6,671 research outputs found

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    SOCTESQA - Solid Oxide Cell and Stack Testing, Safety and Quality Assurance

    Get PDF
    Many research facilities and industrial companies worldwide are engaged in the development and the improvement of solid oxide fuel cells/stacks (SOFC) and also of solid oxide electrolysis cells/stacks (SOEC). However, the successful application of fuel and electrolysis cells/stacks in real world conditions requires reliable assessment, testing and prediction of performance and durability. Therefore the EU-project SOCTESQA will start at the beginning of May with the aim to develop uniform and industry wide test procedures and protocols for SOC cell/stack assembly. The paper presents the main objectives, the project consortium, the structure, the work packages and the workflow plan of the project. The project builds on experiences gained in the FCTESTNET, FCTESQA series of projects taking up the methodology developed there. It will address new application fields which are based on the operation of the SOFC cell/stack assembly in the fuel cell and in the electrolysis mode, e.g. stationary SOFC ΞΌ-CHP, mobile SOFC APU and SOFC/SOEC power-to-gas systems. The test procedures will include current-voltage curves, electrochemical impedance spectroscopy and long term tests both under steady state and dynamic operating conditions. The project partners are from different countries in Europe: French Alternative Energies and Atomic Energy Commission (CEA), Technical University of Denmark (DTU), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Joint Research Centre – European Commission (JRC) from Belgium, European Institute for Energy Research (EIFER) from Germany and German Aerospace Center (DLR). All of them have long-term experience in the development, testing and harmonization of solid oxide cells/stacks. The project will have a clear structure based on an initial definition phase, the development of generic test modules, the corresponding experimental validation phases and the review of the test procedures. Several of these validation loops will result at the end of the project in final test modules, which will be confirmed by round robin tests. Moreover, the project will address safety aspects, liaise with standardization organizations and establish contact with industrial practice. This collaborative project will essentially help to accelerate the development and the market penetration of hydrogen and fuel cell (H2&FC) energy systems in Europe

    One-dimensional Topological Edge States of Bismuth Bilayers

    Get PDF
    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the system. To date, evidence for such electronic modes has come from experiments on semiconducting heterostructures in the topological phase which showed approximately quantized values of the overall conductance as well as edge-dominated current flow. However, there have not been any spectroscopic measurements to demonstrate the one-dimensional (1D) nature of the edge modes. Among the first systems predicted to be a 2D topological insulator are bilayers of bismuth (Bi) and there have been recent experimental indications of possible topological boundary states at their edges. However, the experiments on such bilayers suffered from irregular structure of their edges or the coupling of the edge states to substrate's bulk states. Here we report scanning tunneling microscopy (STM) experiments which show that a subset of the predicted Bi-bilayers' edge states are decoupled from states of Bi substrate and provide direct spectroscopic evidence of their 1D nature. Moreover, by visualizing the quantum interference of edge mode quasi-particles in confined geometries, we demonstrate their remarkable coherent propagation along the edge with scattering properties that are consistent with strong suppression of backscattering as predicted for the propagating topological edge states.Comment: 15 pages, 5 figures, and supplementary materia

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    IRIS: Efficient Visualization, Data Analysis and Experiment Management for Wireless Sensor Networks

    Get PDF
    The design of ubiquitous computing environments is challenging, mainly due to the unforeseeable impact of real-world environments on the system performance. A crucial step to validate the behavior of these systems is to perform in-field experiments under various conditions. We introduce IRIS, an experiment management and data processing tool allowing the definition of arbitrary complex data analysis applications. While focusing on Wireless Sensor Networks, IRIS supports the seamless integration of heterogeneous data gathering technologies. The resulting flexibility and extensibility enable the definition of various services, from experiment management and performance evaluation to user-specific applications and visualization. IRIS demonstrated its effectiveness in three real-life use cases, offering a valuable support for in-field experimentation and development of customized applications for interfacing the end user with the system

    Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley

    Get PDF
    Heading time is a complex trait, and natural variation in photoperiod responses is a major factor controlling time to heading, adaptation and grain yield. In barley, previous heading time studies have been mainly conducted under field conditions to measure total days to heading. We followed a novel approach and studied the natural variation of time to heading in a world-wide spring barley collection (218 accessions), comprising of 95 photoperiod-sensitive (Ppd-H1) and 123 accessions with reduced photoperiod sensitivity (ppd-H1) to long-day (LD) through dissecting pre-anthesis development into four major stages and sub-phases. The study was conducted under greenhouse (GH) conditions (LD; 16/8 h; ∼20/∼16°C day/night). Genotyping was performed using a genome-wide high density 9K single nucleotide polymorphisms (SNPs) chip which assayed 7842 SNPs. We used the barley physical map to identify candidate genes underlying genome-wide association scans (GWAS). GWAS for pre-anthesis stages/sub-phases in each photoperiod group provided great power for partitioning genetic effects on floral initiation and heading time. In addition to major genes known to regulate heading time under field conditions, several novel QTL with medium to high effects, including new QTL having major effects on developmental stages/sub-phases were found to be associated in this study. For example, highly associated SNPs tagged the physical regions around HvCO1 (barley CONSTANS1) and BFL (BARLEY FLORICAULA/LEAFY) genes. Based upon our GWAS analysis, we propose a new genetic network model for each photoperiod group, which includes several newly identified genes, such as several HvCO-like genes, belonging to different heading time pathways in barley

    Image quality assessment for machine learning tasks using meta-reinforcement learning

    Get PDF
    In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with respect to a given downstream task, or task amenability. When the task is performed using machine learning algorithms, such as a neural-network-based task predictor for image classification or segmentation, the performance of the task predictor provides an objective estimate of task amenability. In this work, we use an IQA controller to predict the task amenability which, itself being parameterised by neural networks, can be trained simultaneously with the task predictor. We further develop a meta-reinforcement learning framework to improve the adaptability for both IQA controllers and task predictors, such that they can be fine-tuned efficiently on new datasets or meta-tasks. We demonstrate the efficacy of the proposed task-specific, adaptable IQA approach, using two clinical applications for ultrasound-guided prostate intervention and pneumonia detection on X-ray images

    D.3.1 Test Matrix Document

    Get PDF
    The present document defines the test matrix, i.e. a list of test modules relevant for different applications. According to the project objectives the applications are SOFC (stationary and mobile), SOEC (H2- production) and combined SOFC/SOEC (electricity storage via H2). These test modules can be combined to form test programs in order to realize application-oriented testing. This test matrix has been created based on a brief review of results from the precedent project - FCTESQA dealing with cell/stack/system testing procedures for three types of fuel cells (PEMFC, SOFC and MCFC) and the on-going project STACKTEST dealing with testing procedures for PEMFC stacks. Industrial stake holders who are developing SOFC/SOEC products have been contacted to gather information regarding the required operation modes during the lifecycle of the product for each application. Feedbacks from industrial stake holders have also been integrated
    • …
    corecore