288 research outputs found
Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers
Internal exposure from naturally occurring radionuclides (including the inhaled long-lived actinides 232Th and 238U) is a component of the ubiquitous background radiation dose (National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States; NCRP Report No. 160; NCRP: Bethesda, MD, 2009). It is of interest to compare the concentration distribution of these natural ?-emitters in the lungs and respiratory lymph nodes with those resulting from occupational exposure, including exposure to anthropogenic plutonium and depleted and enriched uranium. This study examines the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantifying and visualizing the mass distribution of uranium and thorium isotopes from both occupational and natural background exposure in human respiratory tissues and, for the first time, extends this application to the direct imaging of plutonium isotopes. Sections of lymphatic and lung tissues taken from deceased former nuclear workers with a known history of occupational exposure to specific actinide elements (uranium, plutonium, or americium) were analyzed by LA-ICPMS. Using a previously developed LA-ICPMS protocol for elemental bio-imaging of trace elements in human tissue and a new software tool, we generated images of thorium (232Th), uranium (235U and 238U), and plutonium (239Pu and 240Pu) mass distributions in sections of tissue. We used a laboratory-produced matrix-matched standard to quantify the 232Th, 235U, and 238U concentrations. The plutonium isotopes 239Pu and 240Pu were detected by LA-ICPMS in 65 ?m diameter localized regions of both a paratracheal lymph node and a sample of lung tissue from a person who was occupationally exposed to refractory plutonium (plutonium dioxide). The average (overall) 239Pu concentration in the lymph node was 39.2 ng/g, measured by high purity germanium (HPGe) ?-spectrometry (Lynch, T. P.; Tolmachev, S. Y.; James, A. C. Radiat. Prot. Dosim. 2009, 134, 94?101). Localized mass concentrations of thorium (232Th) and uranium (238U) in lymph node tissue from a person not occupationally exposed to these elements (chronic natural background inhalation exposure) ranged up to 400 and 375 ng/g, respectively. In lung samples of occupationally nonexposed to thorium and uranium workers, 232Th and 238U concentrations ranged up to 200 and 170 ng/g, respectively. In a person occupationally exposed to air-oxidized uranium metal (Adley, F. E.; Gill, W. E.; Scott, R. H. Study of atmospheric contaminiation in the melt plant buiding. HW-23352(Rev.); United States Atomic Energy Commission: Oakridge, TN, 1952, p 1?97), the maximum 235U and 238U isotopic mass concentrations in a lymph node, measured at higher resolution (with a 30 ?m laser spot diameter), were 70 and 8500 ng/g, respectively. The ratio of these simultaneously measured mass concentrations signifies natural uranium. The current technique was not sufficiently sensitive, even with a 65 ?m laser spot diameter, to detect 241Am (at an overall tissue concentration of 0.024 ng/g, i.e., 3 Bq/g). © 2010 American Chemical Society
Comparisons of the radial distributions of core-collapse supernovae with those of young and old stellar populations
We present observational constraints on the nature of core-collapse
supernovae through an investigation into their radial distributions with
respect to those of young and old stellar populations within their host
galaxies, as traced by H-alpha emission and R-band light respectively. We
discuss results and the implications they have on the nature of supernova
progenitors, for a sample of 177 core-collapse supernovae. We find that the
radial positions of the overall core-collapse population closely follow the
radial distribution of H-alpha emission, implying that both are excellent
tracers of star formation within galaxies. Within this overall distribution we
find that there is a central deficit of SNII which is offset by a central
excess of SNIb/c. This implies a strong metallicity dependence on the relative
production of the two types, with SNIb/c arising from higher metallicity
progenitors than SNII. Separating the SNIb/c into individual classes we find
that a trend emerges in terms of progenitor metallicity going from SNII through
SNIb to SNIc, with the latter arising from the highest metallicity progenitors.Comment: Accepted for publication in MNRA
HumanMethylation450K array–identified biomarkers predict tumour recurrence/progression at initial diagnosis of high-risk non-muscle Invasive bladder cancer
Background: High-risk non-muscle invasive bladder cancer (HR-NMIBC) is a clinically unpredictable disease. Despite clinical risk estimation tools, many patients are undertreated with intra-vesical therapies alone, whereas others may be over-treated with early radical surgery.
Molecular biomarkers, particularly DNA methylation, have been reported as predictive of tumour/patient outcomes in numerous solid organ and haematologic malignancies; however, there are few reports in HR-NMIBC and none using genome-wide array assessment. We therefore sought to identify novel DNA methylation markers of HR-NMIBC clinical outcomes that might predict tumour behaviour at initial diagnosis and help guide patient management.
Patients and methods: A total of 21 primary initial diagnosis HR-NMIBC tumours were analysed by Illumina HumanMethylation450 BeadChip arrays and subsequently bisulphite Pyrosequencing. In all, 7 had not recurred at 1 year after resection and 14 had recurred and/or progressed despite intra-vesical BCG. A further independent cohort of 32 HR-NMIBC tumours (17 no recurrence and 15 recurrence and/ or progression despite BCG) were also assessed by bisulphite Pyrosequencing.
Results: Array analyses identified 206 CpG loci that segregated non-recurrent HR-NMIBC tumours from clinically more aggressive recurrence/progression tumours. Hypermethylation of CpG cg11850659 and hypomethylation of CpG cg01149192 in combination predicted HRNMIBC recurrence and/or progression within 1 year of diagnosis with 83% sensitivity, 79% specificity, and 83% positive and 79% negative predictive values.
Conclusions: This is the first genome-wide DNA methylation analysis of a unique HR-NMIBC tumour cohort encompassing known 1-year clinical outcomes. Our analyses identified potential novel epigenetic markers that could help guide individual patient management in this clinically unpredictable diseas
Recommended from our members
Molecular pathology and synaptic loss in primary tauopathies: A [18F]AV-1451 and [11C]UCB-J PET study
The relationship between in vivo synaptic density and tau burden in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology, in the primary tauopathies of Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD), as a function of disease severity. Twenty three patients with PSP, and twelve patients with Corticobasal Syndrome (CBS) were recruited from a tertiary referral centre. Nineteen education, sex and gender-matched control participants were recruited from the National Institute for Health Research ‘Join Dementia Research’ platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands [11C]UCB-J and [18F]AV-1451, respectively. Patients with CBS also underwent amyloid PET imaging with [11C]PiB to exclude those with likely Alzheimer’s pathology – we refer to the amyloid negative cohort as having CBD although acknowledge other pathologies exist. Disease severity was assessed with the PSP rating scale; regional non-displaceable binding potentials (BPND) of [11C]UCB-J and [18F]AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for [18F]AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions, and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between [11C]UCB-J and [18F]AV-1451 BPND (ß = 0.4, t = 3.6, p = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (ß = - 0.02, t = -2.9, p = 0.007, R = -0.41). Between regions, cortical [18F]AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher [18F]AV-1451 binding in PSP/CBD, but this association diminishes with disease severity. Moreover, higher cortical [18F]AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to pathology. Given the importance of synaptic function for cognition, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.Cambridge Centre for Parkinson-Plus (RG95450); the National Institute for Health Research Cambridge Biomedical Research Centre (BRC-1215-20014); the PSP Association (“MAPT-PSP” study), and the Association of British Neurologists, Patrick Berthoud Charitable Trust (RG99368)
Aquaporin-4–binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2
Neuromyelitis optica (NMO)-immunoglobulin G (IgG) is a clinically validated serum biomarker that distinguishes relapsing central nervous system (CNS) inflammatory demyelinating disorders related to NMO from multiple sclerosis. This autoantibody targets astrocytic aquaporin-4 (AQP4) water channels. Clinical, radiological, and immunopathological data suggest that NMO-IgG might be pathogenic. Characteristic CNS lesions exhibit selective depletion of AQP4, with and without associated myelin loss; focal vasculocentric deposits of IgG, IgM, and complement; prominent edema; and inflammation. The effect of NMO-IgG on astrocytes has not been studied. In this study, we demonstrate that exposure to NMO patient serum and active complement compromises the membrane integrity of CNS-derived astrocytes. Without complement, astrocytic membranes remain intact, but AQP4 is endocytosed with concomitant loss of Na+-dependent glutamate transport and loss of the excitatory amino acid transporter 2 (EAAT2) . Our data suggest that EAAT2 and AQP4 exist in astrocytic membranes as a macromolecular complex. Transport-competent EAAT2 protein is up-regulated in differentiating astrocyte progenitors and in nonneural cells expressing AQP4 transgenically. Marked reduction of EAAT2 in AQP4-deficient regions of NMO patient spinal cord lesions supports our immunocytochemical and immunoprecipitation data. Thus, binding of NMO-IgG to astrocytic AQP4 initiates several potentially neuropathogenic mechanisms: complement activation, AQP4 and EAAT2 down-regulation, and disruption of glutamate homeostasis
Synaptic Loss in Primary Tauopathies Revealed by [11 C]UCB-J Positron Emission Tomography.
BACKGROUND: Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES: We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS: Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS: Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS: We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Longitudinal Synaptic Loss in Primary Tauopathies: An In Vivo [11 C]UCB-J Positron Emission Tomography Study
BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Bringing the margins into the middle:Reflections on racism, class and the racialized outsider
This paper explores Virdee’s account of how racialized minorities in socialist movements ‘played an instrumental role in trying to align struggles against racism with those against class exploitation’ (p. 164). In so doing, Virdee makes an important intervention at a time when popular historians and other ideologues are colluding in the elevation of myths and – no doubt in their view – noble lies that preclude these stories. Moving through theoretical debates concerning the relationships between race and class, the nature and form of sociologies of ‘outsiders’, to political issues of mobilization, Virdee’s book successfully brings in from the margins an account the multi-ethnic character of the working class in England from the very moment of its inception
Comfort radicalism and NEETs: a conservative praxis
Young people who are not in education, employment or training (NEET) are construed by policy makers as a pressing problem about which something should be done. Such young people's lack of employment is thought to pose difficulties for wider society in relation to social cohesion and inclusion and it is feared that they will become a 'lost generation'. This paper(1) draws upon English research, seeking to historicise the debate whilst acknowledging that these issues have a much wider purchase. The notion of NEETs rests alongside longstanding concerns of the English state and middle classes, addressing unruly male working class youth as well as the moral turpitude of working class girls. Waged labour and domesticity are seen as a means to integrate such groups into society thereby generating social cohesion. The paper places the debate within it socio-economic context and draws on theorisations of cognitive capitalism, Italian workerism, as well as emerging theories of antiwork to analyse these. It concludes by arguing that ‘radical’ approaches to NEETs that point towards inequities embedded in the social structure and call for social democratic solutions veer towards a form of comfort radicalism. Such approaches leave in place the dominance of capitalist relations as well as productivist orientations that celebrate waged labour
Recommended from our members
Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum.
The clinical syndromes of frontotemporal dementia are clinically and neuropathologically heterogeneous, but processes such as neuroinflammation may be common across the disease spectrum. We investigated how neuroinflammation relates to the localization of tau and TDP-43 pathology, and to the heterogeneity of clinical disease. We used PET in vivo with (i) 11C-PK-11195, a marker of activated microglia and a proxy index of neuroinflammation; and (ii) 18F-AV-1451, a radioligand with increased binding to pathologically affected regions in tauopathies and TDP-43-related disease, and which is used as a surrogate marker of non-amyloid-β protein aggregation. We assessed 31 patients with frontotemporal dementia (10 with behavioural variant, 11 with the semantic variant and 10 with the non-fluent variant), 28 of whom underwent both 18F-AV-1451 and 11C-PK-11195 PET, and matched control subjects (14 for 18F-AV-1451 and 15 for 11C-PK-11195). We used a univariate region of interest analysis, a paired correlation analysis of the regional relationship between binding distributions of the two ligands, a principal component analysis of the spatial distributions of binding, and a multivariate analysis of the distribution of binding that explicitly controls for individual differences in ligand affinity for TDP-43 and different tau isoforms. We found significant group-wise differences in 11C-PK-11195 binding between each patient group and controls in frontotemporal regions, in both a regions-of-interest analysis and in the comparison of principal spatial components of binding. 18F-AV-1451 binding was increased in semantic variant primary progressive aphasia compared to controls in the temporal regions, and both semantic variant primary progressive aphasia and behavioural variant frontotemporal dementia differed from controls in the expression of principal spatial components of binding, across temporal and frontotemporal cortex, respectively. There was a strong positive correlation between 11C-PK-11195 and 18F-AV-1451 uptake in all disease groups, across widespread cortical regions. We confirmed this association with post-mortem quantification in 12 brains, demonstrating strong associations between the regional densities of microglia and neuropathology in FTLD-TDP (A), FTLD-TDP (C), and FTLD-Pick's. This was driven by amoeboid (activated) microglia, with no change in the density of ramified (sessile) microglia. The multivariate distribution of 11C-PK-11195 binding related better to clinical heterogeneity than did 18F-AV-1451: distinct spatial modes of neuroinflammation were associated with different frontotemporal dementia syndromes and supported accurate classification of participants. These in vivo findings indicate a close association between neuroinflammation and protein aggregation in frontotemporal dementia. The inflammatory component may be important in shaping the clinical and neuropathological patterns of the diverse clinical syndromes of frontotemporal dementia
- …