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Abstract: Clouds are one of the major uncertainties of the climate system. The study of cloud
processes requires information on cloud physical properties, in particular liquid water path (LWP).
This parameter is commonly retrieved from satellite data using look-up table approaches. However,
existing LWP retrievals come with uncertainties related to assumptions inherent in physical retrievals.
Here, we present a new retrieval technique for cloud LWP based on a statistical machine learning
model. The approach utilizes spectral information from geostationary satellite channels of Meteosat
Spinning-Enhanced Visible and Infrared Imager (SEVIRI), as well as satellite viewing geometry.
As ground truth, data from CloudNet stations were used to train the model. We found that LWP
predicted by the machine-learning model agrees substantially better with CloudNet observations
than a current physics-based product, the Climate Monitoring Satellite Application Facility (CM SAF)
CLoud property dAtAset using SEVIRI, edition 2 (CLAAS-2), highlighting the potential of such
approaches for future retrieval developments.

Keywords: liquid water path; geostationary satellite; SEVIRI; CM SAF CLAAS-2; CloudNet;
machine learning; gradient boosted regression trees

1. Introduction

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC)
stated that clouds remain one of the largest uncertainties of the climate system [1]. The study of cloud
processes requires information on cloud physical properties, such as the liquid water path (LWP).
LWP is a critical control variable of short- and longwave cloud radiative effects, and therefore Earth’s
radiative balance [2]. It is defined as the vertical integral of liquid water content above a unit area. As a
parameter summarizing the water content of clouds, LWP can play an important role in water cycle
research. For this reason, LWP is among the fundamental elements of the water cycle included in the
Essential Climate Variables [3]. This study presents the development of a new procedure to retrieve
LWP from satellite data. Processing and re-processing satellite data in this way can be used to build
a climate data record (CDR) of LWP, to be used for better understanding of the water cycle and the
global climate system.

LWP has been retrieved from satellite data at both optical and microwave wavelengths [4,5].
Passive microwave satellite data have been used to estimate LWP as passive microwave sensors have
the ability to penetrate clouds, allowing to directly measure liquid cloud condensate amount [5].
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However, they have much coarser spatial resolutions than optical sensors, and their LWP retrievals
have been limited to ocean regions [5,6]. LWP estimation with optical sensor data is usually based on
bispectral reflectances, as the reflection of clouds at the non-absorbing visible (VIS) channels changes
with cloud optical thickness (COT), and the reflection at water or ice absorbing near-infrared (NIR)
channels varies with cloud particle size. To retrieve COT and cloud droplet effective radius (DER),
the satellite observations of reflectances at VIS and NIR wavelengths are usually compared with
simulated reflectances stored in lookup tables (LUTs). LUTs are generated using a radiative transfer
model for combinations of optical thickness, particle size, and surface albedo. Then, cloud LWP is
calculated from the retrieved COT and DER [7].

Several studies have evaluated these satellite retrievals with in-situ measurements (cf. [7–9]).
However, existing LWP retrievals come with uncertainties related to assumptions inherent in physical
retrievals such as the plain-parallel clouds, which is problematic for fractional cloudiness [7,10],
and other retrieval issues from viewing angle and scale differences [2,10]. Solar zenith angle (SZA)
and scene heterogeneity have been commonly reported as error sources in past studies [6,11].
Seethala and Horváth [6] reported better LWP estimation in overcast scenes (cloud fractions of
95–100%). They also reported errors coming from SZA and scene heterogeneity. Greenwald et al. [11]
identified clear-sky biases, cloud-rain partition biases, cloud-fraction-dependent biases, and cloud
temperature biases as potential error sources. It was observed that bias-corrected LWP shows a
poor agreement with observations on mostly cloudy scenes. Kostsov et al. [9] also mentioned the
inhomogeneity of cloud fields as an error source for the differences between satellite and ground-based
observations. This inhomogeneity involves the interaction between types of the underlying surface and
the atmospheric conditions affecting LWP values as well, which further links to a seasonal dependence
of accuracy. Besides, when satellite products are compared to ground-based data, errors can be
induced by the choice of the validation method. The scale difference and parallax problem were raised
by Greuell and Roebeling [2] and Schutgens and Roebeling [10] as the major causes of uncertainty.
Greuell and Roebeling [2] presented a set of standardized validation methods such as averaging LWP
values for both satellite and ground-based data over a certain time period for clouds moving across
observation sites using a Gaussian weighting function and parallax correction. Machine learning
approaches have the potential to avoid some of the assumptions necessary for the LUT approach and
find better solutions for other retrieval issues, hence resulting in potentially more robust LWP estimates.

In this study, we present a machine learning-based approach for retrieving cloud LWP to
reduce retrieval uncertainties. Ground-based supersite (CloudNet) observations are used as ground
truth, and spectral information from geostationary satellite channels (SEVIRI), and satellite viewing
geometries are combined to develop a statistical LWP retrieval. Machine learning model-derived
LWP estimates are compared with a state-of-the art physics-based cloud property dataset (CLAAS-2,
described in Section 2.1). Both LWP retrievals are evaluated and compared with the CloudNet in-situ
measurements. We focus on all seasons except for winter (i.e., December, January, and February)
to avoid the effect of reflectance of ice and snow. The decisions of the machine learning model are
analyzed in detail to examine the influence of input variables on the LWP retrieval, and biases of
model-derived LWP are discussed.

2. Data and Methods

2.1. Meteosat-9 SEVIRI Data

Meteosat-9, launched on 21 December 2005, is one of the Meteosat Second Generation (MSG)
geostationary satellites. It is equipped with the Spinning Enhanced Visible Infra-Red Imager (SEVIRI).
It observes a disk covering Europe, the North Atlantic, and Africa with a spatial resolution of 1 km for
the high resolution visible (HRV) channel and 3 km for two visible (VIS) and nine infrared (IR) channels
and with a nominal repeat cycle of 15 min. While it has a spatial resolution of 3 km × 3 km at nadir,
this corresponds to roughly 4 km (E-W) × 6 km (N-S) over Europe [12]. The SEVIRI imaging is done by
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scanning the full Earth disk from east to west along the south–north direction in about 12 min, followed
by the data calibration and transfer for 3 min. In this study, we used two VIS channels of 0.6 (VIS0.6)
and 0.8 (VIS0.8) µm; six IR channels of 1.6 (IR1.6), 3.9 (IR3.9), 8.7 (IR8.7), 10.8 (IR10.8), 12.0 (IR12),
and 13.4 (IR13.4) µm; and solar zenith angle (SZA) and solar azimuth angle (AZA). The input variables
are selected based on previous literature [7,13].

This paper is focused on water phase clouds. Water cloud pixels were identified using single- and
multispectral threshold methods [14]. Based on considerations by Strabala et al. [15] and Cermak and
Bendix [14], the following tests are applied: If IR12 – IR8.7 is greater than 2 K, then pixels are assigned
as water phase clouds. IR10.8 are cut off at very low brightness temperatures of 250 K to exclude
ice clouds in a straightforward way. Cirrus clouds are detected and filtered out if IR8.7 > IR10.8.
In addition, situations with SZA over 72◦ were not used due to expected high uncertainties [7].

2.2. CloudNet Data

CloudNet LWP data are used as the target from the sites Leipzig (51.353◦N, 12.434◦E), Lindenberg
(52.2105◦N, 14.13◦E), and Juelich (50.90856◦N, 6.4134◦E) in Germany. Other comparable stations
in Europe have insufficient sample sizes to be used as training data, or filtering related to
liquid-phase clouds resulted in a large reduction in samples when applied to regions in lower
latitudes, such as CloudNet site in Potenza, Italy. CloudNet data were averaged using median
over 15 min for the matching times, which is described in Section 2.4. LWP is one of the level-2a
CloudNet retrieved cloud parameters at 30-s temporal resolution and the vertically integrated liquid
water content in clouds. CloudNet is part of the European Aerosol, Clouds and Trace Gases
Research Infrastructure (ACTRIS) project (http://devcloudnet.fmi.fi/andhttps://actris.nilu.no/).
The main instruments at CloudNet sites are Doppler cloud radars, lidar ceilometers, and dual-
or multiwavelength microwave radiometers [16]. LWP is derived from microwave radiometer
(MWR) measurements [7]. MWRs measure brightness temperatures at two frequencies with different
atmospheric absorption characteristics (i.e., one sensitive to water vapor and the other sensitive to
cloud liquid water). The algorithm for calculating LWP uses the statistical relationship between the
observed brightness temperatures and LWP. The relationship is obtained through simulated brightness
temperatures by a radiative transfer model. More details on LWP retrieval methods were described by
Löhnert and Crewell [17] and Gaussiat et al. [18].

The influence of inhomogeneity of cloud fields on LWP retrieval was investigated. To this
end, we preprocessed the CloudNet LWP time series after Greuell and Roebeling [2] as follows.
LWP data were separated into two subsets: one with relatively homogeneous and the other with
relatively inhomogeneous cloud fields. The separation was done based on bins of equal size in terms
of CloudNet LWP. In each bin, samples were divided into homogeneous ones with their standard
deviations (STD) less than an upper bound defined as the third quartile plus 1.5× the interquartile
range (IQR) and inhomogeneous ones greater than the upper bound. We used the 3rd quartile + 1.5×
IQR criteria instead of the median value used by Greuell and Roebeling [2] since the distribution of
STD is highly biased toward low STD values (not shown). The STD was obtained from samples that
were collected over 2 h. LWP values over 180 g m−2 are discarded to strictly focus on non-precipitating
clouds [6].

2.3. CLAAS-2 Data

The Climate Monitoring Satellite Application Facility (CM SAF) of the European Organization
for the Exploitation of Meteorological Satellites (EUMETSAT) developed a product called ’Cloud
Physical Properties (CPP)’ as part of the CLAAS-2 (CM SAF CLoud property dAtAset Using SEVIRI,
edition 2) [19]. The CPP algorithm includes COT, DER, and LWP on the basis of VIS (0.6 µm) and
NIR (1.6 µm) reflectances from the Spinning-Enhanced Visible and Infrared Imager (SEVIRI) onboard
Meteosat satellites [7]. COT and REF are retrieved based on LUTs of top-of-atmosphere reflectances
simulated by a radiative transfer model. Then, LWP is calculated with an equation adapted from
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Stephens [20]. More detailed information on the retrieval can be found in the work by Benas et al. [21].
We used the CLAAS-2 LWP product to compare with the results of this study. The validation of
CLAAS-2 LWP product was comprehensively conducted by Benas et al. [21] with other satellite-based
LWP products. Roebeling et al. [7] conducted the validation of SEVIRI-based LWP retrievals using the
CPP algorithm with two CloudNet sites in Europe, showing a high agreement of the retrieved LWP
with CloudNet data during the summer months. The CLAAS-2 cloud mask (CMA) product was used
here to mask out clear-sky situations. The CMA product is produced based on a multispectral threshold
technique aiming at delineating all cloud-free pixels in satellite images, developed by the EUMETSAT
Satellite Application Facility on Nowcasting (NWC SAF). Cloud filled and cloud contaminated pixels
identified by the CMA product were used in this study.

2.4. Paring of SEVIRI, CLAAS-2 and CloudNet Data

To obtain the best matching possible between SEVIRI and CloudNet data, SEVIRI scan times
were calculated for the CloudNet sites. SEVIRI scans the Earth in the east–west direction while
rotating progressively to perform the south-north scan. A full disk SEVIRI acquisition is composed of
about 1250 scan lines [22]. At each satellite revolution, three image lines are acquired, so 1250 scan
lines provide 3750 image lines. The nominal Level 1.5 full disk SEVIRI images (except for HRV)
have 3712 lines × 3712 columns (N-S × E-W). The line step in the south–north scan is 9 km at the
sub-satellite point, where the satellite and the Earth’s center intersect the Earth’s surface, and spreads
towards the poles, so the sampling distance is defined to be exactly 3 km × 3 km at the sub-satellite
point [12,23]. Since the east–west scan is very fast (i.e., 30 ms), only south–north scan duration, that
is 0.6 s, is important for the scan time calculation. The calculation processes are briefly explained as
follows: (1) The acquisition starts at 81◦S. The number of degrees to the latitude of interest is calculated
from the start latitude (e.g., 20◦ if 61◦S is required). (2) The assumption about the spreading distance
from the equator to the pole between scan lines is made. Since one scan line contains three image lines,
for example, the line step in the regions with the ground resolution of 4 km is 4 km × 3 lines = 12 km.
In the mid-latitudes the average resolution of 6 km × 6 km is assumed. Therefore, the line steps in
kilometers are: 9 km for 0–10◦, 12 km for 10–30◦, 15 km for 30–40◦, and 18 km for 40–81◦. (3) The line
steps are used to calculate the number of scan lines which are accomplished until SEVIRI has reached
the latitude of interest. (4) The number of scan lines × 0.6 s is the time at the latitude of interest. A full
disk SEVIRI scan time image was finally obtained. As a result, it was identified that SEVIRI images
with a time interval of 15 min (i.e., 00, 15, 30 and 45 min) are approximately matched with CloudNet
times at 11, 26, 41 and 56 min in UTC. We paired SEVIRI, CLAAS-2, and CloudNet data by matching
their UTC times. The matching time stamp of CloudNet are the time stamp obtained from the SEVIRI
scan time calculation as explained above. The time stamp of CLAAS-2 is the same as SEVIRI as it is
based on SEVIRI images, so CLAAS-2 data were easily matched with SEVIRI using the same UTC time.
The matching with CloudNet data was also done in the same way as CloudNet–SEVIRI matching.

A parallax correction was applied based on the method suggested by Greuell and Roebeling [2].
The locations of the observation sites were corrected by a distance of

Htanθs (1)

where H is the averaged cloud-top height below 3 km from CloudNet cloud top altitude data and θs is
the satellite zenith angle. The sites were found to have mean parallax displacements of approximately
3.5 km, so that the pixel directly north of the SEVIRI pixel that encloses the CloudNet site was used.

2.5. Gradient Boosting Regression Trees

Gradient Boosting Regression Trees (GBRTs) are used as a machine learning algorithm to develop a
model that estimates LWP. GBRTs are an effective technique to extract nonlinear relationships between
a set of predictors and a target [24]. GBRTs are a generalization of boosting algorithm using arbitrary
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differentiable loss functions [25,26]. As a stage-wise additive model, weak learners (i.e., decision trees)
are added one at a time to the model, while existing weak learners in the model are left unchanged.
The trees are fitted to minimize a specified loss function through a gradient descent procedure by
reducing the residuals of previous learners. The GBRTs were implemented in Python 3 scikit-learn [26].

The GBRTs model is trained based on SEVIRI spectral observations and satellite viewing geometry
(SZA and AZA) as predictors and CloudNet LWP data as target. Two different sets of input features
are used, as shown in Table 1: (a) all SEVIRI channels described in Section 2.1 and the satellite
viewing geometry (hereafter, without feature selection); and (b) only those SEVIRI bands which are
commonly used in LWP retrievals [7,27] and the satellite viewing geometry (hereafter, with feature
selection). This is done to test if current physics-based retrieval techniques can be improved by
adding further information from other bands not exploited yet. A Box–Cox power transformation
is applied to the target variable (i.e., LWP) to ensure that lower values are not overrepresented in
the data. The transformation is a way of transforming a non-normal dependent variable into a
normal distribution [28]. The total numbers of samples were obtained as 450, 1207, and 412 for
Leipzig, Lindenberg, and Juelich, respectively, for homogeneous case, and 528, 1415, and 482 for
inhomogeneous case, as shown in Table A1. Date were collected from 11 August 2011 to 30 November
2015 for Leipzig, from 1 April 2011 to 29 November 2015 for Lindenberg, and from 8 April 2011 to
24 November 2015 for Juelich. All collected data are randomly separated into 67% of the data as
training data to build the model and the remaining 33% to independently test the model accuracy.

Hyper-parameter tuning is applied on the training data in order to find the optimal model set up
for the learning algorithm. The following parameters are tuned: the minimum number of samples
required to split an internal node, the minimum number of samples required to be at a leaf node,
maximum depth (number of layers of the decision trees), learning rate, and the number of estimators
(i.e., the number of boosting stages), as shown in Table 2. Randomized five-fold cross-validated grid
search is used to find the best combinations of hyper-parameters over a specific parameter settings
based on R2 score. During cross-validation, one fold is held out in a loop for validating the performance
of the model that is trained based on the four remaining folds. The least squares loss function is used
in this study. Early stopping is applied to terminate training when the validation score is no longer
improving, which is to prevent overfitting.

To understand how input features affect the model’s prediction, the following model-agnostic
methods are examined. Permutation feature importance is used to evaluate the importance of each
feature for the model’s prediction. It is obtained by measuring the decrease in the model’s score
when a single feature value is permuted, i.e., replaced with randomly shuffled feature values [29].
The reduction in the model score indicates how much the feature contributes to the model. First,
a baseline score matrix (R2 used in this study) is evaluated on the training data, secondly the column
of a feature is permuted and the matrix is evaluated again, and finally the permutation importance is
determined as the difference between the baseline matrix and matrix obtained after the permutation of
the feature column. Partial dependence (PD) plots are employed to analyze the interaction between
individual features and the target [25]. They show how the predictions partially depend on values
of the input variables of interest. For a more detailed interpretation of features, SHapley Additive
exPlanations (SHAP) interaction plots are explored to examine the interaction effects involving two
features on model’s predictions [30].

Table 1. Two sets of input features used in the GBRT models.

Feature Set 1 Feature Set 2

VIS0.6, VIS0.8 VIS0.6
IR1.6, IR3.9, IR8.7, IR10.8, IR12, IR13.4 IR1.6, IR3.9
SZA, AZA SZA, AZA
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Table 2. Model hyper-parameters tested for the randomized grid search with five-fold cross validation.
In the square bracket for grid search, the first integer number indicates the number to start, the second
number to stop, and the last number the incrementation.

Model Hyper-Parameters Parameter Grid Search

The number of estimators [10,500,10]
Learning rate [0.01,0.1,10]
Maximum number of features [1,5,1]
Minimum number of samples to split [2,10,1]
Minimum number of samples in a leaf [2,10,1]
Maximum depth of a tree [2,3,1]

3. Results and Discussion

3.1. Statistics for Model Performance

In the following, the performance of the new technique is evaluated side-by-side with
the physics-based (CLAAS-2) product, which is used as the well-tested reference [2,27].
In Tables A1 and A2 (Appendix A), the predictive skill of the GBRT model along with CLAAS-2
is summarized for the three sites. Figure 1 shows an example of the comparison of LWP predicted
by the GBRT model with CloudNet LWP in four different situations including homogeneous and
inhomogeneous clouds, and both with and without feature selection for test data. The fitted line of the
scatter plot for the homogeneous situation has a slope of 0.47 and an intercept of 38.5, as the higher
values tend to be underestimated. These values differ from the CLAAS-2 LWP scatter plot, and from
those reported by Greuell and Roebeling [2] (slope 1.12, intercept 0.8). A deviation was to be expected
given the differences in locations, time and approach. It should be noted that Greuell and Roebeling [2]
used LWP data less than 400 g m−2 and split LWP data into homogeneous and inhomogeneous cloud
fields with the median value of samples in each bin for the separation. R2 is found to be 47.3% for
the homogeneous cloud situation for the GBRT approach, and 26% for CLAAS-2. It was observed
that inhomogeneous situations feature a lower R2 value and a higher bias than homogeneous ones
(Figure 1), as well as for the other sites (Table A2). This is expected, given that the inhomogeneity
of cloud fields has been reported as one reason for the discrepancy between ground-based and
satellite-based LWP [2,9,27], but there seems to be no meaningful difference between homogeneous
and inhomogeneous cases.

The bias is a measure of how far the predicted values are from the true values, and used as
an indicator of accuracy in this study. It is calculated as the difference between the medians of
model-predicted LWP and CloudNet LWP [7]. Percent bias (PB) is calculated by dividing the bias
by the median of CloudNet LWP and multiplying it by 100, as in [2,7]. PB represents the average
tendency where the predicted values are greater or less than the true ones, with the optimal value of 0.
Positive PB values mean model overestimation bias, while negative values model underestimation
bias. The PB is found to be around 9%, which is almost the same as that reported by Roebeling et al. [7]
(9%) and slightly better than those reported by Greuell and Roebeling [2] (15%) and shown in the
CLAAS-2 LWP’s scatter plot (14%). In general, both homogeneous and inhomogeneous situations
without feature selection show higher R2 values than those with feature selection for all sites. It may
be because the other IR channels that are not used in those with feature selection could give valuable
information to obtain a more accurate estimation of LWP, although they contribute much less to the
prediction than the other channels, as discussed in Section 3.3. However, the difference is not obvious
in the PB values (cf. Tables A1 and A2).
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Figure 1. Scatter plot for homogeneous (upper) and inhomogeneous (lower) situations with no feature
selection (left column), with feature selection (middle column), and CM SAF LWP (right column) for
Leipzig. Independent test data shown in this figure are a random subset of 33% of the full dataset,
and date from 11 August 2011 to 30 November 2015. The red solid line is a line of best fit to the scatter
plot, and the black dotted line is an identity line. The color indicates the point density from blue (low)
to yellow (high), estimated by a Gaussian kernel density estimation. Note that the axes for the CM SAF
LWP plots have different sizes to include all data points.

Figure 2 shows the medians and interquartile range of bias distribution with respect to LWP
predicted from the GBRT model and CLAAS-2 for both homogeneous and inhomogeneous cloud
fields without feature selection. The bias distributions of both the GBRT model and CLAAS-2 LWP
show a tendency of increasing bias with increasing LWP values in general for both homogeneous
and inhomogeneous cloud fields without feature selection, which is also observed for those with
feature selection (not shown), especially when LWP > 100 g m−2, which was also found by Greuell and
Roebeling [2]. Deterioration of performance with increasing LWP values seems to be attributed
to the limited samples for large values of LWP, as the number of observations (in red letters)
drops substantially.
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Figure 2. Median and interquartile range of biases between CloudNet LWP binned by LWP predicted by
the GBRT model (red) and CM SAF (black) for: (a) homogeneous cloud fields; and (b) inhomogeneous
ones without feature selection for Leipzig (left), Lindenberg (middle), and Juelich (right), respectively.
Numbers at the bottom of the panels state number of observations.

3.2. Bias Analysis for LWP Retrieval

The bias was calculated for bins with a width of 20 g m−2 from instantaneous LWP values as a
function of CloudNet LWP for test data for homogeneous cloud fields without feature selection at
each site as an example (Figure 3). The biases of LWP predicted by the GBRT model increase with
increasing CloudNet LWP values, which is also observed for the other cloud fields with and without
feature selection. The reduction in accuracy with increasing LWP values has been observed in past
studies [2,7]. Roebeling et al. [7] reported an underestimation of about 30 g m−2 of SEVIRI-retrieved
LWP at a CloudNet LWP of 100 g m−2. This study is fairly consistent with this, with less than
25 g m−2 underestimation of predicted LWP at 100 g m−2 of CloudNet LWP. The limited number of
samples at higher LWP values is likely to contribute to an increased bias especially in the GBRT model.
Meanwhile, bias variability (represented by the error bars in the bias plots) is much larger for CLAAS-2
than in the GBRT approach. Figure 4 presents the bias calculated in the same way as for Figure 3
but from daily medians of LWP values. The ground-based instrument observes much smaller areas
around nadir than satellite pixel size. Using daily medians may mitigate the effect of spatial mismatch
caused by the scale differences between ground-based and satellite observations [7]. In general,
using longer LWP-averaging times reduces the bias in this study, which agrees with the findings of
Roebeling et al. [7]. They reported that the precision (i.e., variance) of the bias is significantly improved
when using the daily LWP values instead of using the instantaneous LWP values. This study shows a
reduction in the bias by approximately 17.5% on average when daily LWP values are used.
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Figure 5 shows the bias as a function of SZA and AZA for test data for homogeneous situations
without feature selection in Leipzig as an example. At the range of SZA > 63◦, the bias shows a
slight decrease, but not much. Figure 6 demonstrates the bias as a function of hours and months. Bias
increases with increasing SZA, during late afternoon and in October and November, when SZA is
mostly over 60◦ or higher, which is consistent with the results of Roebeling et al. [7], who found that
LWP from SEVIRI is overestimated at those times relative to CloudNet. It has been reported that at
oblique viewing angles cloud properties can be overestimated for both broken and overcast clouds,
as reflectances increase much in the forward-scattering direction [7,31]. It should be noted that there
is no obvious difference between homogeneous and inhomogeneous cases with and without feature
selection for angle and time-dependent errors, which are not shown here.

Figure 3. Bias calculated for bins of 20 g m−2 from instantaneous LWP retrieved by the GBRT model
(top) and CLAAS-2 (bottom) as a function of CloudNet LWP for Leipzig (left), Lindenberg (middle),
and Juelich (right) for homogeneous cloud fields without feature selection. The error bars are for one
standard deviation of samples in each bin. The dotted line indicates the number of samples.

Figure 4. Bias calculated for bins of 20 g m−2 from daily medians of LWP retrieved by the GBRT
model as a function of CloudNet LWP for Leipzig (left), Lindenberg (middle), and Juelich (right) for
homogeneous cloud fields without feature selection. The error bars are for one standard deviation of
samples in each bin. The dotted line indicates the number of samples.
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Figure 5. Angle-dependent error plots as a function of solar zenith angle (top) and azimuth angle
(bottom) for test data for homogeneous without feature selection in Leipzig. The black lines are means
of the bias between LWP retrieved by the GBRT model and CloudNet LWP with one standard deviation
as the red vertical line. The black dashed lines indicate the number of samples.

Figure 6. Time-dependent error plots as a function of hours (top) and months (bottom) for test data
for homogeneous without feature selection in Leipzig. The black lines are means of the bias between
LWP retrieved by the GBRT model and CloudNet LWP with one standard deviation as the red vertical
line. The black dashed lines indicate the number of samples.

3.3. Relationship between LWP and Input Variables

The model input variables and their influence on the model’s predictions are investigated for a
better understanding of how the model works. Figures 7 and 8 show the feature importances and
the partial dependencies of the GBRT models for the three study sites for without feature selection
(Feature Set 1) and with feature selection (Feature Set 2), respectively, for homogeneous cloud fields
to get a more reliable analysis. The y-axis of the PD plot shows the relative contribution of the input
feature on the prediction. Partial dependence is the average response of an estimator for each possible
grid value of the feature (x-axis) based on a weighted tree traversal [25]. It can be interpreted as a
relationship between two variables (i.e., input feature and target). For example, positive (negative)
values indicate that a specific grid value is corresponding to an increase (decrease) of predicted LWP.
The important features identified in the feature importance result on the upper (Figure 7) and the left
(Figure 8) can be related to high/obvious partial dependence in the PD plots.

At all sites, VIS channels appear to be the most important feature for the model’s prediction in
Figures 7 and 8. Other IR channels are much less significant to the prediction, which is also visible in
the PD plot in Figure 7 with nearly no variations of partial dependence. It was as expected because
VIS0.6 related to cloud optical thickness information, IR1.6 and IR3.9 channels, which are changed by
the droplet effective radius, are commonly used as input to LWP retrievals [6,7,27]. As shown in the PD
plot, the effect of the VIS0.6 on the LWP estimation variable at all sites is clearly seen. The reflectance
increases with LWP that might correspond to the increase of the cloud thickness (cf. [32]). Clouds with
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high LWP tend to have larger droplets that absorb more NIR radiation and thereby lead to a smaller
reflectance at the NIR [32]. This is well represented in the PD plots of the IR1.6 and IR3.9 variables.
For smaller reflectance in the IR016 and IR039 plots, the model predicts higher LWP values. Compared
to the other two sites, Leipzig shows relatively pronounced changes in the partial dependence of
the IR 1.6 µm channel in Figure 8. Chang and Li [32] found that, as the reflectance saturates more
quickly with greater DER, the dependence of the reflectance on the DER becomes larger as the DER
decreases. According to CLAAS-2 DER data, Leipzig is found to have relatively smaller DER values
compared to other sites in the selected samples (Figure A1). Furthermore, the longer is the wavelength
(1.6→ 3.7), the faster does the signal saturate [32], which may explain why Leipzig shows a stronger
partial dependence of LWP on changes in IR1.6 compared to the IR3.9.

Figure 7. Feature importance (top) and partial dependence plot (bottom) for training data for
homogeneous cloud fields without feature selection. The y-axis of the partial dependence plot shows
the changes of LWP (in units of LWP) relative to the mean prediction (centered around zero) for each
grid value on the x-axis.

Figure 9 shows that CloudNet LWP changes depending on satellite viewing geometry in the left
panel and the SHAP interaction values in the right panel. SHAP values are useful for interpreting
situations in which each input feature has a different contribution to the prediction, but works with
each other to obtain the prediction. Each input feature either increases or decreases the prediction.
SHAP interaction values allow visualizing a combined contribution as a feature’s changes with another
feature changing. Higher (lower) SHAP interaction values represent higher (lower) LWP predictions
with different contributions from two input features. In the PD plots, it was found that SZA has a
stronger effect on retrieved LWP particularly at high values for Leipzig and Lindenberg, while AZA
shows a less pronounced partial dependence for all stations. The left panel in Figure 9 shows that LWP
varies with both SZA and AZA, although this variation only seems to be systematic in the case of AZA.
This suggests that the diurnal cycle of LWP cannot explain the relatively strong influence of SZA on
LWP predicted by the model. In this case, the angle information can still play a supplementary role
in retrieving LWP by interacting with VIS0.6. In the SHAP interaction plot, the interaction of VIS0.6
and SZA has negative contributions on the prediction in general, which means that the combined
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contribution reduces the predicted LWP values. Meanwhile, for the range of high SZA, high reflectance
in VIS0.6 increases the predicted LWP, while low reflectance of VIS0.6 decreases the predicted LWP. It
has been reported that retrieved LWP is strongly dependent on solar geometry [7,33]. This has been
largely attributed to the COT retrievals, which directly affect LWP retrievals. COT tends to increase
with increasing SZA and to be overestimated at SZA > 60. Note that, although SZA has the strongest
interaction with VIS0.6, the interaction might be affected by other features, as SZA and LWP are
correlated with other NIR channels to some extent.

Figure 8. Feature importance (left) and partial dependence plot (right) for training data for
homogeneous cloud fields with feature selection. The y-axis of the partial dependence plot shows the
changes of LWP (in units of LWP) relative to the mean prediction (centered around zero) for each grid
value on the x-axis.

Figure 9. Box plot (left) of LWP based on SZA and AZA and SHAP interaction values (right) for
between LWP and the satellite viewing geometry in Leipzig.

4. Summary and Conclusions

This study presents a machine-learning based technique to retrieve cloud LWP using SEVIRI
data. We analyzed the potential of a machine learning approach for designing reliable cloud-property
retrievals. A statistical LWP retrieval was developed using spectral information from MSG-2 SEVIRI
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and satellite viewing geometry. CloudNet ground-based observation data were used to train the
model, and CLAAS-2 data as a high-quality reference.

LWP predicted by the GBRT model was validated with independent CloudNet LWP observations
in four different situations including homogeneous and inhomogeneous clouds, and both with and
without prior selection of input features. During this validation, the skill (R2) of the GBRT approach was
found to be higher than that of the physics-based retrieval in all situations. Inhomogeneous situations
feature lower R2 values and higher biases in general, but the difference was not as pronounced as
expected. The bias distributions of both the GBRT model and CLAAS-2 LWP show a tendency of
increasing bias as LWP values increase in general for both homogeneous and inhomogeneous cloud
fields, especially for high LWP values. Deterioration of performance with increasing LWP values seems
to be attributed to the limited samples for large values of LWP. It was found that both homogeneous
and inhomogeneous situations without feature selection show higher R2 values than those with feature
selection in general for all sites, but there was no meaningful difference between with and without
feature selection in terms of bias.

VIS0.6 has been shown to be the most important feature for the model’s prediction.
The corresponding partial dependence plot also presents the clear dependence of LWP estimation on
VIS0.6 at all sites. Meanwhile, LWP values increase with increasing droplet size as more radiation
is absorbed by the droplets, leading to smaller reflectance in the NIR. This is well observed in the
partial dependence plots. For lower reflectances in IR1.6 and IR3.9, the model predicts higher LWP
values. The magnitude of this dependence is site-specific. Leipzig has stronger changes in the partial
dependence of the IR 1.6 µm channel than the other two sites. As the reflectance saturates more quickly
with larger DER, the dependence of the reflectance on the DER can be larger as the DER decreases.
This is indirectly identified by CLAAS-2 DER with Leipzig having relatively smaller DER values than
the other sites. SZA and AZA variables have a relatively low importance in the feature importance
results, but it is shown that SZA has a strong interaction with VIS0.6 in the SHAP interaction plots.
Overall, the interaction of VIS0.6 and SZA has a negative effect on the prediction, but a positive effect
of the interaction on LWP prediction is observed for high SZA values as well.

The biases of instantaneous LWP values predicted by GBRT model increase with increasing
CloudNet LWP values, which is due to limited samples at larger LWP. Error bars of the bias are much
wider in CLAAS-2 compared to GBRT model. The bias from daily median LWP values shows that
using longer LWP averaging times reduces the bias, which is consistent with past studies, as spatial
mismatch caused by spatial scale difference between ground-based and satellite observations could
be mitigated by using daily values instead of using instantaneous values. The bias tends to become
negative (i.e., predicted LWP larger than CloudNet LWP) with increasing SZA. It was also found that
time-dependent errors increase in late afternoon.

The results suggests that the LWP retrieved by the machine-learning model is useful, as it is in
good agreement with ground-based reference measurements. In the cases and locations considered
here its overall performance relative to CloudNet was better than the state-of-the-art physics-based
CLAAS-2 product. Nevertheless, transferability to sites outside Germany and potentially different
conditions would have to be tested. In addition, while CLAAS-2 is aimed at representing all clouds,
a particular focus and filter was implemented in the approach presented here. Overall, the results
highlight the potential of cloud-property retrievals based on machine learning.
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Appendix A

Table A1. Summary of the relation between LWPGBRT and LWPgr for test data for each site in different
situations. n is the total number of samples.

Situations Sites Linear Relation of LWPGBRT − LWPgr

n R2 (%) Slope Intercept (g m−2)

Homogeneous
Leipzig 450 47.3 0.47 38.51
Lindenberg 1207 34.1 0.33 36.76
Juelich 412 46.4 0.46 43.67

Homogeneous
after feature
selection

Leipzig 450 39.0 0.43 42.31
Lindenberg 1207 20.3 0.20 44.26
Juelich 412 37.6 0.32 54.46

Inhomogeneous
Leipzig 528 43.0 0.44 36.61
Lindenberg 1415 31.3 0.31 34.64
Juelich 482 35.9 0.38 44.78

Inhomogeneous
after feature
selection

Leipzig 528 40.0 0.39 40.60
Lindenberg 1415 20.0 0.17 42.19
Juelich 482 28.7 0.30 49.88

Linear Relation of LWPCMSAF − LWPgr

Homogeneous
Leipzig 450 26.0 1.00 24.03
Lindenberg 1202 12.9 0.91 51.57
Juelich 412 18.6 0.95 18.28

Inhomogeneous
Leipzig 528 25.7 0.95 35.99
Lindenberg 1411 12.1 0.90 57.97
Juelich 482 9.5 0.90 28.33

Table A2. Statistics for comparison between LWPGBRT and LWPgr for test data for each site in different
situations. Q50, Q66, and Q95 are calculated as the difference between the 25th/17th/2.5th and
75th/83rd/97.5th percentiles of the difference between CloudNet LWP and GBRT-predicted LWP,
respectively. Units are g m−2 for mean, median, Q50, Q66, and Q95.

Situations Sites Difference between LWPGBRT and LWPgr

Mean
(GBRT)

Mean
(gr)

Median
(GBRT)

Median
(gr)

Accuracy
(PB%)

Q50
(Prec)

Q66 Q95

Homogeneous
Leipzig 73.38 74.42 72.98 66.87 6.11 (9.14) 40.01 59.49 131.44
Lindenberg 57.80 64.27 56.23 54.63 1.60 (2.93) 46.46 65.25 144.39
Juelich 81.89 83.34 85.32 78.89 6.43 (8.15) 42.40 66.38 130.20

Homogeneous
after feature
selection

Leipzig 74.40 74.42 72.75 66.87 5.88 (8.79) 39.37 60.25 141.88
Lindenberg 56.81 64.27 54.41 54.63 −0.22 (0.40) 58.77 77.65 146.24
Juelich 81.25 83.34 86.12 78.89 7.23 (9.16) 53.69 76.55 138.57

Inhomogeneous
Leipzig 67.53 69.92 67.24 60.47 6.77 (11.20) 40.98 59.13 149.26
Lindenberg 54.10 62.03 52.16 51.73 0.43 (0.83) 47.96 71.84 151.74
Juelich 76.10 81.76 76.96 77.30 −0.33 (0.43) 50.20 73.37 148.12

Inhomogeneous
after feature
selection

Leipzig 67.53 69.92 68.23 60.47 7.76 (12.83) 45.89 66.72 152.95
Lindenberg 52.88 62.03 51.12 51.73 −0.60 (1.17) 58.95 83.36 152.11
Juelich 74.49 81.76 76.07 77.30 −1.23 (1.59) 57.06 79.42 153.06

Difference between LWPCMSAF and LWPgr

Homogeneous
Leipzig 98.27 74.42 80.60 66.87 13.73 (20.53) 58.40 85.55 273.97
Lindenberg 110.12 64.27 77.50 54.63 22.87 (41.86) 92.46 140.74 368.75
Juelich 97.35 83.34 66.20 78.89 −12.69 (16.09) 63.28 108.42 359.40

Inhomogeneous
Leipzig 102.64 69.92 83.30 60.47 22.83 (37.76) 57.89 89.87 276.40
Lindenberg 113.68 62.03 81.80 51.73 30.07 (58.14) 96.34 141.95 403.75
Juelich 101.87 81.76 69.70 77.30 −7.60 (9.83) 69.93 114.32 345.44
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Figure A1. Droplet effective radius derived from CM SAF CLAAS-2 for test data for the study sites.

References

1. Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.;
Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Cambridge University Press: Cambridge, UK, 2013; pp. 571–657.

2. Greuell, W.; Roebeling, R. Toward a standard procedure for validation of satellite-derived cloud liquid water
path: A study with SEVIRI data. J. Appl. Meteorol. Climatol. 2009, 48, 1575–1590.

3. Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.;
Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA climate change initiative: Satellite data records for
essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552.

4. Roebeling, R.; Feijt, A.; Stammes, P. Cloud property retrievals for climate monitoring: Implications
of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and
Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res. Atmos. 2006, 111,
doi:10.1029/2005JD006990.

5. O’Dell, C.W.; Wentz, F.J.; Bennartz, R. Cloud liquid water path from satellite-based passive microwave
observations: A new climatology over the global oceans. J. Clim. 2008, 21, 1721–1739.

6. Seethala, C.; Horváth, Á. Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in
warm oceanic clouds. J. Geophys. Res. Atmos. 2010, 115, doi:10.1029/2009JD012662.

7. Roebeling, R.; Deneke, H.; Feijt, A. Validation of cloud liquid water path retrievals from SEVIRI using one
year of CloudNET observations. J. Appl. Meteorol. Climatol. 2008, 47, 206–222.

8. Kniffka, A.; Stengel, M.; Lockhoff, M.; Bennartz, R.; Hollmann, R. Characteristics of cloud liquid water path
from SEVIRI onboard the Meteosat Second Generation 2 satellite for several cloud types. Atmos. Meas. Tech.
2014, 7, 887–905.

9. Kostsov, V.S.; Kniffka, A.; Stengel, M.; Ionov, D.V. Cross-comparison of cloud liquid water path derived from
observations by two space-borne and one ground-based instrument in northern Europe. Atmos. Meas. Tech.
2019, 12, 5927–5946.

10. Schutgens, N.; Roebeling, R. Validating the validation: The influence of liquid water distribution in clouds
on the intercomparison of satellite and surface observations. J. Atmos. Ocean. Technol. 2009, 26, 1457–1474.

11. Greenwald, T.J.; Bennartz, R.; Lebsock, M.; Teixeira, J. An uncertainty data set for passive microwave satellite
observations of warm cloud liquid water path. J. Geophys. Res. Atmos. 2018, 123, 3668–3687.

12. Müller, J.; Fowler, G.; Dammann, K.; Rogers, C.; Buhler, Y.; Flewin, J. MSG Level 1.5 Image Data Format
Description; Rapport Technique; EUMETSAT: Darmstadt, Germany, 2010; Volume 68, p. 167.

13. SAF, C. Algorithm Theoretical Basis Document, SEVIRI Cloud Physical Products, CLAAS Edition 2, EUMETSAT
Satellite Application Facility on Climate Monitoring; Technical Report, SAF/CM/KNMI/ATBD/SEVIRI/CPP;
Satellite Application Facility on Climate Monitoring (CM SAF): Darmstadt, Germany, 2016 .



Remote Sens. 2020, 12, 3475 16 of 16

14. Cermak, J.; Bendix, J. A novel approach to fog/low stratus detection using Meteosat 8 data. Atmos. Res.
2008, 87, 279–292.

15. Strabala, K.I.; Ackerman, S.A.; Menzel, W.P. Cloud Properties inferred from 8–12-µm Data. J. Appl. Meteorol.
1994, 33, 212–229.

16. Illingworth, A.; Hogan, R.; O’connor, E.; Bouniol, D.; Brooks, M.; Delanoë, J.; Donovan, D.; Eastment, J.;
Gaussiat, N.; Goddard, J.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational
models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898.

17. Löhnert, U.; Crewell, S. Accuracy of cloud liquid water path from ground-based microwave radiometry 1.
Dependency on cloud model statistics. Radio Sci. 2003, 38, doi:10.1029/2002RS002654.

18. Gaussiat, N.; Hogan, R.J.; Illingworth, A.J. Accurate liquid water path retrieval from low-cost microwave
radiometers using additional information from a lidar ceilometer and operational forecast models. J. Atmos.
Ocean. Technol. 2007, 24, 1562–1575.

19. Finkensieper, S.; Meirink, J.; van Zadelhoff, G.; Hanschmann, T.; Benas, N.; Stengel, M.; Fuchs, P.;
Hollmann, R.; Werscheck, M. CLAAS-2: CM SAF CLoud Property dAtAset Using SEVIRI, 2nd ed.;
Satellite Application Facility on Climate Monitoring: Darmstadt, Germany, 2016

20. Stephens, G.L. Radiation Profiles in Extended Water Clouds. II: Parameterization Schemes. J. Atmos. Sci.
1978, 35, 2123–2132.

21. Benas, N.; Finkensieper, S.; Stengel, M.; van Zadelhoff, G.J.; Hanschmann, T.; Hollmann, R.; Meirink, J.F.
The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst. Sci. Data 2017, 9, 415.

22. Tranquilli, C.; Viticchiè, B.; Pessina, S.; Hewison, T.; Müller, J.; Wagner, S. Meteosat SEVIRI Performance
Characterisation and Calibration with Dedicated Moon/Sun/Deep-space Scans. In Proceedings of the 14th
International Conference on Space Operations, Daejeon, Korea, 16–20 May 2016; p. 2536.

23. Aminou, D.M.A.; Jacquet, B.; Pasternak, F. Characteristics of the Meteosat Second Generation (MSG)
radiometer/imager: SEVIRI. Sensors, Systems, and Next-Generation Satellites. Int. Soc. Opt. Photonics 1997,
3221, 19–31.

24. Fuchs, J.; Cermak, J.; Andersen, H. Building a cloud in the southeast Atlantic: Understanding low-cloud
controls based on satellite observations with machine learning. Atmos. Chem. Phys. 2018, 18, 16537–16552.

25. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
26. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011,
12, 2825–2830.

27. Roebeling, R.; Van Meijgaard, E. Evaluation of the daylight cycle of model-predicted cloud amount and
condensed water path over Europe with observations from MSG SEVIRI. J. Clim. 2009, 22, 1749–1766.

28. Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243.
29. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
30. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in

Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: New York, NY, USA, 2017; pp. 4765–4774.

31. Loeb, N.G.; Coakley, J., Jr. Inference of marine stratus cloud optical depths from satellite measurements:
Does 1D theory apply? J. Clim. 1998, 11, 215–233.

32. Chang, F.L.; Li, Z. Estimating the vertical variation of cloud droplet effective radius using multispectral
near-infrared satellite measurements. J. Geophys. Res. Atmos. 2002, 107, AAC–7.

33. Greenwald, T.J. A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations.
Geophys. Res. Lett. 2009, 36, doi:10.1029/2009GL040394.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data and Methods
	Meteosat-9 SEVIRI Data
	CloudNet Data
	CLAAS-2 Data
	Paring of SEVIRI, CLAAS-2 and CloudNet Data
	Gradient Boosting Regression Trees

	Results and Discussion
	Statistics for Model Performance
	Bias Analysis for LWP Retrieval
	Relationship between LWP and Input Variables

	Summary and Conclusions
	
	References

