41 research outputs found

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Personalized Music Recommendation Based on Style Type

    Get PDF
    As Internet industry constantly develops and the computer penetration rate continues to grow, the number of online music platforms and music users has been able to increase year by year. With that comes more music choices, information overload has become a very prominent problem. Therefore, how to make users choose their favorite music more conveniently is one of the most challenging problems faced by online music recommendation systems. This paper bases on the existing recommendation system research and uses the collaborative filtering algorithm, proposes a music recommendation method from three perspectives: user attributes, music types and time migration. It is found that the online music recommendation from these three perspectives has a good effect, which can provide a reference for the construction of the current online music recommendation system and is also helpful to platform management practice

    Trajectory Generation and Tracking Control for Aggressive Tail-Sitter Flights

    Full text link
    We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g

    ImMesh: An Immediate LiDAR Localization and Meshing Framework

    Full text link
    In this paper, we propose a novel LiDAR(-inertial) odometry and mapping framework to achieve the goal of simultaneous localization and meshing in real-time. This proposed framework termed ImMesh comprises four tightly-coupled modules: receiver, localization, meshing, and broadcaster. The localization module utilizes the prepossessed sensor data from the receiver, estimates the sensor pose online by registering LiDAR scans to maps, and dynamically grows the map. Then, our meshing module takes the registered LiDAR scan for incrementally reconstructing the triangle mesh on the fly. Finally, the real-time odometry, map, and mesh are published via our broadcaster. The key contribution of this work is the meshing module, which represents a scene by an efficient hierarchical voxels structure, performs fast finding of voxels observed by new scans, and reconstructs triangle facets in each voxel in an incremental manner. This voxel-wise meshing operation is delicately designed for the purpose of efficiency; it first performs a dimension reduction by projecting 3D points to a 2D local plane contained in the voxel, and then executes the meshing operation with pull, commit and push steps for incremental reconstruction of triangle facets. To the best of our knowledge, this is the first work in literature that can reconstruct online the triangle mesh of large-scale scenes, just relying on a standard CPU without GPU acceleration. To share our findings and make contributions to the community, we make our code publicly available on our GitHub: https://github.com/hku-mars/ImMesh

    Approaching the Ground State of Frustrated A-site Spinels: A Combined Magnetization and Polarized Neutron Scattering Study

    Get PDF
    We re-investigate the magnetically frustrated, {\it diamond-lattice-antiferromagnet} spinels FeAl2_2O4_4 and MnAl2_2O4_4 using magnetization measurements and diffuse scattering of polarized neutrons. In FeAl2_2O4_4, macroscopic measurements evidence a "cusp" in zero field-cooled susceptibility around 13~K. Dynamic magnetic susceptibility and {\it memory effect} experiments provide results that do not conform with a canonical spin-glass scenario in this material. Through polarized neutron scattering studies, absence of long-range magnetic order down to 4~K is confirmed in FeAl2_2O4_4. By modeling the powder averaged differential magnetic neutron scattering cross-section, we estimate that the spin-spin correlations in this compound extend up to the third nearest-neighbour shell. The estimated value of the Land\'{e} gg factor points towards orbital contributions from Fe2+^{2+}. This is also supported by a Curie-Weiss analysis of the magnetic susceptibility. MnAl2_2O4_4, on the contrary, undergoes a magnetic phase transition into a long-range ordered state below \approx 40~K, which is confirmed by macroscopic measurements and polarized neutron diffraction. However, the polarized neutron studies reveal the existence of prominent spin-fluctuations co-existing with long-range antiferromagnetic order. The magnetic diffuse intensity suggests a similar short range order as in FeAl2_2O4_4. Results of the present work supports the importance of spin-spin correlations in understanding magnetic response of frustrated magnets like AA-site spinels which have predominant short-range spin correlations reminiscent of the "spin liquid" state.Comment: 10 pages, 10 figures, double-column, accepted in Phys. Rev. B, 201

    Moderate mutation rate in the SARS coronavirus genome and its implications

    Get PDF
    BACKGROUND: The outbreak of severe acute respiratory syndrome (SARS) caused a severe global epidemic in 2003 which led to hundreds of deaths and many thousands of hospitalizations. The virus causing SARS was identified as a novel coronavirus (SARS-CoV) and multiple genomic sequences have been revealed since mid-April, 2003. After a quiet summer and fall in 2003, the newly emerged SARS cases in Asia, particularly the latest cases in China, are reinforcing a wide-spread belief that the SARS epidemic would strike back. With the understanding that SARS-CoV might be with humans for years to come, knowledge of the evolutionary mechanism of the SARS-CoV, including its mutation rate and emergence time, is fundamental to battle this deadly pathogen. To date, the speed at which the deadly virus evolved in nature and the elapsed time before it was transmitted to humans remains poorly understood. RESULTS: Sixteen complete genomic sequences with available clinical histories during the SARS outbreak were analyzed. After careful examination of multiple-sequence alignment, 114 single nucleotide variations were identified. To minimize the effects of sequencing errors and additional mutations during the cell culture, three strategies were applied to estimate the mutation rate by 1) using the closely related sequences as background controls; 2) adjusting the divergence time for cell culture; or 3) using the common variants only. The mutation rate in the SARS-CoV genome was estimated to be 0.80 – 2.38 × 10(-3 )nucleotide substitution per site per year which is in the same order of magnitude as other RNA viruses. The non-synonymous and synonymous substitution rates were estimated to be 1.16 – 3.30 × 10(-3 )and 1.67 – 4.67 × 10(-3 )per site per year, respectively. The most recent common ancestor of the 16 sequences was inferred to be present as early as the spring of 2002. CONCLUSIONS: The estimated mutation rates in the SARS-CoV using multiple strategies were not unusual among coronaviruses and moderate compared to those in other RNA viruses. All estimates of mutation rates led to the inference that the SARS-CoV could have been with humans in the spring of 2002 without causing a severe epidemic

    Magnetic structures and magnetoelastic coupling of Fe-doped hexagonal manganites LuMn1-xFexO3 (0 < x < 0.3)

    Get PDF
    We have studied the crystal and magnetic structures of Fe-doped hexagonal manganites LuMn1-xFexO3 (x = 0, 0.1, 0.2, and 0.3) by using bulk magnetization and neutron powder diffraction methods. The samples crystalize consistently in a hexagonal structure and maintain the space group P63cm from 2 to 300 K. The N\'eel temperature TN increases continuously with increasing Fe-doping. In contrast to a single {\Gamma}4 representation in LuMnO3, the magnetic ground state of the Fe-doped samples can only be described with a spin configuration described by a mixture of {\Gamma}3 (P63'cm') and {\Gamma}4 (P63'c'm) representations, whose contributions have been quantitatively estimated. The drastic effect of Fe-doping is highlighted by composition-dependent spin reorientations. A phase diagram of the entire composition series is proposed based on the present results and those reported in literature. Our result demonstrates the importance of tailoring compositions in increasing magnetic transition temperatures of multiferroic systems.Comment: 18 pages, 9 figure

    Structural Health Monitoring von Faserverbundstrukturen mittels Piezosensoren - Untersuchungen zum experimentellen Design

    Get PDF
    Faserverbundwerkstoffe (FVW) und Composites haben in der Luft- und Raumfahrtindustrie, im Automobilbau, beim Bau von Windenergieanlagen und in vielen weiteren zukunftsträchtigen Branchen eine große Bedeutung. Maßnahmen, die ein Erkennen von Schädigungen simultan zur Entstehung ermöglichen und Restbetriebszeiten prognostizieren können, sind geeignet, die Lebensdauer von FVW-Konstruktionen zu erhöhen. Darüber hinaus ist eine zustandsorientierte und somit kosteneffektive Wartung dieser Bauteile möglich. Sowohl die Prognose, als auch die Detektion von Schäden würde den ressourcenschonenden Einsatz dieser Werkstoff-gruppe ermöglichen. Das sogenannte Structural Health Monitoring (SHM) bezeichnet in diesem Zusammenhang eine Methode, die es ermöglicht, kontinuierlich Anhalts-punkte über die Funktionsfähigkeit von Bauteilen und Konstruktionen zu erhalten. Dieser Artikel beschreibt die Planung, Durchführung und Analyse von SHM-Experimenten. Das Hauptziel bestand in der Planung von Experimenten zur Gewinnung von Messdaten mittels piezoelektrischen Elementen auf Versuchstafeln, bei denen bewusst trukturbeschädigungen eingebracht wurden. Statistische Auswertungsmethoden sollen auf ihre Eignung getestet werden, Rückschlüsse aus den experimentell gewonnenen Daten auf die Art der Strukturbeschädigungen zu ziehen

    Chemical Mutagenesis and Fluorescence-Based High-Throughput Screening for Enhanced Accumulation of Carotenoids in a Model Marine Diatom Phaeodactylum tricornutum

    Get PDF
    Publisher's version (útgefin grein)Diatoms are a major group of unicellular algae that are rich in lipids and carotenoids. However, sustained research efforts are needed to improve the strain performance for high product yields towards commercialization. In this study, we generated a number of mutants of the model diatom Phaeodactylum tricornutum, a cosmopolitan species that has also been found in Nordic region, using the chemical mutagens ethyl methanesulfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (NTG). We found that both chlorophyll a and neutral lipids had a significant correlation with carotenoid content and these correlations were better during exponential growth than in the stationary growth phase. Then, we studied P. tricornutum common metabolic pathways and analyzed correlated enzymatic reactions between fucoxanthin synthesis and pigmentation or lipid metabolism through a genome-scale metabolic model. The integration of the computational results with liquid chromatography-mass spectrometry data revealed key compounds underlying the correlative metabolic pathways. Approximately 1000 strains were screened using fluorescence-based high-throughput method and five mutants selected had 33% or higher total carotenoids than the wild type, in which four strains remained stable in the long term and the top mutant exhibited an increase of 69.3% in fucoxanthin content compared to the wild type. The platform described in this study may be applied to the screening of other high performing diatom strains for industrial applications.This research was supported by the Icelandic Technology Development Fund with Grant No. 163922-0611, Landsvirkjun Energy Research Fund and NYUAD faculty research funds (AD060).Peer Reviewe
    corecore