75 research outputs found

    Wide range of droplet jetting angles by thin-film based surface acoustic waves

    Get PDF
    Nozzleless jetting of droplets with different jetting angles is a crucial requirement for 2D and 3D printing/bioprinting applications, and Rayleigh mode surface acoustic waves (SAWs) could be a potential technique for achieving this purpose. Currently, it is critical to vary the jetting angles of liquid droplets induced by SAWs and control the liquid jet directions. Generally, the direction of the liquid jet induced by SAWs generated from a bulk piezoelectric substrate such as LiNbO3 is along the theoretical Rayleigh angle of ~22o. In this study, we designed and manufactured thin-film SAW devices by depositing ZnO films on different substrates (including silicon and aluminium) to realize a wide range of jetting angles from ~16o to 55o using propagating waves generated from one interdigital transducer (IDT). We then systematically investigated different factors affecting the jetting angles, including liquid properties, applied SAW power and SAW device resonant frequency. Finally, we proposed various methods using thin-film SAW devices together with different transducer designs for realizing a wide range of jetting angles within the 3D domain

    Apnoea-Pi: Sleep disorder monitoring with open-source electronics and acoustics

    Get PDF
    Apnoea is a sleep disorder that affects an increasing number of adults causing harm from fatigue to a growing chance of heart problems. Apnoea disorders can be treated but advanced monitoring and diagnosing tools are needed to identify its strand and offer adequate treatment. Therefore, Apnoea tracking is vital to help keep patients healthy. Sleep Apnoea can cause a number of conditions such as fatigue, high blood pressure, liver functionality and an increased risk of type 2 diabetes. These complications make it necessary to monitor as many potential patients as possible by designing an instrument that is accurate, comfortable to use, fit for purpose, cost effective and with embedded computation capabilities to store, process and transmit time series data. In this work we present Apnoea-Pi, an adaptation of our Acousto-Pi open source surface acoustic wave platform to monitor Apnoea in patients using ultrasonic humidity sensing

    Acousto-Pi: An Opto-Acoustofluidic System using Surface Acoustic Waves controlled with Open Source Electronics for Integrated In-Field Diagnostics

    Get PDF
    Surface acoustic wave (SAW) devices are increasingly applied in life science, biology, and point-of-care applications due to their combined acoustofluidic sensing and actuating properties. Despite the advances in this field, there remain significant gaps in interfacing hardware and control strategies to facilitate system integration with high performance and low cost. In this work, we present a versatile, and digitally controlled acoustofluidic platform by demonstrating key functions for biological assays such as droplet transportation and mixing using a closed-loop feedback control with image recognition. Moreover, we integrate optical detection by demonstrating in-situ fluorescence sensing capabilities with a standard camera and digital filters, bypassing the need for expensive and complex optical setups. The Acousto-Pi setup is based on open-source Raspberry Pi hardware and 3D printed housing, and the SAW devices are fabricated with piezoelectric thin film on a metallic substrate. The platform enables the control of droplet position and speed for sample processing (mixing and dilution of samples), as well as the control of temperature based on acousto-heating, offering embedded processing capability. It can be operated remotely while recording the measurements in cloud databases towards integrated in-field diagnostic applications such as disease outbreak control, mass healthcare screening and food safety

    Optical Fibre Sensors for Monitoring Phase Transitions in Phase Changing Materials

    Get PDF
    A platinum coated singlemode-multimode (SM) structure is investigated in this paper as an optical fibre sensor (OFS) to monitor the phase transition of a phase change material (PCM). Paraffin wax has been used as an example to demonstrate the sensor\u27s performance and operation. Most materials have the same temperature but different thermal energy levels during the phase change process, therefore, sole dependency on temperature measurement may lead to an incorrect estimation of the stored energy in PCM. The output spectrum of the reflected light from the OFS is very sensitive to the bend introduced by the PCM where both liquid and solid states exist during the phase transition. The measurement of strain experienced by the OFS during the phase change of the PCM is utilized for identifying the phase transition of paraffin wax between the solid and liquid states. The experimental results presented in this paper show that the OFS with a shorter multimode fibre section has better performance for monitoring the phase transition of paraffin wax with a measured phase transition temperature range of 41.5 °C–57.7 °C for the SM based OFS with a 5 mm long multimode fibre section

    A Simple All-fiber Comb Filter Based on the Combined Effect of Multimode Interference and Mach- Zehnder Interferometer

    Get PDF
    A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems

    A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer

    Get PDF
    A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems

    Integrated label-free erbium-doped fiber laser biosensing system for detection of single cell Staphylococcus aureus

    Get PDF
    A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 105, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S. aureus). The developed microfiber-based biosensing platform called SCS-based EDFL biosensors can effectively detect concentrations of S. aureus from 10 to 105 CFU/mL, with a responsivity of 42.6 p.m./(CFU/mL) for the wavelength shift of the measured spectrum. The limit of detection (LoD) is estimated as 7.3 CFU/mL based on the measurement of S. aureus with minimum concentration of 10 CFU/mL. In addition, when a lower concentration of 1 CFU/mL is applied to the biosensor, a wavelength shift of 0.12 nm is observed in 10% of samples (1/10), indicating actual LoD of 1 CFU/mL for the proposed biosensor. Attributed to its good sensitivity, stability, reproducibility and specificity, the proposed EDFL based biosensing platform has great potentials for diagnostics

    Integrated sensing and acoustofluidic functions for flexible thin film acoustic wave devices based on metallic and polymer multilayers

    Get PDF
    Surface acoustic wave (SAW) devices are generally fabricated on rigid substrates that support the propagation of waves efficiently. Although very challenging, the realisation of SAW devices on bendable and flexible substrates can lead to new generation SAW devices for wearable technologies. In this paper, we report flexible acoustic wave devices based on ZnO thin films coated on various substrates consisting of thin layers of metal (e.g., Ni/Cu/Ni) and/or polymer (e.g., polyethylene terephthalate, PET). We comparatively characterise the fabricated SAW devices and demonstrate their sensing applications for temperature and ultraviolet (UV) light. We also investigate their acoustofluidic capabilities on different substrates. Our results show that the SAW devices fabricated on a polymer layer (e.g. ZnO/PET, ZnO/Ni/Cu/Ni/PET) show enhanced temperature responsivity, and the devices with larger wavelengths are more sensitive to UV exposure. For actuation purposes, the devices fabricated on ZnO/Ni/Cu/Ni layer have the best performance for acoustofluidics, whereas insignificant acoustofluidic effects are observed with the devices fabricated on ZnO/PET layers. We propose that the addition of a metallic layer of Ni/Cu/Ni between ZnO and polymer layers facilitates the actuation capability for the acoustofluidic applications while keeping temperature and UV sensing capabilities, thus enhancing the integration of sensing and acoustofluidic functions

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore