42 research outputs found

    Essential role of liquid phase on melt-processed GdBCO single-grain superconductors

    Full text link
    RE-Ba-Cu-O (RE denotes rare earth elements) single-grain superconductors have garnered considerable attention owning to their ability to trap strong magnetic field and self-stability for maglev. Here, we employed a modified melt-growth method by adding liquid source (LS) to provide a liquid rich environment during crystal growth. It further enables a significantly low maximum processing temperature (Tmax) even approaching peritectic decomposition temperature. This method was referred as the liquid source rich low Tmax (LS+LTmax) growth method which combines the advantage of Top Seeded Infiltration Growth (TSIG) into Top Seeded Melt-texture Growth (TSMG). The LS+LTmax method synergistically regulates the perfect appearance and high superconducting performance in REBCO single grains. The complementary role of liquid source and low Tmax on the crystallization has been carefully investigated. Microstructure analysis demonstrates that the LS+LTmax processed GdBCO single grains show clear advantages of uniform distribution of RE3+ ions as well as RE211 particles. The inhibition of Gd211 coarsening leads to improved pining properties. GdBCO single-grain superconductors with diameter of 18 mm and 25 mm show maximum trapped magnetic field of 0.746 T and 1.140 T at 77 K. These trapped fields are significantly higher than those of conventional TSMG samples. Particularly, at grain boundaries with reduced RE211 density superior flux pinning performance has been observed. It indicates the existence of multiple pinning mechanisms at these areas. The presented strategy provides essential LS+LTmax technology for processing high performance single-grain superconductors with improved reliability which is considered important for engineering applications

    Estimating accuracy of RNA-Seq and microarrays with proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarrays revolutionized biological research by enabling gene expression comparisons on a transcriptome-wide scale. Microarrays, however, do not estimate absolute expression level accurately. At present, high throughput sequencing is emerging as an alternative methodology for transcriptome studies. Although free of many limitations imposed by microarray design, its potential to estimate absolute transcript levels is unknown.</p> <p>Results</p> <p>In this study, we evaluate relative accuracy of microarrays and transcriptome sequencing (RNA-Seq) using third methodology: proteomics. We find that RNA-Seq provides a better estimate of absolute expression levels.</p> <p>Conclusion</p> <p>Our result shows that in terms of overall technical performance, RNA-Seq is the technique of choice for studies that require accurate estimation of absolute transcript levels.</p

    Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain

    Get PDF
    A comprehensive regulatory module network of 15 bHLH transcription factors over 150 target genes in mouse brain has been constructed

    HIDDEN MARKOV MODELS

    No full text
    Bachelor'sBACHELOR OF SCIENCE (HONOURS

    Discovery of a Ruthenium Complex for the Theranosis of Glioma through Targeting the Mitochondrial DNA with Bioinformatic Methods

    No full text
    Glioma is the most aggressive and lethal brain tumor in humans. Mutations of mitochondrial DNA (mtDNA) are commonly found in tumor cells and are closely associated with tumorigenesis and progress. However, glioma-specific inhibitors that reflect the unique feature of tumor cells are rare. Here we uncover RC-7, a ruthenium complex with strong red fluorescence, could bind with glioma mtDNA and then inhibited the growth of human glioma cells but not that of neuronal cells, liver, or endothelial cells. RC-7 significantly reduced energy production and increased the oxidative stress in the glioma cells. Administration of RC-7 into mice not only could be observed in the glioma mass of brain by fluorescence imaging, but also obviously prevented the growth of xenograft glioma and prolonged mouse survival days. The findings suggested the theranostic application of a novel type of complex through targeting the tumor mtDNA

    Multi-omics reveals the mechanism of rumen microbiome and its metabolome together with host metabolome participating in the regulation of milk production traits in dairy buffaloes

    No full text
    Recently, it has been discovered that certain dairy buffaloes can produce higher milk yield and milk fat yield under the same feeding management conditions, which is a potential new trait. It is unknown to what extent, the rumen microbiome and its metabolites, as well as the host metabolism, contribute to milk yield and milk fat yield. Therefore, we will analyze the rumen microbiome and host-level potential regulatory mechanisms on milk yield and milk fat yield through rumen metagenomics, rumen metabolomics, and serum metabolomics experiments. Microbial metagenomics analysis revealed a significantly higher abundance of several species in the rumen of high-yield dairy buffaloes, which mainly belonged to genera, such as Prevotella, Butyrivibrio, Barnesiella, Lachnospiraceae, Ruminococcus, and Bacteroides. These species contribute to the degradation of diets and improve functions related to fatty acid biosynthesis and lipid metabolism. Furthermore, the rumen of high-yield dairy buffaloes exhibited a lower abundance of methanogenic bacteria and functions, which may produce less methane. Rumen metabolome analysis showed that high-yield dairy buffaloes had significantly higher concentrations of metabolites, including lipids, carbohydrates, and organic acids, as well as volatile fatty acids (VFAs), such as acetic acid and butyric acid. Meanwhile, several Prevotella, Butyrivibrio, Barnesiella, and Bacteroides species were significantly positively correlated with these metabolites. Serum metabolome analysis showed that high-yield dairy buffaloes had significantly higher concentrations of metabolites, mainly lipids and organic acids. Meanwhile, several Prevotella, Bacteroides, Barnesiella, Ruminococcus, and Butyrivibrio species were significantly positively correlated with these metabolites. The combined analysis showed that several species were present, including Prevotella.sp.CAG1031, Prevotella.sp.HUN102, Prevotella.sp.KHD1, Prevotella.phocaeensis, Butyrivibrio.sp.AE3009, Barnesiella.sp.An22, Bacteroides.sp.CAG927, and Bacteroidales.bacterium.52–46, which may play a crucial role in rumen and host lipid metabolism, contributing to milk yield and milk fat yield. The “omics-explainability” analysis revealed that the rumen microbial composition, functions, metabolites, and serum metabolites contributed 34.04, 47.13, 39.09, and 50.14%, respectively, to milk yield and milk fat yield. These findings demonstrate how the rumen microbiota and host jointly affect milk production traits in dairy buffaloes. This information is essential for developing targeted feeding management strategies to improve the quality and yield of buffalo milk
    corecore