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Abstract

®

CrossMark

A platinum coated singlemode-multimode (SM) structure is investigated in this paper as an

optical fibre sensor (OFS) to monitor the phase transition of a phase change material (PCM).
Paraffin wax has been used as an example to demonstrate the sensor’s performance and
operation. Most materials have the same temperature but different thermal energy levels during
the phase change process, therefore, sole dependency on temperature measurement may lead to
an incorrect estimation of the stored energy in PCM. The output spectrum of the reflected light
from the OFS is very sensitive to the bend introduced by the PCM where both liquid and solid
states exist during the phase transition. The measurement of strain experienced by the OFS
during the phase change of the PCM is utilized for identifying the phase transition of paraffin
wax between the solid and liquid states. The experimental results presented in this paper show
that the OFS with a shorter multimode fibre section has better performance for monitoring the
phase transition of paraffin wax with a measured phase transition temperature range of 41.5 °C—
57.7 °C for the SM based OFS with a 5 mm long multimode fibre section.

Keywords: optical fibre sensor, phase change material, phase change monitoring, SMS
structure, FBG

(Some figures may appear in colour only in the online journal)

1. Introduction

Solid-liquid phase change materials (PCMs) have been
widely used in latent heat thermal storage systems for heat
pumps [1-3], solar engineering [4], and spacecraft thermal

6 These authors have equal contributions to this paper.

0964-1726/18,/105021+-07$33.00

control [5]. A simple and common application of PCM can be
seen in thermally insulated water bottles, where the PCM
surrounded by water melts and is used to store the heat from
the hot water. The stored heat is then released back to the
water at a slower rate as the PCM solidifies so as to maintain a
desired water temperature over a longer period of time than
would be the case if a simple insulator was used instead of a

© 2018 IOP Publishing Ltd  Printed in the UK
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PCM. There are a large number of PCMs, which melt and
solidify over a wide range of temperatures, which are
attractive for a wide number of applications [5, 6]. The
practical realization of an efficient PCM-based thermal energy
management system requires an in-depth understanding of the
PCM behaviour during melting and solidification stages.
Solidification can occur below the expected phase transition
temperature, a phenomenon referred to as under-cooling [7].
Temperature measurements are widely used to measure the
amount of stored thermal energy in PCMs. However, in many
cases at the solid-liquid phase (SLP) change state, most
materials have the same temperature but different energy
levels. For example, at 0°C, 1 gram of liquid water has
333.55 Joules more energy than that of the solid ice. There-
fore, sole dependency on temperature measurement alone
may lead to an incorrect estimation of the stored energy in the
PCM, particularly in a large PCM-based energy storage sys-
tem. To address this issue, several techniques such as diff-
erential scanning calorimetry (DSC) [8] and differential
thermal analysis (DTA) [9] have been proposed to determine
the phase state of PCM. However, these techniques are
complex to operate which usually requires a skilled technician
to carry out measurement and costly. It is hence necessary to
develop a new technique to monitor the SLP change by
determining the start and end points of phase changes, a
measurement which cannot be undertaken by traditional
temperature sensors. One possible option is the use of optical
fibre sensor (OFS) technology.

Due to the advantages of compact size, immunity to
electromagnetic interference and remote sensing capabilities
[10], OFSs have been widely used in many areas such as
automotive, chemical industry, aircraft, medical diagnosis
areas, etc [11]. There are different types of OFSs including
fibre Bragg grating (FBG) sensors [12-14], long period
grating sensors [15, 16], photonic crystal fibre (PCF) sensors
[17, 18], Fabry—Perot interferometer sensors [19], and sin-
glemode-multimode-singlemode ~ (SMS) fibre  sensors
[20, 21]. Among these sensors, SMS sensors, which possess a
simple fabrication process and low cost with high sensitivity,
have attracted wide research interest in recent years for
measurements of strain (¢) [22, 23], temperature [24-26],
refractive index [27, 28], and chemical concentrations [29].
Our previous investigations demonstrated that an SMS sensor
is very sensitive to even minor bending forces applied to it
[30]. In a PCM at the SLP change point, small local variations
in the state of material surrounding the fibre result in slightly
different forces being applied to different locations on the
SMS fibre sensor, since these local variations occur on a
spatial scale similar in size to the dimensions of the SMS
sensor. The result is that micro bends occur along the length
of the SMS sensor and in turn this leads to a significant
wavelength shift A in the output spectrum of the SMS fibre
sensor. In this paper we experimentally investigate an SMS
fibre based sensor structure as a better and more accurate
means to monitor the phase change (¢) of a PCM between
solid and liquid states. The well-known PCM paraffin wax
(327204 Aldrich) having a melting point between 53 °C—
57 °C is used in this experiment as the host material because

Incident
Light

Light

1t T 1 §

Reflected

SMF 28 MMF Metal coating

Figure 1. Schematic diagram of reflective SM optical fibre structure.

of its low cost and availability. In future, the proposed sensor
can be used as a cheaper alternate for real time phase state
monitoring of other PCM, such as paraffin/polyethylene
blend [31], polyethylene/paraffin blend [32] and erythritol
[3], etc used in thermal storage system.

The paper is organised as follows: section 2 describes the
experimental setup along with the fabrication and operating
principle of a reflective singlemode-multimode (SM) structure
working as an optical fibre sensor structure to identify dif-
ferent phase states of the paraffin wax. This structure optically
works as an SMS fibre structure but is configured as an end-
point sensor and is used here since measurement in a PCM
environment is best suited to a probe type sensor. Section 3
describes the results, based on which the sensor was opti-
mised for better accuracy. Finally, section 4 presents our
conclusions.

2. Experimental set-up

In this experiment, two reflective SM fibre sensors with dif-
ferent multimode fibre (MMF) of length 5 and 10 mm were
fabricated in order to investigate the influence of the MMF
length on the measurement accuracy when monitoring the 6¢
point of the paraffin wax as shown in figure 1. The reflective
SM structure is fabricated by fusion splicing a short length of
MMF (AFS105/125Y) with a conventional SMF (SMF28),
and coating the unconnected MMF end with a thin layer of
platinum (10 nm thickness). Note that, in principle both the
reflective and the conventional SMS fibres have the same
transmission principle. Light propagates along the SMF and
on entering the MMF will excite multiple modes within its
core. Since the MMF end is coated with the platinum coating,
the propagating light will be reflected back into the MMF
fibre and in turn is coupled back into the SMF. The inter-
ference between multiples modes within the MMF results in
transmission dips in the output spectral response, which
depend on the surrounding environment, i.e., local temper-
ature (7), longitudinal strain (¢) and the fibre bending.

The schematic diagram of the experimental setup for
measuring d¢ of the paraffin wax is shown in figure 2. A glass
rod is used to fix both the optical fibre sensor and a ther-
mocouple as close as possible (<2 mm apart), with the rod
and attachments then immersed in a beaker containing 250 ml
of paraffin wax sample. A broadband light source
(SLD1005S) is used to launch light into the optical sensor via
an optical circulator (OC). The reflected light from the sensor
is observed with an optical spectrum analyser (OSA, Yoko-
gawa AQ6370D) via the OC in order to analyse its spectral
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Figure 2. Schematic diagram of experimental setup for measuring phase change (6¢ ) of paraffin wax.

response. The OSA is programmed to automatically record
dip wavelength (maximum dip) every 2min over a wide
wavelength range from 1450 to 1650 nm. A thermocouple
(RS 206-3738, K type, Accuracy +0.2% reading error +1 °C)
is used as a temperature reference from which the temperature
readings are recorded every 2min to correlate with the
reading from OSA. The heating and cooling conditions were
maintained to be the same by using a water bath to gradually
increase or decrease the temperature. In addition, while
heating the hot plate the temperature was set to a level so that
the time required to heat the wax from its solid state to the
liquid state is the same as that required to cool the wax back
to its solid state.

3. Result and discussion

Figures 3(a) and (b) show the measured A\ as a function of
temperature (30.0 °C-70.0 °C) of the platinum coated SM
fibre structures with Smm and 10 mm long MMF, respec-
tively. Note that, to validate the reliability and repeatability of
the proposed sensor two sets of measurements were carried
out. The temperature T of the paraffin wax was measured with
the thermocouple.

As shown in figure 3(a), there are two temperature ranges
(ie., 30.0°C< T <415°C and 57.7°C < T < 70.0°C)
where the paraffin wax is in a solid and liquid states respec-
tively and where the wavelength responses are fairly linear
but with different slopes. The result indicates that the shift in
the spectral dip within the temperature ranges used is mainly
due to the temperature-induced strain on the sensor immersed
in solid and liquid paraffin, respectively. Of most interest is
the temperature range 41.5°C < T < 57.7°C, where both
solid and liquid states exist simultaneously and where the
stress applied along the length of the fibre sensor is not uni-
form which in turn induces random micro-bends in the SM
fibre sensor, thus resulting in a random wavelength shift with
temperature. Note that, the abrupt nature of the changes in the
spectral wavelength is likely due to the random lateral force
applied to the sensor by the solid-liquid mixed phase states of
the wax, which leads to an abrupt micro-bending state at a
random position with a random radius along the MMF section
of the fibre sensor. Figure 3(a) also shows a good agreement
in terms of the temperature range within which the phase

change takes place for the measurements for both cycles 1 and
2 (i.e., heating and cooling T) as well as a similar response for
each cycle. Note that, for all the measurements taken at
T > 57.7°C the wavelength profiles are the same. This is
because with the wax in the liquid state and the forces acting
upon the sensor are small and homogenous, resulting in the
absence of micro bending of the SM fibre sensor. However,
for T < 41.5 °C the wax is in a solid state resulting in micro
bending of the sensor. Note that, the micro bending state
appears again when the wax cools down from the liquid to the
solid phase state, thus resulting in a different but linear A\ as
a function of T (i.e., for all four sets of measurements for
T < 41.5°C). For T < 41.5 °C, the wax is fully solidified and
hence the temperature induced micro bending in the SM fibre
sensor is relatively small, thus resulting in a linear wavelength
response. Similar changes in the wavelength with temperature
are also observed for the reflective SM structure with a 10 mm
long MMF, see figure 3(b). The primary difference between
the responses observed for the sensors with 5 and 10 mm long
MMFs is in the temperature range where random fluctuations
of the wavelength are clearly seen (i.e., indicating the d¢ of
the paraffin wax), which are 41.5°C-57.7 °C and 37.8 °C-
57.7°C for 5 mm and 10 mm long MMFs, respectively. This
is because the sensor’s area immersed into the wax is larger
because of the longer MMF, thus higher temperature differ-
ence AT appears across the MMF section compared with the
shorter length MMF, since the temperature distribution in the
wax is not uniform. Note, that a higher AT along the sensor’s
length will introduce more micro bending in the MMF
section, thus resulting in random A\ changes over a much
larger temperature range read by the thermocouple, which is
not desirable. The purpose of the sensor is to monitor d¢ at a
single point with no influence of other points in the wax. The
undesired temperature influence from the adjoining layers of
the wax for the shorter length MMF (i.e., 5 mm) sensor is
rather small in comparison with the longer length MMF (i.e.,
10 mm) sensor. Therefore, we can conclude that the sensor
with a 5 mm long MMF offers improved measurement acc-
uracy within the phase change state (41.5°C < T < 57.7 °C)
compared to that of 10 mm MMF sensor.

Figure 4 shows the measured T and the wavelength shift
as a function of time for the paraffin wax within the temp-
erature range 30.0 °C < T < 73.0°C for both heating and
cooling cycles. Also depicted are the typical spectral
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Figure 3. Measured wavelength shift (A)) versus the temperature (7) for the platinum coated SM structure with MMF length of: (a) 5 mm,
and (b) 10 mm. Two sets of measurements are taken by heating and then cooling the paraffin wax over a temperature range of

30.0 °C-70.0 °C.
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Figure 4. Comparison between the measured temperature (7) and the wavelength shift (A)) as a function of time () for the paraffin wax over

30°C < T < 73 °C for: (a) heating, and (b) cooling. The typical spectral response for the reflective SM sensor with a 5 mm long MMF
during different phase state of paraffin wax are also presented.
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Figure 5. Comparison between the measured temperature (7) and the wavelength shift (A)) obtained using a reflective SM sensor with a
10 mm long MMF, as a function of time (7) for the paraffin wax over 30.0 °C < T < 73.0 °C for: (a) heating, and (b) cooling cycles.

responses for the reflective SM sensor with a 5 mm long
MMF. As shown in figure 4(a) during the continuous heating
process T increases linearly for up to + = 120 min and then
changes rapidly for the next 43 min reaching a steady state
value of ~57.7°C at t = 163 min. Following this, T con-
tinues to increase in a linear manner. The first rise in 7T is
because the solid wax transfers heat with a relatively low
thermal conductivity, which results in a significant AT
between the bottom of the wax (located near the heat source)
and the measured point. After 120 min, the wax enters the
phase change state where both liquid and solid will coexist,
which significantly increases the thermal conductivity and
consequently the abrupt changes in temperature. The constant
T during 163 < t < 273 min is due to the liquid and solid in
the container having the same 7, where the additional heat
energy absorbed by the wax is used to change the phase state
from solid to liquid rather than alter the temperature. Beyond
¢t > 273 min all the wax has changed from solid to liquid and
the absorbed heat begins to increase the wax temperature. The
spectral response of the reflective SM sensor with the 5 mm
long MMF display a random spectral pattern with no linear
relationship in terms of the spectral width, intensity, or
number of spectral dips with the changes in 7, for
121 <t < 174min and 41.4°C < T < 57.7°C. This is
because of the aforementioned paraffin wax induced random
micro-bending state of the SM sensor due to simultaneous
existence of solid and liquid phase states of the wax in the SM
sensor area. Figure 4(b) shows the opposite response for both
T and A to that of figure 4(a) for the case when the paraffin
wax is cooling. The random spectral response within the time
range 156 < t < 205 min is consistent with the simultaneous
existence of solid and liquid phase states over the temperature
range 41.5°C < T < 57.7 °C, for the cooling cycle.

Figure 5 shows the measured temperature and the
wavelength shift observed using a reflective SM sensor with a

10 mm long MMF, as a function of time for the paraffin wax
for 30.0°C < T < 73.0°C for heating and cooling cycles.
Both the time and temperature follow the same relationship as
explained above for the reflective SM sensor with a 5 mm
long MMF. The spectral response of the reflective SM sensor
with a 10 mm long MMF displays a random wavelength
variation in a wider temperature range
(37.8°C < T < 57.7°C) for 80 < t < 172 min while heating
the paraffin wax, in comparison to the reflective SM with
5mm long MMF. This is because during the heating and
cooling process, the temperature distribution within the par-
affin wax sample is not uniform. The longer length (10 mm)
MMF is exposed to a larger area within the paraffin wax
hence suffers larger temperature variation along the 10 mm
MMF section compared to that of 5 mm MMF. However, the
reference thermocouple only measures temperature at one
point, resulting in a recorded random wavelength variation
within a wider temperature range. The random spectral
response within the time range of 156 < ¢t < 250 min sug-
gests simultaneous existence of solid and liquid phase states
at 37.9°C < T < 57.6 °C, while cooling the paraffin wax.

A range of measured value for 7 for different phase states
of the paraffin wax for the two cycles of heating and cooling
the paraffin wax for the sensor with 5 and 10 mm-long MMFs
are given in table 1.

From the data presented in table 1, we can clearly con-
clude that the start and end points of the phase change are
41.5°C and 57.7 °C respectively for the 5mm-long MMF
sensor, which is smaller than that (37.8 °C and 57.7 °C) for
the 10 mm-long MMF sensor, showing a better measurement
accuracy for shorter MMF sensor. The complete melting point
of paraffin wax (57.7°C) as observed from the proposed
sensor contest with the melting point of paraffin wax descri-
bed in its data sheet.
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Table 1. Measured temperature (7) value for different phase states

of the paraffin wax for the sensor with 5 and 10 mm long MMFs.

Temperature (°C)

Platinum coated SM structure

5 mm of MMF 10 mm of MMF
Cycle-1 Cycle-2 Cycle-1 Cycle-2
S.No Phase Heating Cooling Heating Cooling Heating Cooling Heating Cooling
1 Solid state 30-41.4 30-41.5 30-41.3 30-41.5 30-37.8 30-37.9 30-37.9 30-37.6
2 Phase change 6¢ 41.4-57.7 41.5-57.7 41.3-57.7 41.5-57.8 37.8-57.7 37.9-57.6 37.9-57.7 37.6-57.7
3 Liquid state 57.7-70.0 57.7-70.0 57.7-70 57.8-70 57.7-70 57.6-70.0 57.7-70.0 57.1-70.0

4. Conclusion

In this paper, a reflective SM structure was proposed for
measuring the different phase state of the paraffin wax.
During the phase change of the paraffin wax both solid and
liquid states existed simultaneously, which result in random
lateral forces applied onto the SM structure, thus introducing
the abrupt micro-bending in the sensor. The micro-bending of
the reflective SM sensor introduced an abrupt wavelength
shift in the spectral response of the sensor. Based on the
aforementioned principle, the proposed sensor was able to
detect the start and end points of phase change of the material.
The experimental results presented showed that sensor with a
shorter length of MMF offered improved measurement acc-
uracy compared to the longer length MMF.
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