754 research outputs found

    Concept and Unintended Consequences of Weather Index Insurance: The Case of Mexico

    Get PDF
    Recently, Weather Index Insurance (WII) has received considerable attention as a tool to insure farmers against weather related risks, particularly in developing countries. Donor organizations, local governments, insurance companies, development economists as well as agricultural economists are discussing the costs and benefits of WII. While the literature on WII has mainly focused on many cases in Africa and Asia, in this article we analyze the WII program in Mexico, which is one of the largest WII programs worldwide. In this context we discuss potentially important spill-over effects on related markets which so far have not been considered in the academic literature. First, we argue that WII creates disincentives to invest in other non-insured crops leading to potential overspecialization and monoculture. Secondly, WII generates disincentives to invest in irrigation systems because farmers are insured only as long as production takes place on non-irrigated land. Third, in case of catastrophic events food prices can potentially inflate with indemnity payments at the expense of the uninsured poor. We also suggest that in Mexico the thresholds of the weather index be (continuously) re-calibrated in order to adjust for the development of drought resistant seeds. Finally, the index could relatively easily be extended to account for precipitation variances. We argue that these factors and spillover effects should be accounted for in cost benefit analysis of WII.Weather Index Insurance, policy evaluation, Mexico

    Dianthin and Its Potential in Targeted Tumor Therapies

    Get PDF
    Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers

    A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data

    Get PDF
    Clouds are one of the major uncertainties of the climate system. The study of cloud processes requires information on cloud physical properties, in particular liquid water path (LWP). This parameter is commonly retrieved from satellite data using look-up table approaches. However, existing LWP retrievals come with uncertainties related to assumptions inherent in physical retrievals. Here, we present a new retrieval technique for cloud LWP based on a statistical machine learning model. The approach utilizes spectral information from geostationary satellite channels of Meteosat Spinning-Enhanced Visible and Infrared Imager (SEVIRI), as well as satellite viewing geometry. As ground truth, data from CloudNet stations were used to train the model. We found that LWP predicted by the machine-learning model agrees substantially better with CloudNet observations than a current physics-based product, the Climate Monitoring Satellite Application Facility (CM SAF) CLoud property dAtAset using SEVIRI, edition 2 (CLAAS-2), highlighting the potential of such approaches for future retrieval developments

    Enabling Cysteine-Free Native Chemical Ligation at Challenging Junctions with a Ligation Auxiliary Capable of Base Catalysis

    Get PDF
    Ligation auxiliaries are used in chemical protein synthesis to extend the scope of native chemical ligation (NCL) beyond cysteine. However, auxiliary-mediated ligations at sterically demanding junctions have been difficult. Often the thioester intermediate formed in the thiol exchange step of NCL accumulates because the subsequent S→N acyl transfer is extremely slow. Here we introduce the 2-mercapto-2-(pyridin-2-yl)ethyl (MPyE) group as the first auxiliary designed to aid the ligation reaction by catalysis. Notably, the MPyE auxiliary provides useful rates even for junctions containing proline or a β-branched amino acid. Quantum chemical calculations suggest that the pyridine nitrogen acts as an intramolecular base in a rate-determining proton transfer step. The auxiliary is prepared in two steps and conveniently introduced by reductive alkylation. Auxiliary cleavage is induced upon treatment with TCEP/morpholine in presence of a MnII complex as radical starter. The synthesis of a de novo designed 99mer peptide and an 80 aa long MUC1 peptide demonstrates the usefulness of the MPyE auxiliary.Peer Reviewe

    Costs and benefits of combined sewer overflow management strategies at the European scale

    Get PDF
    Combined sewer overflows (CSOs) may represent a significant source of pollution, but they are difficult to quantify at a large scale (e.g. regional or national), due to a lack of accessible data. In the present study, we use a large scale, 6-parameter, lumped hydrological model to perform a screening level assessment of different CSO management scenarios for the European Union and United Kingdom, considering prevention and treatment strategies. For each scenario we quantify the potential reduction of CSO volumes and duration, and estimate costs and benefits. A comparison of scenarios shows that treating CSOs before discharge in the receiving water body (e.g. by constructed wetlands) is more cost-effective than preventing CSOs. Among prevention strategies, urban greening has a benefit/cost ratio one order of magnitude higher than grey solutions, due to the several additional benefits it entails. We also estimate that real time control may bring on average a CSO volume reduction of just above 20%. In general, the design of appropriate CSO management strategies requires consideration of context-specific conditions, and is best made in the context of an integrated urban water management plan taking into account factors such as other ongoing initiatives in urban greening, the possibility to disconnect impervious surfaces from combined drainage systems, and the availability of space for grey or nature-based solutions

    Annealing of Gadolinium-Doped Ceria (GDC) Films Produced by the Aerosol Deposition Method

    Get PDF
    Solid oxide fuel cells need a diffusion barrier layer to protect the zirconia-based electrolyte if a cobalt-containing cathode material like lanthanum strontium cobalt ferrite (LSCF) is used. This protective layer must prevent the direct contact and interdiffusion of both components while still retaining the oxygen ion transport. Gadolinium-doped ceria (GDC) meets these requirements. However, for a favorable cell performance, oxide ion conducting films that are thin yet dense are required. Films with a thickness in the sub-micrometer to micrometer range were produced by the dry room temperature spray-coating technique, aerosol deposition. Since commercially available GDC powders are usually optimized for the sintering of screen printed films or pressed bulk samples, their particle morphology is nanocrystalline with a high surface area that is not suitable for aerosol deposition. Therefore, different thermal and mechanical powder pretreatment procedures were investigated and linked to the morphology and integrity of the sprayed films. Only if a suitable pretreatment was conducted, dense and well-adhering GDC films were deposited. Otherwise, low-strength films were formed. The ionic conductivity of the resulting dense films was characterized by impedance spectroscopy between 300 °C and 1000 °C upon heating and cooling. A mild annealing occurred up to 900 °C during first heating that slightly increased the electric conductivity of GDC films formed by aerosol deposition

    Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite observations with machine learning

    Get PDF
    Understanding the processes that determine low-cloud properties and aerosol–cloud interactions (ACIs) is crucial for the estimation of their radiative effects. However, the covariation of meteorology and aerosols complicates the determination of cloud-relevant influences and the quantification of the aerosol–cloud relation. This study identifies and analyzes sensitivities of cloud fraction and cloud droplet effective radius to their meteorological and aerosol environment in the atmospherically stable southeast Atlantic during the biomass-burning season based on an 8-day-averaged data set. The effect of geophysical parameters on clouds is investigated based on a machine learning technique, gradient boosting regression trees (GBRTs), using a combination of satellite and reanalysis data as well as trajectory modeling of air-mass origins. A comprehensive, multivariate analysis of important drivers of cloud occurrence and properties is performed and evaluated. The statistical model reveals marked subregional differences of relevant drivers and processes determining low clouds in the southeast Atlantic. Cloud fraction is sensitive to changes of lower tropospheric stability in the oceanic, southwestern subregion, while in the northeastern subregion it is governed mostly by surface winds. In the pristine, oceanic subregion large-scale dynamics and aerosols seem to be more important for changes of cloud droplet effective radius than in the polluted, near-shore subregion, where free tropospheric temperature is more relevant. This study suggests the necessity to consider distinct ACI regimes in cloud studies in the southeast Atlantic

    Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861

    Get PDF
    Targeted tumor therapy can provide the basis for the inhibition of tumor growth. However, a number of toxin-based therapeutics lack efficacy because of insufficient endosomal escape after being internalized by endocytosis. To address this problem, the potential of glycosylated triterpenoids, such as SO1861, as endosomal escape enhancers (EEE) for superparamagnetic iron oxide nanoparticle (SPION)-based toxin therapy was investigated. Herein, two different SPION-based particle systems were synthesized, each selectively functionalized with either the targeted toxin, dianthin-epidermal growth factor (DiaEGF), or the EEE, SO1861. After applying both particle systems in vitro, an almost 2000-fold enhancement in tumor cell cytotoxicity compared to the monotherapy with SPION-DiaEGF and a 6.7-fold gain in specificity was observed. Thus, the required dose of the formulation was appreciably reduced, and the therapeutic window widened
    corecore