32 research outputs found

    Etude de la fonction cardiaque 4D à partir de ciné cardiaque 3D via une synchronisation sur la respiration et rythme cardiaque: travail de Bachelor

    Get PDF
    Objectifs : Dans le cadre de l’exploration cardiaque en IRM, nous expĂ©rimentons une sĂ©quence 4D Ă  partir d’une sĂ©quence 4D Flow. L’objectif est de calculer la fraction d’éjection et de la comparer avec la sĂ©quence 2D cinĂ© (gold standard actuel) utilisĂ©e cliniquement. GrĂące Ă  des outils statistiques, nous Ă©valuons la reproductibilitĂ© intra- et inter-opĂ©rateurs de la sĂ©quence 4D. Nous regardons Ă©galement la prĂ©cision de cette sĂ©quence en comparant les rĂ©sultats des segmentations 4D aux segmentations de la sĂ©quence 2D cinĂ©. MĂ©thodologie : Dans un premier temps, nous avons optimisĂ© la sĂ©quence 4D en modifiant certains paramĂštres comme la vitesse d’encodage retenue Ă  30cm/s et le tracking factor (tf) de 0.6 × mouvement mesurĂ© (au niveau du diaphragme). Les sĂ©quences ont Ă©tĂ© rĂ©alisĂ©es, Ă  quatre temps diffĂ©rents, sur trois individus sains. Dans un second temps, nous avons calculĂ© la fraction d’éjection du ventricule gauche (FEVG) en le segmentant en diastole et en systole selon la mĂ©thode Simpson. Cela a Ă©tĂ© fait sur la sĂ©quence 4D et sur la 2D cinĂ©, deux fois, afin d’obtenir des donnĂ©es plus consĂ©quentes pour mesurer la corrĂ©lation entre les deux techniques et la variabilitĂ© entre chaque opĂ©rateur. Enfin, chaque valeur obtenue est introduite dans un tableau Excel, puis convertie sous forme d’équation ICC et Bland-Altman. A partir de ça, nous calculons la variabilitĂ© intra- et inter-opĂ©rateur, ce qui nous permet de visualiser la concordance de nos rĂ©sultats et de comparer les valeurs obtenues pour le 4D avec celles obtenues pour le 2D cinĂ©. RĂ©sultats : Les calculs ICC donnent des valeurs entre 0.71 et 0.96 pour les diffĂ©rents temps d'acquisitions. Ces donnĂ©es traduisent de bonnes corrĂ©lation et reproductibilitĂ© intra-opĂ©rateur, par rapport Ă  ce que dit la littĂ©rature (> 0.75). Quant Ă  la variabilitĂ© inter-opĂ©rateur, elle est, dans l'ensemble, en dessous de la valeur de rĂ©fĂ©rence (< 0.4) synonyme d'une faible corrĂ©lation entre opĂ©rateur. Suite Ă  ces rĂ©sultats peu encourageants, nous voulions trouver la source d’erreur. En Ă©tudiant les volumes systoliques et diastoliques sĂ©parĂ©ment (et non la FEVG), nous constatons un rĂ©sultat Ă©levĂ© en diastole (0.78), mais en dessous de nos moyennes en systole (0.4). Conclusion : Suite Ă  l'analyse de nos rĂ©sultats, nous constatons que le travail de segmentation de chacun d'entre nous subit une amĂ©lioration avec le temps et nous permet de diminuer la variabilitĂ© entre 2D cinĂ© et 4D. La reproductibilitĂ© est observĂ©e en intra- mais est Ă  rĂ©Ă©valuer de façon plus approfondie en inter-opĂ©rateur

    Plasmacytoid Dendritic Cells Capture and Cross-Present Viral Antigens from Influenza-Virus Exposed Cells

    Get PDF
    Among the different subsets of dendritic cells (DC), plasmacytoid dendritic cells (PDC) play a unique role in secreting large amounts of type I interferons upon viral stimulation, but their efficiency as antigen-presenting cells has not been completely characterized. We show here, by flow cytometry, with human primary blood PDC and with a PDC cell line, that PDC display poor endocytic capacity for soluble or cellular antigens when compared to monocyte-derived myeloid DC. However, immature PDC efficiently take up cellular material from live influenza-exposed cells, subsequently mature and cross-present viral antigens very efficiently to specific CD8+ T cells. Therefore, during viral infection PDC not only secrete immunomodulatory cytokines, but also recognize infected cells and function as antigen cross-presenting cells to trigger the anti-viral immune response

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Impacts of the Imidazolate Linker Substitution (CH3, Cl, or Br) on the Structural and Adsorptive Properties of ZIF-8

    No full text
    International audienceZeolitic Imidazolate Frameworks (ZIFs) represent a thriving subclass of metal–organic frameworks (MOFs) owing to the large variety of their topologies, of which some of them are common with zeolites, and the ability to modulate the chemistry of their frameworks as well as the hydrophobicity/hydrophilicity balance, making them perfect examples of the isoreticular chemistry concept. One peculiar structural feature of ZIFs is their potential for structural transitions by rotation (or swing) of their linkers under external stimuli (guest adsorption, mechanical constraints, etc.). This singular characteristic, often denominated “swing effect” or “gate opening”, is related to flexible ZIFs. Our study focuses on the influence of the functional group (−CH3, −Cl, −Br) borne in position 2 by the imidazolate linker on the flexible/stiff nature of three isoreticular ZIFs with SOD topology. In the first part, we report the structures of ZIF-8_Cl and ZIF-8_Br, two halogenated analogs of the well-known ZIF-8 (herein named ZIF-8_CH3), thanks to synergistic contributions of powder X-ray diffraction and 13C MAS NMR spectroscopy. In both cases, a disorder of the linker is noted and characterized by two quasi-equal occupancies of the two linker subsets in the asymmetric unit. Experimental nitrogen sorption measurements, performed at 77 K for the three isoreticular ZIFs, combined with first-principles molecular dynamics simulations bring to light the flexibility of ZIF-8_CH3 and ZIF-8_Cl and the stiffness of ZIF-8_Br
    corecore