioactivity 
reached a maximum (2 min), and then the reaction vial 
was isolated and heated at 80 °C for 3 min. The 
contents of the reaction vial were diluted with aqueous 
NaHCO3 (0.1 M, 1 mL). The reaction vial was 
connected to a 3-mL HPLC injection loop. The 
labeled product mixture solution was injected onto the 
semi-preparative HPLC column for purification. The 
product fraction was collected in a recovery vial 
containing 30 mL water. The diluted tracer solution 
was then passed through a C-18 Plus Sep-Pak 
cartridge, and washed with water (3 × 10 mL). The 
cartridge was eluted with EtOH (3 × 0.4 mL) to 
release the labeled product, followed by saline (10-11 
mL). The eluted product was then sterile-filtered 
through a Millex-FG 0.2 µm membrane into a sterile 
vial. Total radioactivity was assayed and total volume 
(10-11 mL) was noted for tracer dose dispensing. The 
overall synthesis time including HPLC-SPE 
purification and reformulation was 35-40 min from 
EOB. The decay corrected radiochemical yield was 
25-35%. Retention times in the analytical RP-HPLC 
system were: tR 2 = 3.57 min, tR 1 = 6.56 min, and tR 
[11C]1 = 6.64 min; and tR 5 = 2.76 min, tR 4 = 4.23 
min, and tR [11C]4 = 4.31 min. Retention times in the 
preparative RP-HPLC system were: tR 2 = 5.25 min, tR 
1 = 7.67 min, and tR [11C]1 = 7.74 min; and tR 5 = 4.52 
min, tR 4 = 6.78 min, and tR [11C]4 = 6.83 min. 
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