2,398 research outputs found

    The Nucleosynthetic Yields of Core-collapse Supernovae: Prospects for the Next Generation of Gamma-Ray Astronomy

    Get PDF
    Though the neutrino-driven convection model for the core-collapse explosion mechanism has received strong support in recent years, there are still many uncertainties in the explosion parameters—such as explosion energy, remnant mass, and end-of-life stellar abundances as initial conditions. Using a broad set of spherically symmetric core-collapse simulations we examine the effects of these key parameters on explosive nucleosynthesis and final explosion yields. The post-bounce temperature and density evolution of zero-age main-sequence 15, 20, and 25 solar mass progenitors are post-processed through the Nucleosynthesis Grid nuclear network to obtain detailed explosive yields. In particular, this study focuses on radio isotopes that are of particular interest to the next generation of gamma-ray astronomical observations: 43K, 47Ca, 44Sc, 47Sc, 48V, 48Cr, 51Cr, 52Mn, 59Fe, 56Co, 57Co, and 57Ni. These nuclides may be key in advancing our understanding of the inner workings of core-collapse supernovae by probing the parameters of the explosion engine. We find that the isotopes that are strong indicators of explosion energy are 43K, 47Ca, 44Sc, 47Sc, and 59Fe, those that are dependent on the progenitor structure are 48V, 51Cr, and 57Co, and those that probe neither are 48Cr, 52Mn, 57Ni, and 56Co. We discuss the prospects of observing these radionuclides in supernova remnants

    High-Energy X-ray Imaging of the Pulsar Wind Nebula MSH~15-52: Constraints on Particle Acceleration and Transport

    Get PDF
    We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (>8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region towards the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV which may be explained by a break in the synchrotron-emitting electron distribution at ~200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50" of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present 2-D maps of spectral parameters and find an interesting shell-like structure in the NH map. We discuss possible origins of the shell-like structure and their implications.Comment: 15 pages, 9 figures, accepted for publication in Ap

    A luminosity distribution for kilonovae based on short gamma-ray burst afterglows

    Get PDF
    The combined detection of a gravitational-wave signal, kilonova, and short gamma-ray burst (sGRB) from GW170817 marked a scientific breakthrough in the field of multi-messenger astronomy. But even before GW170817, there have been a number of sGRBs with possible associated kilonova detections. In this work, we re-examine these "historical" sGRB afterglows with a combination of state-of-the-art afterglow and kilonova models. This allows us to include optical/near-infrared synchrotron emission produced by the sGRB as well as ultraviolet/optical/near-infrared emission powered by the radioactive decay of rr-process elements (i.e., the kilonova). Fitting the lightcurves, we derive the velocity and the mass distribution as well as the composition of the ejected material. The posteriors on kilonova parameters obtained from the fit were turned into distributions for the peak magnitude of the kilonova emission in different bands and the time at which this peak occurs. From the sGRB with an associated kilonova, we found that the peak magnitude in H bands falls in the range [-16.2, -13.1] (95%95\% of confidence) and occurs within 0.8−3.6 days0.8-3.6\,\rm days after the sGRB prompt emission. In g band instead we obtain a peak magnitude in range [-16.8, -12.3] occurring within the first 18 hr18\,\rm hr after the sGRB prompt. From the luminosity distributions of GW170817/AT2017gfo, kilonova candidates GRB130603B, GRB050709 and GRB060614 (with the possible inclusion of GRB150101B) and the upper limits from all the other sGRBs not associated with any kilonova detection we obtain for the first time a kilonova luminosity function in different bands.Comment: Published in MNRAS, 24 pages, 14 figure

    Parallelization of Kinetic Theory Simulations

    Full text link
    Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.Comment: 10 pages, 3 figures, conference proceeding

    Hyper-Accreting Black Holes and Gamma-Ray Bursts

    Get PDF
    A variety of current models for gamma-ray bursts (GRBs) suggest a common engine - a black hole of several solar masses accreting matter from a disk at a rate 0.01 to 10 solar masses per second. Using a numerical model for relativistic disk accretion, we have studied steady-state accretion at these high rates. Inside a radius ~ 10**8 cm, for accretion rates greater than about 0.01 solar masses per second, a global state of balanced power comes to exist between neutrino losses, chiefly pair capture on nucleons, and dissipation. Energy emitted in neutrinos is less, and in the case of low accretion rates, very much less, than the maximum efficiency factor for black hole accretion (0.057 for no rotation; 0.42 for extreme Kerr rotation) times Mdot c**2. The efficiency for producing a pair fireball along the rotational axis by neutrino annihilation is calculated and found to be highly variable and very sensitive to the accretion rate. For some of the higher accretion rates studied, it can be several per cent or more; for accretion rates less than 0.05 solar masses per second, it is essentially zero. The efficiency of the Blandford-Znajek mechanism in extracting rotational energy from the black hole is also estimated. In light of these results, the viability of various gamma-ray burst models is discussed and the sensitivity of the results to disk viscosity, black hole rotation rate, and black hole mass explored. A diverse range of GRB energies seems unavoidable and neutrino annihilation in hyper-accreting black hole systems can explain bursts up to 10**52 erg. Larger energies may be inferred for beaming systems.Comment: 46 pages, includes 9 figures, LaTeX (uses aaspp4.sty), accepted by The Astrophysical Journal. Additional solutions in Tables and Figs. 4 and 5, minor revisions to text, references adde

    Forearm muscle oxidative capacity index predicts sport rock-climbing performance

    Get PDF
    Abstract: Rock-climbing performance is largely dependent on the endurance of the forearm flexors. Recently, it was reported that forearm flexor endurance in elite climbers is independent of the ability to regulate conduit artery (brachial) blood flow, suggesting that endurance is not primarily dependent on the ability of the brachial artery to deliver oxygen, but rather the ability of the muscle to perfuse and use oxygen, i.e., skeletal muscle oxidative capacity. Purpose: The aim of the study was to determine whether an index of oxidative capacity in the flexor digitorum profundus (FDP) predicts the best sport climbing red-point grade within the last 6 months. Participants consisted of 46 sport climbers with a range of abilities. Methods: Using near-infrared spectroscopy, the oxidative capacity index of the FDP was assessed by calculating the half-time for tissue oxygen resaturation (O2HTR) following 3–5 min of ischemia. Results: Linear regression, adjusted for age, sex, BMI, and training experience, revealed a 1-s decrease in O2HTR was associated with an increase in red-point grade by 0.65 (95 % CI 0.35–0.94, Adj R2 = 0.53). Conclusions: Considering a grade of 0.4 separated the top four competitors in the 2015 International Federation Sport Climbing World Cup, this finding suggests that forearm flexor oxidative capacity index is an important determinant of rock-climbing performance

    Crater lake cichlids individually specialize along the benthic-limnetic axis

    Get PDF
    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic- as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence

    The consequences of nuclear electron capture in core collapse supernovae

    Full text link
    The most important weak nuclear interaction to the dynamics of stellar core collapse is electron capture, primarily on nuclei with masses larger than 60. In prior simulations of core collapse, electron capture on these nuclei has been treated in a highly parameterized fashion, if not ignored. With realistic treatment of electron capture on heavy nuclei come significant changes in the hydrodynamics of core collapse and bounce. We discuss these as well as the ramifications for the post-bounce evolution in core collapse supernovae.Comment: Accepted by PRL, 5 pages, 2 figure

    Prostate cancer risk: associations with ultraviolet radiation, tyrosinase and melanocortin-1 receptor genotypes

    Get PDF
    Exposure to ultraviolet radiation may reduce prostate cancer risk, suggesting that polymorphism in genes that mediate host pigmentation will be associated with susceptibility to this cancer. We studied 210 prostate cancer cases and 155 controls to determine whether vitamin D receptor (VDR, Taql and Fokl variants), tyrosinase (TYR, codon 192 variant) and melanocortin-1 receptor (MC1R, Arg151Cys, Arg160Trp, Val92Met, Asp294His and Asp84Glu variants) genotypes are associated with risk. UV exposure was determined using a questionnaire. MC1R Arg160/Arg160 homozygotes were at increased risk (P = 0.027, odds ratio = 1.94) while TYR A2/A2 homozygotes were at reduced risk of prostate cancer (P = 0.033, odds ratio = 0.48). These associations remained significant after correction for UV-exposure. Stratification of cases and controls by quartiles of exposure, showed that the protective effect of TYR A1A2 (P = 0.006, odds ratio 0.075) and A2A2 (P = 0.003, odds ratio 0.055) was particularly strong in subjects who had received the greatest exposure. Our data show for the first time, that allelism in genes linked with skin pigment synthesis is associated with prostate cancer risk possibly because it mediates the protective effects of UV. Importantly, susceptibility is associated with an interaction between host predisposition and exposure. © 2001 Cancer Research Campaign  http://www.bjcancer.co
    • 

    corecore