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Abstract 

 

The reference standard N-(3-(4-methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-

yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (9) and its demethylated precursor N-(1-(5-

Methylpyridin-2-yl)-3-(piperazin-1-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-α]pyrimidine-3-

carboxamide (8) were synthesized from pyrazolo[1,5-a]pyrimidine-3-carboxylic acid and ethyl 

2-cyanoacetate with overall chemical yield 13% in nine steps and 14% in eight steps, 

respectively. The target tracer N-(3-(4-[
11

C]methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-

pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide ([
11

C]9) was prepared from its precursor 

with [
11

C]CH3OTf through N-[
11

C]methylation and isolated by HPLC combined with SPE in 50-

60% radiochemical yield, based on [
11

C]CO2 and decay corrected to EOB. The radiochemical 

purity was >99%, and the specific activity at EOB was 370-1110 GBq/mol. 

 

Keywords: N-(3-(4-[
11

C]methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-

yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide; Interleukin-1 receptor-associated kinase 4 

(IRAK4); Radiosynthesis; Positron emission tomography (PET); Neuroinflammation 

 

 

1. Introduction 

 

Inflammation is a complex biological process and part of the body’s immune response involving 

immune cells, blood vessels, and molecular mediators for self-protection to remove harmful 

stimuli, including damaged cells, irritants, or pathogens (Rodero and Crow, 2016). 

Neuroinflammation is the inflammation of the nervous tissue, and it is associated with central 
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nervous system (CNS) diseases like Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), 

traumatic brain injury (TBI) and stroke (Chen et al., 2016; Knzevic and Mizrahi, 2017; Rodero 

and Crow, 2016; Tronel et al., 2017). Molecular imaging of neuroinflammation in 

neurodegenerative diseases by positron emission tomography (PET) is one of the most active as 

well as most challenging areas in neuroscience, because PET neuroimaging can offer various 

non- or minimally invasive techniques to characterize neuroinflammatory processes for the 

purpose of diagnosis, therapy and treatment monitoring (Calsolaro and Edison, 2016; Cerami et 

al., 2017; Kielian, 2014; Schain and Kreisl, 2017). Many enzyme- or receptor-based radioligands 

have been developed for in vivo PET visualization of neuroinflammation (Albrecht et al., 2016; 

Gargiulo et al., 2017; Ory et al., 2014). We are interested in the development of new PET 

radioligands for neuroinflammation. In our previous work, we have synthesized and developed a 

series of PET radiotracers (Gao et al., 2010, 2011, 2015, 2017a; Territo et al., 2017; Wang et al., 

2009; Zheng et al., 2003) that target the enzyme or receptor linked to neuroinflammation such as 

[
11

C]FMAME for matrix metalloproteinase (MMP), carbon-11-labeled celecoxib derivatives for 

cyclooxygenase-2 (COX-2), [
11

C]PBR28 for translocator protein (TSPO), [
11

C]MCFA for 

cannabinoid receptor 2 (CB2), [
11

C]GSK1482160 for purinergic receptor (P2X7), and 

[
11

C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-D-leucinate for CX3C 

chemokine receptor 1 (CX3CR1), as indicated in Figure 1. These PET tracers may have different 

imaging mechanisms, unfortunately, they have been found to have some drawbacks as an 

“inflammation” radiotracer. For example, in humans TSPO ligand [
11

C]PBR28 exhibited high 

inter-subject variability in binding affinity, with a genetic polymorphism of the TSPO target 

resulting in population stratification into high-, mixed- and low-affinity binders (Yoder et al., 
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2013). Thus, new “inflammation” PET tracers remain to be developed. In this ongoing study, we 

first select the enzyme interleukin-1 receptor-associated kinase 4 (IRAK4) as another more 

specific neuroinflammatory target for PET imaging. The enzyme IRAK4 represents a novel 

inflammation-associated molecular target. Radiotracers that target IRAK4 have the potential to 

overcome the limitations associated with previous “inflammation” radiotracers. IRAK4 is a 

critical upstream kinase in neuroinflammation and plays an important role in the progression of 

various neurodegenerative diseases (Jeong et al., 2017; Lv et al., 2017; Wang et al., 2014; Yuan 

et al., 2015). Recently, a potent and selective amidopyrazole inhibitor of IRAK4 with IC50 5 nM, 

N-(3-(4-methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-

a]pyrimidine-3-carboxamide (9), has been developed by Merck (McElroy et al., 2015). However, 

the PubMed search showed no records on radiolabeled IRAK4 inhibitors. Here we report the 

design and synthesis of a new carbon-11-labeled IRAK4 amidopyrazole inhibitor N-(3-(4-

[
11

C]methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-

a]pyrimidine-3-carboxamide ([
11

C]9) as a candidate PET neuroinflammation imaging agent. 

 

Insert Figure 1 about here 

 

 

2. Results and discussion 

 

2.1. Chemistry 
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The reference standard 9 and its demethylated precursor N-(1-(5-methylpyridin-2-yl)-3-

(piperazin-1-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (8) were synthesized 

as depicted in Scheme 1, according to the published procedures (Gopalsamy et al., 2009; Lim 

and Altman, 2015;  McElroy et al., 2015) with modifications. Pyrazolo[1,5-a] pyrimidine-3-

carbonyl chloride (1) was achieved by the reaction of commercially available pyrazolo[1,5-

a]pyrimidine-3-carboxylic acid with thionly chloride. Compound 1 was used directly without 

further purification. 2-Cyano-3,3-bis(methylthio)acrylic acid (3) was prepared from ethyl 2-

cyanoacetate by condensation with carbon disulfide in the presence of aqueous NaOH in EtOH, 

followed by hydrolysis with aqueous NaOH and methylation with dimethyl sulfate based on the 

reported procedure (Henriksen, 1996), with an overall chemical yield 54% for two steps. 

Commercially available tert-butyl piperazine-1-carboxylate and compound 3 underwent 

combined substitution and decarboxylation in the presence of trimethylamine (TEA) in MeOH  

to give (Z)-tert-butyl 4-(2-cyano-1-(methylthio)vinyl)piperazine-1-carboxylate (4) in 70% yield. 

Condensation of 4 with hydrazine monohydrate in EtOH afforded pyrazole derivative tert-butyl 

4-(5-amino-1H-pyrazol-3-yl)piperazine-1-carboxylate (5) in 90% yield. Coupling of pyrazole 

derivative 5 and 2-bromo-5-methylpyridine employed CuI as catalyst, (1S,2S)-N
1
,N

2
-

dimethylcyclohexane-1,2-diamine as organic ligand in the presence of Cs2CO3 in dimethyl 

sulfoxide (DMSO) to afforded tert-Butyl 4-(5-amino-1-(5-methylpyridin-2-yl)-1H-pyrazol-3-

yl)piperazine-1-carboxylate (6) in 60% yield. Amidation of acyl halide 1 with amine 6 in the 

presence of N, N-diisopropylethylamine (DIPEA) in CH2Cl2 gave amide derivative 7 in 73% 

yield, which was deprotected Boc group with trifluoroacetic acid (TFA) in CH2Cl2 to yield the 

precursor 8 in 95% yield. N-methylation was performed by reductive amination of compound 8 

with formaldehyde by NaBH(OAC)3 in CH2Cl2 to obtain the reference standard 9 in 98% yield. 
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The specific modifications to the published synthetic procedures were major in the optimization 

of the reaction conditions in each step to improve the synthetic yield. For instance, we used 

TFA/CH2Cl2 instead of HCl/dioxane in the reported procedure (McElroy et al., 2015) for the 

deprotecting reaction of Boc group of compound 7 to give the precursor 8 in high yield.  

 

Insert Scheme 1 about here 

 

2.2. Radiochemistry 

 

Synthesis of the target tracer ([
11

C]9) is shown in Scheme 2. Demethylated precursor 8 

underwent N-[
11

C]methylation (Wang et al., 2013, 2015)
 
using the reactive [

11
C]methylating 

agent [
11

C]methyl triflate ([
11

C]CH3OTf) (Jewett, 1992; Mock et al., 1999)
 
in acetonitrile at 80 

°C under basic conditions (2 N NaOH). The product was isolated by semi-preparative reverse-

phase (RP) high performance liquid chromatography (HPLC) with a C-18 column,
 
and then 

concentrated by solid-phase extraction (SPE) (Wang et al., 2011, 2012a) with a disposable C-18 

Light Sep-Pak cartridge to produce the corresponding pure radiolabeled compound [
11

C]9 in 50-

60%  radiochemical yield, decay corrected to end of bombardment (EOB), based on [
11

C]CO2. 

 

Insert Scheme 2 about here 

 

The radiosynthesis included three stages: 1) labeling reaction; 2) purification; and 3) 

formulation. We employed more reactive [
11

C]CH3OTf, instead of commonly used [
11

C]methyl 

iodide ([
11

C]CH3I) (Allard et al., 2008), in N-[
11

C]methylation to improve radiochemical yield of 
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[
11

C]9. We used an Eckert & Ziegler Modular Lab C-11 Methyl Iodide/Triflate module to 

produce [
11

C]methylating agent either [
11

C]CH3OTf or [
11

C]CH3I ([
11

C]CH3Br passed through a 

NaI column). The direct comparison between [
11

C]CH3OTf and [
11

C]CH3I confirmed the result. 

The labeling reaction was conducted using a V-vial method. Addition of aqueous NaHCO3 to 

quench the radiolabeling reaction and to dilute the radiolabeling mixture prior to the injection 

onto the semi-preparative HPLC column for purification gave better separation of [
11

C]9 from its 

3-(piperazin-1-yl) precursor 8. We used Sep-Pak trap/release method instead of rotatory 

evaporation for formulation to improve the chemical purity of radiolabeled product [
11

C]9. In 

addition, a C18 Light Sep-Pak to replace a C18 Plus Sep-Pak allowed final product formulation 

with ≤5% ethanol (Zheng et al., 2015). Overall, it took ~40 min for synthesis, purification and 

dose formulation.   

 

The radiosynthesis was performed in a home-built automated multi-purpose [
11

C]-radiosynthesis 

module (Mock et al., 2005a,b; Wang et al, 2012b). This radiosynthesis module facilitated the 

overall design of the reaction, purification and reformulation capabilities in a fashion suitable for 

adaptation to preparation of human doses. In addition, the module is designed to allow in-process 

measurement of [
11

C]-tracer specific activity (SA, GBq/mol at EOB) using a radiation detector 

at the outlet of the HPLC-portion of the system. For the reported syntheses, product SA was in a 

range of 370-1110 GBq/mol at EOB. The major factors including [
11

C]-target and [
11

C]-

radiosynthesis unit that affect the EOB SA significantly to lead to such a wide range from 370 to 

1110 GBq/mol have been discussed in our previous works (Gao et al., 2016a). The general 

methods to increase SA have been described as well, and the SA of our [
11

C]-tracers is 

significantly improved (Glick-Wilson et al., 2017). The ‘wide range’ of SA we reported is for the 
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same [
11

C]-tracer produced in different days, because very different [
11

C]-target and [
11

C]-

radiosynthesis unit situations would make SA in a wide range. For a [
11

C]-tracer produced in the 

same day, the SA of the same tracer in different production runs will be in a small range, because 

[
11

C]-target and [
11

C]-radiosynthesis unit would not be much different in the same day. Likewise, 

the methods to minimize such wide range of SA from practice perspective have been provided in 

our previous works (Gao et al., 2017b). At the end of synthesis (EOS), the SA of [
11

C]-tracer was 

determined again by analytical HPLC (Zheng and Mock, 2005), calculated, decay corrected to 

EOB, and based on [
11

C]CO2, which was in agreement with the ‘on line’ determined value. In 

each our [
11

C]-tracer production, if semi-preparative HPLC was used for purification, then the 

SA of [
11

C]-tracer was assessed by both semi-preparative HPLC (during synthesis) and analytical 

HPLC (EOS); if SPE was used for purification, then the SA of [
11

C]-tracer was only measured 

by analytical HPLC at EOS (Gao et al., 2016b).                

 

Chemical purity and radiochemical purity were determined by analytical HPLC (Zheng and 

Mock, 2005). The chemical purity of the precursor and reference standard was >99%. The 

radiochemical purity of the target tracer was >99% determined by radio-HPLC through -ray 

(PIN diode) flow detector, and the chemical purity of the target tracer was >85% determined by 

reversed-phase HPLC through UV flow detector.   

 

 

3. Experimental 

 

3.1. General 
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All commercial reagents and solvents were purchased from Sigma-Aldrich and Fisher Scientific, 

and used without further purification. [
11

C]CH3OTf was prepared according to a literature 

procedure (Mock et al., 1999). Melting points were determined on WRR apparatus and were 

uncorrected. 
1
H NMR spectra were recorded on a Bruker Avance II 600 MHz NMR Fourier 

transform spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to an 

internal standard tetramethylsilane (TMS,  0.0), and coupling constants (J) are reported in hertz 

(Hz). Liquid chromatography-mass spectra (LC-MS) analysis was performed on AB Sciex 

4000Q Trap instrument, consisting of an 1100 series HPLC connected to a diode array detector 

and a 1946D mass spectrometer configured for positive-ion/negative-ion electrospray ionization 

(ESI). The high resolution mass spectra (HRMS) were obtained using a Waters/Micromass LCT 

Classic spectrometer. Chromatographic solvent proportions are indicated as volume: volume 

ratio. Thin-layer chromatography (TLC) was run using HS silica gel GF254 uniplates (5  10 

cm
2
).  Plates were visualized under UV light. Preparative TLC was run using HS silica gel 

UV254 plates (20  20 cm
2
). Normal phase flash column chromatography was carried out on 

Combiflash Rf 150 silica gel 60 (300-400 mesh) with a forced flow of the indicated solvent 

system in the proportions described below. All moisture- and air-sensitive reactions were 

performed under a positive pressure of nitrogen maintained by a direct line from a nitrogen 

source. Analytical RP HPLC was performed using a Prodigy (Phenomenex) 5 m C-18 column, 

4.6  250 mm; mobile phase 30%CH3CN/70% 0.05% TFA; flow rate 1.0 mL/min; UV (254 nm) 

and -ray (PIN diode) flow detectors. Semi-preparative RP HPLC was performed using a 

Prodigy (Phenomenex) 5 m C-18 column, 10  250 mm; mobile phase 30%CH3CN/70% 20 

mM H3PO4; flow rate 4 mL/min; UV (254 nm) and -ray (PIN diode) flow detectors. C18 Light 
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Sep-Pak cartridges were obtained from Waters Corporation (Milford, MA).  Sterile Millex-FG 

0.2 m filter units were obtained from Millipore Corporation (Bedford, MA).  

 

3.2. Pyrazolo[1,5-a]pyrimidine-3-carbonyl chloride (1) 

 

A solution of pyrazolo[1,5-a]pyrimidine-3-carboxylic acid (102 mg, 0.62 mmol) in thionyl 

chloride (10.0 g, 6.2 mL, 84 mmol) was stirred and heated at reflux for 1.5 h. Excess thionyl 

chloride was removed in vacuo, the crude product was washed with hexanes and dried in vacuo 

to afford compound 1 as a yellow solid (112 mg, 100%), which was used directly for preparing 

compound 7. 

 

3.3. Sodium 2-cyano-3-ethoxy-3-oxoprop-1-ene-1,1-bis(thiolate) (2) 

 

A stirred mixture of ethyl 2-cyanoacetate (16.0 g, 141.5 mmol) and carbon disulfide (10.7 g, 

141.7 mmol) in EtOH (50 mL) was cooled to 0
 
°C, followed by addition of a solution of NaOH 

(11.3 g, 283 mmol) in water (11.3 mL) dropwise at 0
 
°C. Then the reaction mixture was warmed 

to room temperature (RT) and stirred for 30 min. The precipitation was filtered, washed with 

anhydrous ethanol and dried in vacuo to afford compound 2 as a yellow solid (29.9 g, 90%), mp 

90.0-91.5 °C. 
1
H NMR (D2O): δ 4.08 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H). 

 

3.4. 2-Cyano-3,3-bis(methylthio)acrylic acid (3) 
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A mixture of compound 2 (29.9 g, 128.3 mmol) and NaOH (8.7 g, 218 mmol) in water (60 mL) 

was stirred and heated at 40
 
°C for 6 h. After the reaction mixture was cooled to 0

 
°C, anhydrous 

ethanol (100 mL) was added dropwise at 0
 
°C. The aqueous layer was separated and diluted with 

water (100 mL), followed by addition of dimethyl sulfate (27.5 g, 18.7 mmol) at 0
 
°C. After the 

mixture was warmed to RT and stirred for 30 min, it was cooled to 0
 
°C and filtered. The filtrate 

was adjusted with 6 M HCl to pH 2, the precipitate was filtered and dried in vacuo to afford 3 as 

a white solid (14.5 g, 60%), mp 107.3-108.5 °C. 
1
H NMR (DMSO-d6): δ 2.69 (s, 3H), 2.58 (s, 

3H). 

 

3.5. tert-Butyl (Z)-4-(2-cyano-1-(methylthio)vinyl)piperazine-1-carboxylate (4) 

 

To a stirred solution of compound 3 (706 mg, 3.7 mmol) in MeOH (30 mL), trimethylamine 

(318.0 mg, 3.7 mmol) was added at 0
 
°C, followed by addition of tert-butyl piperazine-1-

carboxylate (1.4 g, 7.7 mmol). After the reaction mixture was stirred at 0
 
°C for 12 h, it was 

diluted with water and extracted with EtOAc. The combined organic layer was washed with 

brine, dried over anhydrous Na2SO4 and filtered. The solvent was evaporated in vacuo. The 

crude product was purified by silica gel column chromatography with petroleum ether 

(PE)/EtOAc (9:1 to 7:3) as eluent to afford 4 as a white solid (735 mg, 70%), mp 51.1-53.5
 
°C. 

1
H NMR (DMSO-d6): δ 4.61 (s, 1H), 3.37 (t, J = 5.2 Hz, 4H), 3.30 (t, J = 5.2 Hz, 4H), 2.34 (s, 

3H), 1.42 (s, 9H). LC-MS (ESI, m/z): Calcd for C13H21N3O2SNa ([M+Na]
+
) 306.1, found: 306.0.  

 

3.6. tert-Butyl 4-(5-amino-1H-pyrazol-3-yl)piperazine-1-carboxylate (5) 
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A mixture of compound 4 (590 mg, 2.08 mmol) and hydrazine monohydrate (250 mg, 5.0 mmol) 

in EtOH (5 mL) was stirred and heated at reflux for 14 h. After the reaction mixture was cooled 

to RT, it was diluted with water and extracted with CH2Cl2. The combined organic layer was 

washed with brine, dried over anhydrous Na2SO4 and filtered. The organic solvent was 

evaporated in vacuo. The crude product was purified by silica gel column chromatography with 

CH2Cl2/MeOH (100:1 to 9:1) as eluent to afford 5 as a white solid (510 mg, 90%), mp 133.5-

135.8 °C. 
1
H NMR (CDCl3): δ 5.30 (s, 1H), 4.99 (s, 1H), 3.50 (t, J = 4.3 Hz, 4H), 3.06 (t, J = 4.3 

Hz, 4H), 1.46 (s, 9H). LC-MS (ESI, m/z): Calcd for C12H21N5O2Na ([M+Na]
+
) 290.2, found: 

290.2. 

 

3.7. tert-Butyl 4-(5-amino-1-(5-methylpyridin-2-yl)-1H-pyrazol-3-yl)piperazine-1-carboxylate 

(6) 

 

A mixture of compound 5 (300 mg, 1.1 mmol), 2-bromo-5-methylpyridine (234 mg, 1.2 mmol), 

CuI (22 mg, 0.1 mmol), (1S,2S)-N
1
,N

2
-dimethylcyclohexane-1,2-diamine (16 mg, 0.1 mmol) and 

Cs2CO3 (734 mg, 2.3 mmol) in DMSO (3 mL) was purged with N2 for 10 min. The reaction 

mixture was heated at 130 °C in a sealed tube for 15 h. After the reaction mixture was cooled to 

RT, it was diluted with water (30 mL) and extracted with EtOAc. The combined organic layer 

was washed with brine, dried over anhydrous Na2SO4 and filtered. The organic solvent was 

evaporated in vacuo. The crude product was purified by silica gel column chromatography with 

PE/EtOAc (100:1 to 3:2) as eluent to afford 6 as a white solid (336 mg, 60%), mp 145.6-152.0 

°C. 
1
H NMR (CDCl3): δ 8.06 (s, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 5.92 (s, 
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2H), 5.04 (s, 1H), 3.53 (t, J = 5.0 Hz, 4H), 3.21 (t, J = 5.0 Hz, 4H), 2.29 (s, 3H), 1.47 (s, 9H). 

HRMS (ESI, m/z): Calcd for C18H26N6O2 ([M+H]
+
) 359.2190, found: 359.2188. 

 

3.8. tert-Butyl 4-(1-(5-methylpyridin-2-yl)-5-(pyrazolo[1,5-a]pyrimidine-3-carboxamido)-1H-

pyrazol-3-yl)piperazine-1-carboxylate (7) 

 

To a stirred solution of compound 1  (112 mg, 0.62 mmol) in CH2Cl2 (5 mL) was added 

compound 6 (92 mg, 0.33 mmol) and DIPEA (60 μL). After the reaction mixture was stirred at 

RT for 2 h, it was diluted with water and extracted with CH2Cl2. The combined organic layer 

was washed with brine, dried over anhydrous Na2SO4 and filtered. The organic solvent was 

evaporated in vacuo. The crude product was purified by silica gel column chromatography with 

PE/EtOAc (100:1 to 1:1) to afford 7 as a white solid (121 mg, 73%), mp 187.4-188.2 °C. 
1
H 

NMR (CDCl3): δ 13.36 (s, 1H), 8.85 (dd, J = 4.1, 1.7 Hz, 1H), 8.84-8.83 (dd, J = 7.0, 1.7 Hz, 

1H), 8.78 (s, 1H), 8.24 (s, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.5, 2.0 Hz), 7.09 (dd, J = 

7.0, 4.1 Hz, 1H), 6.76 (s, 1H), 3.57 (s, 4H), 3.33 (s, 4H), 2.37 (s, 3H), 1.49 (s, 9H). LC-MS (ESI, 

m/z): Calcd for C25H29N9O3Na ([M+Na]
+
) 526.1, found: 526.1. 

  

3.9. N-(1-(5-Methylpyridin-2-yl)-3-(piperazin-1-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-α]pyrimidine-

3-carboxamide (8) 

 

To a stirred solution of compound 7  (219 mg, 0.44 mmol) in CH2Cl2 (10 mL) was added TFA (1 

mL) dropwise. After the reaction mixture was stirred at RT for 2 h, the solvent was removed in 

vavuo. The residual was diluted with water, adjusted with 3 N NaOH to pH 10 and extracted 
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with CH2Cl2. The combined organic layer was washed with brine, dried over anhydrous Na2SO4 

and filtered. The organic solvent was evaporated in vacuo. The crude product was purified by 

silica gel column chromatography with CH2Cl2/MeOH (100:1 to 9:1) to afford 8 as a white solid 

(167 mg, 95%), mp 209.9-211.3 °C. 
1
H NMR (CDCl3): δ 13.32 (s, 1H), 8.82 (dd, J = 4.1, 1.7 Hz, 

1H), 8.81 (dd, J = 6.9, 1.7 Hz, 1H), 8.76 (s, 1H), 8.22 (s, 1H),7.77 (d, J = 8.5 Hz, 1H), 7.59 (dd, 

J = 8.5, 2.0 Hz, 1H), 7.06 (dd, J = 6.9, 4.1 Hz, 1H), 6.75 (s, 1H), 3.34 (t, J = 4.8 Hz, 4H), 3.03 (t, 

J = 4.8 Hz, 4H),2.36 (s, 3H). LC-MS (ESI, m/z): Calcd for C20H21N9O ([M+H]
+
) 404.1, found: 

404.2. HRMS (ESI, m/z): Calcd for C20H21N9O ([M+H]
+
) 404.1941, found: 404.1937. 

 

3.10. N-(3-(4-methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-

a]pyrimidine-3-carboxamide (9)  

 

To a stirred solution of compound 8  (167 mg, 0.41mmol) in CH2Cl2 (10 mL) was added 

formaldehyde (100 μL, 37% solution in water, 1.23 mmol) and DIPEA (170 μL, 1.23 mmol). 

After the reaction mixture was stirred at RT for 20 min, NaBH(OAc)3 (318 mg, 1.5 mmol) was 

added and the mixture was stirred at RT for 20 h. The reaction was quenched with saturated 

NaHCO3 (30 mL) and extracted with CH2Cl2. The combined organic layer was washed with 

brine, dried over anhydrous Na2SO4 and filtered. The organic solvent was evaporated in vacuo. 

The crude product was purified by silica gel column chromatography with CH2Cl2/MeOH (100:1 

to 9:1) to afford 9 as a white solid (167 mg, 98%), mp 218.3-219.9 °C. 
1
H NMR (CDCl3): δ 

13.34 (s, 1H), 8.84 (dd, J = 4.0, 1.5 Hz, 1H), 8.83 (dd, J = 6.9, 1.5 Hz, 1H), 8.78 (s, 1H), 8.24 (s, 

1H), 7.79 (d, J = 8.5 Hz, 1H), 7.59 (dd, J = 8.5, 1.9Hz, 1H), 7.08 (dd, J = 6.9, 4.0 Hz, 1H), 6.76 

(s, 1H), 3.42 (t, J = 4.5 Hz, 4H), 2.58 (t, J = 4.5 Hz, 4H), 2.36 (s, 3H), 2.17 (s, 3H). LC-MS (ESI, 
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m/z): Calcd for C21H23N9O ([M+H]
+
) 418.2, found: 418.2. HRMS (ESI, m/z): Calcd for 

C21H23N9O ([M+H]
+
) 418.2098, found: 418.2093. 

 

3.11. N-(3-(4-[
11

C]methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-

yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide ([
11

C]9) 

 

[
11

C]CO2 was produced by the 
14

N(p,)
11

C nuclear reaction in the small volume (9.5 cm
3
) 

aluminum gas target provided with the Siemens RDS-111 Eclipse cyclotron. The target gas 

consisted of 1% oxygen in nitrogen purchased as a specialty gas from Praxair, Indianapolis, IN. 

Typical irradiations used for the development were 58 A beam current and 15 min on target. 

The production run produced approximately 25.9 GBq of [
11

C]CO2 at EOB. Demethylated 

precursor 8 (0.1-0.3 mg) was dissolved in CH3CN (300 L). To this solution was added aqueous 

NaOH (2 N, 2 L). The mixture was transferred to a small reaction vial. No-carrier-added (high 

specific activity) [
11

C]CH3OTf that was produced by the gas-phase production method (Mock et 

al., 1999) within 12 min from [
11

C]CO2 through [
11

C]CH4 and [
11

C]CH3Br with silver triflate 

(AgOTf) column was passed into the reaction vial at RT until radioactivity reached a maximum 

(2 min), and then the reaction vial was isolated and heated at 80 C for 3 min. The contents of the 

reaction vial were diluted with aqueous NaHCO3 (0.1 M, 1 mL). The reaction vial was connected 

to a 3-mL HPLC injection loop. The labeled product mixture solution was injected onto the 

semi-preparative HPLC column for purification. The product fraction was collected in a recovery 

vial containing 30 mL water. The diluted tracer solution was then passed through a C-18 Sep-Pak 

Light cartridge, and washed with water (3 × 10 mL). The cartridge was eluted with EtOH (3  

0.4 mL) to release the labeled product, followed by saline (10-11 mL). The eluted product was 
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then sterile-filtered through a Millex-FG 0.2 m membrane into a sterile vial. Total radioactivity 

was assayed and total volume (10-11 mL) was noted for tracer dose dispensing. The overall 

synthesis time including HPLC-SPE purification and reformulation was ~40 min from EOB. The 

decay corrected radiochemical yield was 50-60%. Retention times in the analytical HPLC system 

were: tR 8 = 6.86 min, tR 9 = 7.66 min, tR [
11

C]9 = 7.82 min. Retention times in the preparative 

HPLC system were: tR 8 = 5.85 min, tR 9 = 8.53 min, tR [
11

C]9 = 8.87 min. 

 

 

4. Conclusion 

 

In summary, synthetic routes with moderate to high yields have been developed to produce the 

reference standard 9, demethylated precursor 8 and target tracer [
11

C]9. The radiosynthesis 

employed [
11

C]CH3OTf for N-[
11

C]methylation at the piperazin position of the desmethyl 

precursor, followed by product purification and isolation using a semi-preparative RP HPLC 

combined with SPE. [
11

C]9 was obtained in high radiochemical yield, radiochemical purity and 

chemical purity, with a reasonably short overall synthesis time, and high specific activity. This 

will facilitate studies to evaluate [
11

C]9 as a new potential PET agent for imaging of IRAK4  

enzyme in neuroinflammation. 
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Figure and Scheme Legends 

 

Figure 1. PET radiotracers for imaging of neuroinflammation.  

 

Scheme 1. Synthesis of N-(3-(4-methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-pyrazol-5-

yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (9) and N-(1-(5-Methylpyridin-2-yl)-3-(piperazin-

1-yl)-1H-pyrazol-5-yl)pyrazolo[1,5-α]pyrimidine-3-carboxamide (8). 

 

Scheme 2. Synthesis of N-(3-(4-[
11

C]methylpiperazin-1-yl)-1-(5-methylpyridin-2-yl)-1H-

pyrazol-5-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide ([
11

C]9).  
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Scheme 2. 

 

 

 

 

 

Highlights 

 A new carbon-11-labeled amidopyrazole inhibitor of IRAK4 was synthesized. 

 A fully automated multi-purpose [
11

C]-radiosynthesis module was built up. 

 A semi-preparative RP HPLC-SPE technique was employed in radiosynthesis. 

 


